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ABSTRACT 

In this paper, we discuss a long-term planning approach for semiconductor supply chains. Since a single 
semiconductor wafer fabrication facility (wafer fab) needs a huge amount of energy to work as intended, 
the approach considers sustainability goals and production-oriented objectives. We are interested in 
determining how many wind turbines and solar photovoltaics need to be installed in a wafer fab to obtain a 
certain penetration of renewable energy while the prescribed demand is met. A mixed integer linear 
programming (MILP) model is established for a set of wafer fabs that work in parallel. Computational 
experiments are carried out to demonstrate the behavior of the model under certain experimental conditions.  

1 INTRODUCTION 

Semiconductor manufacturing deals with producing integrated circuits (ICs) on silicon wafers, thin discs 
made from silicon or gallium arsenide. Wafer fabrication, sort, assembly, and final test are the major stages 
required to manufacture ICs (cf. Mönch et al. 2013). The wafer fabrication part of the manufacturing 
process is carried out in wafer fabs. The ICs are built up layer-by-layer onto the wafers in wafer fabs. More 
than 40 layers exist for the most advanced products. After processing in the wafer fab, the wafers are sent 
to sort where electrical tests are carried out to identify defective dices. The probed wafers are then 
transferred to assembly facilities where dices of appropriate quality are put into a package. Finally, 
packaged dices are sent to test facilities where they are again tested to ensure that only products of high 
quality are delivered to customers. Wafer fab and sort are often called front-end, whereas assembly and test 
are called back-end. The semiconductor manufacturing process consists of up to 800 process steps, i.e. 
operations, and can take up to three months. 

Wafer fabs belong to the most energy-intensive manufacturing systems due to the required cleanroom 
conditions and advanced machinery. As a result, the semiconductor industry consumes more energy than 
other industries, for instance, the steel or petrochemical industry (Yu et al. 2017, Mönch et al. 2018a). Long-
term planning models deal with how demand can be met while profit is maximized simultaneously (Stray 
et al. 2006). The models compute release decisions for the different products per facility and period of the 
planning window. Moreover, it can be determined which facilities are opened or closed in the network 
during the planning window, typically several years.  

Only a small body of literature is available that deals with sustainability issues in semiconductor supply 
chains (cf. Mönch et al. 2018a). This is especially true for integrating production planning decisions (Mönch 
et al. 2018b) with aspects of a sustainable and distributed generation (DG) system. We are only aware of 
Villarreal et al. (2013), Santana-Viera et al. (2015), and Ziarnetzky et al. (2017) where the number of wind 
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turbines and solar photovoltaics is determined that need to be installed in a wafer fab to obtain a certain 
penetration of renewable energy and ensure a high profit. Simulation-based optimization is applied in these 
papers. However, the required strategic design decisions are typically made for an entire semiconductor 
network and not only for a single wafer fab. In the present paper, we propose a MILP model to compute 
how many wind turbines and solar photovoltaics need to be installed in the nodes of the semiconductor 
network which consists of a set of wafer fabs that operate in parallel. Computational experiments are carried 
out to demonstrate the behavior of the model under certain experimental conditions.   

The paper is organized as follows. We describe the problem and discuss related work in the next section. 
The planning model is then proposed in Section 3. Next, the results of computational experiments with the 
planning model are presented in Section 4. Finally, conclusions and future work directions are discussed in 
Section 5. 

2 PROBLEM DESCRIPTION AND ANALYSIS 

2.1 Problem Statement 

We consider a set 𝐹 of wafer fabs that work in parallel. Such settings can be found in companies that work 
in the foundry mode (Mönch et al. 2018a). Our goal is to consider elements of a sustainable and DG system 
in strategic planning formulations for semiconductor supply chains. The generation system includes 

 
• wind turbines (WTs) 
• solar photovoltaics (PVs) 
• substation with grid access 
• net metering. 

 
WTs and solar PVs have the highest priority in supplying the daily electricity of the wafer fabs belonging 
to 𝐹. Additional electricity can be hauled from the substation in the case of a power shortage. The surplus 
energy is returned to the main grid using a net metering system when the power delivered by the installed 
WTs and solar PVs exceeds the load. The electricity load resulting from manufacturing activities in the 
wafer fabs and the power provided by the DG system have to be modeled. Both the load and the power are 
uncertain since the wafer fabs, the wind power, and the solar radiation are stochastic quantities. 

We are interested in determining which quantity of a certain product should be released in which period 
of the planning window to minimize the sum of backlogging, finished goods inventory (FGI) holding, and 
work in process (WIP) cost. Moreover, a cost term caused by using power provided by the substation is 
introduced. The amount of this energy is given as the difference of the overall load and the amount of power 
provided by renewable energy sources based on the number of WTs and solar PVs in a certain wafer fab. 
The following assumptions are made for the planning model: 

• The total demand for the wafer fabs in 𝐹 is deterministic. 
• The energy consumption per lot of a certain product and per period in a given wafer fab is known. 
• Using power provided by the substation in a certain period leads to additional cost. 
• If the power provided by renewable energy sources is larger than the load in a given period, the 

surplus leads to a cost reduction. 
• The power is a deterministic value in the planning model that is calculated based on the given number 

of WTs and solar PVs. 

The expected profit is calculated based on the decisions made by a MILP formulation. We consider: 

• revenue 
• WIP cost 
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• backlogging cost 
• FGI holding cost 
• WT and solar PV equipment installation cost 
• WT and solar PV operating and maintenance cost 
• cost related to using power produced by the substation  
• cost reduction by returning surplus energy to the main grid. 

A certain amount of the overall load must be satisfied by renewable energy provided by WTs and solar  
PVs. A penalty term is used in the objective function if this constraint is not fulfilled. The load consists of 
a fixed load that results from running a wafer fab, for instance, to ensure clean room conditions, and a load 
that depends on the number of WIP lots of a certain product in a certain period. 

It is important that the level of detail for modeling single wafer fabs in the MILP model is not too high 
since a set of wafer fabs is considered. Therefore, we will model only the capacity of bottleneck tool groups 
similar to MILP formulations for semiconductor master planning (cf. Ponsignon and Mönch 2012).  

2.2 Discussion of Related Work  

We discuss research related to network design decisions taking sustainability measures into account. A 
literature review for energy-efficient production planning and scheduling models is provided by Biel and 
Glock (2016). However, strategic planning models are not considered. The network design model studied 
by Wang et al. (2013) considers cost minimization and minimization of the environmental impact, mainly 
represented by transportation decisions, supplier selection, and installing environmentally-friendly 
equipment in newly built facilities. The set of Pareto-optimal plans is computed. However, WTs and solar 
PVs are not directly considered. A set of mid-term and operational planning models for supply chains is 
proposed by Benjaafar and Daskin (2013). It is shown how conventional cost and the carbon footprint can 
be both considered in the planning formulations. However, renewable energy resources are not taken into 
account in the proposed models. 

Next, we discuss semiconductor-related work. Strategic planning models for semiconductor supply 
chains are proposed by Stray et al. (2006) and Rastogi et al. (2011). While typical process conditions of 
semiconductor supply chains are taken into account, sustainability issues are not modeled. Only a few 
papers propose semiconductor-specific planning models that incorporate sustainability aspects. A 
sustainable and DG system for a single wafer fab based on simulation optimization to determine an 
appropriate number of solar PVs and WTs for integrating renewable energy in addition to the main grid 
under uncertain wind speed and solar irradiance is proposed by Villarreal et al. (2013). A stochastic 
programming model to consider contract-based demand requests received by a wafer fab that owns onsite 
wind and solar generation units is established by Santana-Viera et al. (2015). A pay-in-advance scheme is 
modeled. Monte-Carlo simulation is applied to solve the stochastic programming model. However, the 
electricity load is an exogenous quantity in both models, i.e., the load is not directly linked to the production 
activities. The most pertinent work for the present paper is the integrated production planning formulation 
by Ziarnetzky et al. (2017) where this limitation is avoided, i.e., the load is determined based on production 
activities. However, only a single wafer fab is considered and the model is more operative by nature which 
contradicts to a certain extent the more strategic decisions of installing renewable energy sources. In the 
present paper, we extend the planning model of Ziarnetzky et al. (2017) to a set of wafer fabs operating in 
parallel in a strategic setting, i.e. monthly periods and a planning window of several years.  

3 PLANNING FORMULATION  

3.1 MILP Formulation  

We assume that a finite planning window which consists of  𝑡 = 1,… , 𝑇 equidistant planning periods is 
given. Moreover, a set of wafer fabs is available. We know which product processing steps are related to 
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bottleneck (BN) work centers. We only model the capacity of BN work centers in detail to reduce the 
computational burden of the MILP formulation, similar to the master planning approach proposed by 
Ponsignon and Mönch (2012). The following sets and indices will be used in the model: 
 

𝐺: set of all products, 𝑔 = 1,… , |𝐺|  
𝐹: set of all wafer fabs, 𝑓 = 1,… , |𝐹|  

𝑃𝑉(𝑓): set of all solar PV types that are available for wafer fab 𝑓, 𝑚 ∈ 𝑃𝑉(𝑓)  
𝑊𝑇(𝑓): set of all WT types that are available for wafer fab 𝑓, 𝑛 ∈ 𝑊𝑇(𝑓)  
𝑂(𝑓, 𝑔): set of all BN process steps for product 𝑔 in wafer fab 𝑓, 𝑙 ∈ 𝑂(𝑓, 𝑔).  

The following parameters will be used in the model: 

 
𝜔𝑔𝑡
(𝑓)
: unit WIP cost for product 𝑔 in period 𝑡 in wafer fab 𝑓  

ℎ𝑔𝑡
(𝑓)
: unit FGI holding cost for product 𝑔 in period 𝑡 in wafer fab 𝑓 

𝑏𝑔𝑡
(𝑓)
: unit backlog cost for product 𝑔 in period 𝑡 in wafer fab 𝑓 

𝐷𝑔𝑡: demand for product 𝑔 in period 𝑡  

𝑟𝑔𝑡
(𝑓)
: unit revenue for product 𝑔 in period 𝑡 for wafer fab 𝑓  

𝐶𝑡
(𝑓)
: capacity of the BN work center for wafer fab 𝑓 in period 𝑡 

𝛼𝑔𝑙
(𝑓)
: processing time of the 𝑙th step of product 𝑔 on the bottleneck work center for wafer fab 𝑓  

period 𝑡 
𝑒𝑔
(𝑓)
: energy consumption for one unit of product 𝑔 for wafer fab 𝑓 in a single period  

𝐿𝑔
(𝑓)
: lead time for product 𝑔 in wafer fab 𝑓   

𝐿𝑔𝑙
(𝑓)
: lead time for wafer fab 𝑓 in number of periods from the release of the raw material of 

product 𝑔 to the completion of BN operation l of product 𝑔  
𝐴𝑃𝑊𝑇𝑛𝑡

(𝑓)
: average power provided by a single WT of type 𝑛 in period 𝑡 for wafer fab 𝑓 

𝐴𝑃𝑃𝑉𝑚𝑡
(𝑓)
: average power provided by a single solar PV of type 𝑚 in period 𝑡 for wafer fab 𝑓 

𝑐𝑡𝑊𝑇𝑛
(𝑓)
: construction time in periods for a single WT unit of type 𝑛 for wafer fab 𝑓 

𝑐𝑡𝑃𝑉𝑚
(𝑓)
: construction time in periods for a single PV unit of type 𝑚 for wafer fab 𝑓 

𝑐𝑒𝑡
(𝑓)
: cost for wafer fab 𝑓 per unit of power taken from the substation in period t    

𝑐𝑟𝑡
(𝑓)
: 

 

revenue for wafer fab 𝑓 per unit of surplus power returned to the main grid in period 𝑡 

𝐿𝐹𝑡
(𝑓)
: 

 

fixed load for wafer fab 𝑓, independent from producing chips for providing the cleanroom 
environment and for running machines in standby mode in period t  

𝜆(𝑓): 

 

minimum percentage of renewable energy penetration for wafer fab 𝑓 

𝛿(𝑓): 

𝛿
(𝑓)
: 

 

unit penalty cost for not reaching the target percentage of renewable energy penetration in 
wafer fab 𝑓 

𝑖𝑃𝑉𝑚
(𝑓)
: 

 

fixed installation cost for a single solar PV unit of type 𝑚 for wafer fab 𝑓 
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𝑖𝑊𝑇𝑛
(𝑓)
: 

 

fixed installation cost for a single WT unit of type 𝑛 for wafer fab 𝑓 
 
 𝑖𝑟(𝑓): interest rate for wafer fab 𝑓 

𝑑𝑝𝑣(𝑓): number of periods for depreciation of a solar PV unit installed near wafer fab 𝑓 
 

𝑑𝑤𝑡(𝑓): number of periods for depreciation of a WT unit installed near wafer fab 𝑓 
 

𝑜𝑃𝑉𝑚𝑡
(𝑓)
: 

 

operating and maintenance cost for a single solar PV unit of type 𝑚 installed near wafer fab 
𝑓 in period 𝑡 

𝑜𝑊𝑇𝑛𝑡
(𝑓)
: 

 

operating and maintenance cost for a single WT unit of type 𝑛 installed near wafer fab 𝑓 in 
period 𝑡 

𝑛𝑤𝑡𝑚𝑎𝑥
(𝑓)  maximum number of WTs that can be installed near wafer fab 𝑓 

𝑛𝑝𝑣𝑚𝑎𝑥
(𝑓)  maximum number of solar PVs that can be installed near wafer fab 𝑓. 

The following decision variables will be used in the model: 

 
𝑌𝑔𝑡
(𝑓)
: output of product 𝑔 in period 𝑡 from the last operation of its routing in wafer fab 𝑓  

𝑌𝑔𝑡𝑙
(𝑓)
: output of product 𝑔 in period 𝑡 from operation l  of its routing in wafer fab 𝑓 

𝑋𝑔𝑡
(𝑓)
: quantity of product 𝑔 released into wafer fab 𝑓 in period t  

𝑊𝑔𝑡
(𝑓)
: WIP of product 𝑔 at the end of period 𝑡 in wafer fab 𝑓 

 
𝐵𝑔𝑡
(𝑓)
: backlog of product 𝑔 at the end of period 𝑡 in wafer fab 𝑓 

 
𝐼𝑔𝑡
(𝑓)
: FGI of product 𝑔 at the end of period 𝑡 in wafer fab 𝑓 

 
𝐴𝑃𝑆𝑡

(𝑓)
: average amount of power provided by the substation for wafer fab 𝑓 or surplus energy from 

wafer fab 𝑓 sent back to the main grid in period t   

𝑅𝐸𝑡
(𝑓)
: average amount of minimum renewable energy penetration shortage or additional 

renewable energy exceeding minimum renewable energy penetration in wafer fab 𝑓  in 
period t   

𝑐𝑖𝑃𝑉𝑚𝑡
(𝑓)
: total depreciation cost of all operational solar PV units of type 𝑚  near wafer fab 𝑓 

in period t 

𝑐𝑖𝑊𝑇𝑛𝑡
(𝑓)
: total depreciation cost of all operational WT units of type 𝑛 near wafer fab 𝑓 in period t 

𝑛𝑤𝑡𝑛𝑡
(𝑓)
: number of operational WT units of type 𝑛 near wafer fab 𝑓 in period t 

𝑛𝑝𝑣𝑚𝑡
(𝑓)
: number of operational solar PV units of type 𝑚 near wafer fab 𝑓 in period t. 

 
We use the abbreviations 𝑥+ ≔ max(𝑥, 0) and 𝑥− ≔ min(𝑥, 0) in the rest of the paper. Moreover, we will 
set 𝑊𝑔0

(𝑓)
= 𝐼𝑔0

(𝑓)
= 𝐵𝑔0

(𝑓)
= 0, 𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺 if no specific initial value is specified. The model itself is given 

as follows: 
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max∑∑{∑[𝑟𝑔𝑡
(𝑓)
𝑌𝑔𝑡
(𝑓)
−𝜔𝑔𝑡

(𝑓)
𝑊𝑔𝑡

(𝑓)
− ℎ𝑔𝑡

(𝑓)
𝐼𝑔𝑡
(𝑓)
− 𝑏𝑔𝑡

(𝑓)
𝐵𝑔𝑡
(𝑓)
]

𝑔𝜖𝐺

𝑇

𝑡=1𝑓𝜖𝐹

 
 

− ∑ [𝑐𝑖𝑃𝑉𝑚𝑡
(𝑓)
+ 𝑜𝑃𝑉𝑚𝑡

(𝑓)
𝑛𝑝𝑣𝑚𝑡

(𝑓)
]

𝑚𝜖𝑃𝑉(𝑓)

− ∑ [𝑐𝑖𝑊𝑇𝑛𝑡
(𝑓)
+ 𝑜𝑊𝑇𝑛𝑡

(𝑓)
𝑛𝑤𝑡𝑛𝑡

(𝑓)
]

𝑛𝜖𝑊𝑇(𝑓)

 

 
 
 
 

(1) 

−[𝑐𝑒𝑡
(𝑓)
𝐴𝑃𝑆𝑡

(𝑓)+
+ 𝑐𝑟𝑡

(𝑓)
𝐴𝑃𝑆𝑡

(𝑓)−
] − 𝛿(𝑓)𝑅𝐸𝑡

(𝑓)+
}  

subject to   

𝑊𝑔,𝑡−1
(𝑓)

+ 𝑋𝑔𝑡
(𝑓)
− 𝑌𝑔𝑡

(𝑓)
= 𝑊𝑔𝑡

(𝑓)
, 𝑓𝜖𝐹, 𝑔𝜖𝐺, 𝑡 = 1,… , 𝑇 (2) 

∑ [𝑌𝑔𝑡
(𝑓)
+𝐼𝑔,𝑡−1

(𝑓)
− 𝐼𝑔𝑡

(𝑓)
+ 𝐵𝑔𝑡

(𝑓)
− 𝐵𝑔,𝑡−1

(𝑓)
]𝑓∈𝐹 = 𝐷𝑔𝑡, 𝑔 ∈ 𝐺, 𝑡 = 1,… , 𝑇 (3) 

∑ ∑ 𝛼𝑔𝑙
(𝑓)
𝑌𝑔𝑡𝑙
(𝑓)

𝑙∈𝑂(𝑓,𝑔)𝑔∈𝐺 ≤ 𝐶𝑡
(𝑓), 𝑓 ∈ 𝐹, 𝑡 = 1,… , 𝑇 (4) 

𝑋
𝑔,𝑡−⌊𝐿𝑔𝑙

(𝑓)
⌋

(𝑓)
= 𝑌𝑔𝑡𝑙

(𝑓), 𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝑂(𝑓, 𝑔), 𝑡 = ⌊𝐿𝑔𝑙
(𝑓)
⌋ + 1,… , 𝑇 (5) 

𝑐𝑖𝑃𝑉𝑚𝑡
(𝑓)
=

{
 
 

 
 

1

𝑑𝑝𝑣(𝑓) + 1
(1 + 𝑖𝑟(𝑓))

𝑑𝑝𝑣(𝑓)

𝑖𝑃𝑉𝑓𝑚 (𝑛𝑝𝑣𝑚𝑡
(𝑓)
+ 1 2⁄ (𝑛𝑝𝑣

𝑚,𝑡+𝑐𝑡𝑃𝑉𝑚
(𝑓)

(𝑓)
− 𝑛𝑝𝑣𝑚𝑡

(𝑓)
)) ,

                                                                                     𝑓𝜖𝐹, 𝑔𝜖𝐺, 𝑡 = 1,… , 𝑇 − 𝑐𝑡𝑃𝑉𝑚
(𝑓)
 

1

𝑑𝑝𝑣(𝑓) + 1
(1 + 𝑖𝑟(𝑓))

𝑑𝑝𝑣(𝑓)

𝑖𝑃𝑉𝑓𝑚𝑛𝑝𝑣𝑚𝑡
(𝑓)
  𝑓𝜖𝐹, 𝑔𝜖𝐺, 𝑡 = 𝑇 − 𝑐𝑡𝑃𝑉𝑚

(𝑓)
+ 1,… , 𝑇

 

                                                                                                               

 

 

 

(6) 

𝑐𝑖𝑊𝑇𝑛𝑡
(𝑓)
=

{
 
 

 
 

1

𝑑𝑤𝑡(𝑓) + 1
(1 + 𝑖𝑟(𝑓))

𝑑𝑤𝑡(𝑓)

𝑖𝑊𝑇𝑓𝑛 (𝑛𝑤𝑡𝑛𝑡
(𝑓)
+ 1 2⁄ (𝑛𝑤𝑡

𝑛,𝑡+𝑐𝑡𝑊𝑇𝑛
(𝑓)

(𝑓)
− 𝑛𝑤𝑡𝑛𝑡

(𝑓)
)) ,

                                                                                     𝑓𝜖𝐹, 𝑔𝜖𝐺, 𝑡 = 1,… , 𝑇 − 𝑐𝑡𝑊𝑇𝑛
(𝑓)
 

1

𝑑𝑤𝑡(𝑓) + 1
(1 + 𝑖𝑟(𝑓))

𝑑𝑤𝑡(𝑓)

𝑖𝑊𝑇𝑓𝑛𝑛𝑤𝑡𝑛𝑡
(𝑓)
, 𝑓𝜖𝐹, 𝑔𝜖𝐺, 𝑡 = 𝑇 − 𝑐𝑡𝑊𝑇𝑛

(𝑓)
+ 1,… , 𝑇

 

                                                                                                               

 

 

 

(7) 

 

 
𝐿𝐹𝑡

(𝑓)
+∑𝑒𝑔

(𝑓)
𝑊𝑔𝑡

(𝑓)
−∑ 𝐴𝑃𝑊𝑇𝑛𝑡

(𝑓)
𝑛𝑤𝑡𝑛𝑡

(𝑓)

 𝑛∈𝑊𝑇(𝑓)
−∑ 𝐴𝑃𝑃𝑉𝑚𝑡

(𝑓)
𝑛𝑝𝑣𝑚𝑡

(𝑓)

 𝑚∈𝑃𝑉(𝑓)
= 𝐴𝑃𝑆𝑡

(𝑓)

𝑔∈𝐺

, 

                                                                                                                     𝑓 ∈ 𝐹, 𝑡 = 1,… , 𝑇 

(8) 

𝜆(𝑓)(𝐿𝐹𝑡
(𝑓)
+ ∑ 𝑒𝑔

(𝑓)
𝑊𝑔𝑡

(𝑓)
)𝑔∈𝐺 − ∑ 𝐴𝑃𝑊𝑇𝑛𝑡

(𝑓)
𝑛𝑤𝑡𝑛𝑡

(𝑓)
 𝑛∈𝑊𝑇(𝑓) − ∑ 𝐴𝑃𝑃𝑉𝑚𝑡

(𝑓)
𝑛𝑝𝑣𝑚𝑡

(𝑓)
 𝑚∈𝑃𝑉(𝑓) =

                                                                                                                       𝑅𝐸𝑡
(𝑓)
, 𝑓 ∈ 𝐹, 𝑡 = 1,… , 𝑇 

(9) 

𝑛𝑤𝑡𝑛𝑡
(𝑓)
≥ 𝑛𝑤𝑡𝑛,𝑡−1

(𝑓) , 𝑓 ∈ 𝐹, 𝑡 = 2,… , 𝑇, 𝑛 ∈ 𝑊𝑇(𝑓) (10) 

∑ 𝑛𝑤𝑡𝑛𝑡
(𝑓)𝑐𝑡𝑊𝑇𝑛

(𝑓)

𝑡=1 = 0,  𝑓 ∈ 𝐹, 𝑛 ∈ 𝑊𝑇(𝑓) (11) 
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𝑛𝑝𝑣𝑚𝑡
(𝑓)
≥ 𝑛𝑝𝑣𝑚,𝑡−1

(𝑓) , 𝑓 ∈ 𝐹, 𝑡 = 2,… , 𝑇, 𝑚 ∈ 𝑃𝑉(𝑓) (12) 

∑ 𝑛𝑝𝑣𝑚𝑡
(𝑓)𝑐𝑡𝑃𝑉𝑚

(𝑓)

𝑡=1 = 0,  𝑓 ∈ 𝐹,𝑚 ∈ 𝑃𝑉(𝑓) (13) 

     𝑋𝑔𝑡
(𝑓)
, 𝑌𝑔𝑡

(𝑓)
, 𝑌𝑔𝑡𝑙

(𝑓)
,𝑊𝑔𝑡

(𝑓)
, 𝐵𝑔𝑡

(𝑓)
, 𝐼𝑔𝑡
(𝑓)
, 𝑐𝑖𝑊𝑇𝑛𝑡

(𝑓)
, 𝑐𝑖𝑃𝑉𝑚𝑡

(𝑓)
,  𝐴𝑃𝑆𝑡

(𝑓)
, 𝑅𝐸𝑡

(𝑓)
≥ 0,   

 
(14) 

                                                           𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺, 𝑡 = 1,… , 𝑇, 𝑙 ∈ 𝑂(𝑓, 𝑔), 𝑚 ∈ 𝑃𝑉(𝑓), 𝑛 ∈ 𝑊𝑇(𝑓)  

 𝑛𝑤𝑡𝑛𝑡
(𝑓)
, 𝑛𝑝𝑣𝑚𝑡

(𝑓)
𝜖  ℕ, 𝑛𝑤𝑡𝑛𝑡

(𝑓)
≤ 𝑛𝑤𝑡𝑚𝑎𝑥

(𝑓)
, 𝑛𝑝𝑣𝑚𝑡

(𝑓)
≤ 𝑛𝑝𝑣𝑚𝑎𝑥

(𝑓)
, 

 
(15) 

                                                                          𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺, 𝑡 = 1,… , 𝑇,𝑚 ∈ 𝑃𝑉(𝑓), 𝑛 ∈ 𝑊𝑇(𝑓). 
 

 

 
The objective function (1) consists of three parts. The first part refers to the conventional profit, whereas 
the second and third part model the cost for solar PVs and WTs, respectively. WIP variables and WIP 
balance constraints (2) are included in the model to compute the WIP cost in the objective function for each 
wafer fab. The FGI material balance for all wafer fabs is given by constraint set (3). Constraint set (4) 
models that the total time required to process all operations at the BN work center in a given period t does 
not exceed the time available at that BN work center of wafer fab 𝑓, whereas constraint set (5) defines the 
relation between the time a lot of product g is released into wafer fab 𝑓 and completing processing at BN 
operation l of product 𝑔. It is assumed that a lot becomes available to the next BN operation on its routing 
as soon as a lot is processed at a given operation. Moreover, we assume that an operation consumes capacity 
in the period that it is processed. The constraints (6) and (7) compute the depreciation cost for all solar PVs 
or WTs, respectively, which are operated at wafer fab 𝑓. Constraint set (8) sets the amount of energy taken 
from the substation or sent back to the main grid. The power shortage or surplus of the required minimum 
renewable energy penetration is ensured by the constraint set (9). The constraints (10) ensure that only new 
solar WTs can be installed in the periods of the planning window, whereas constraint set (11) models the 
installation time. The constraint sets (12) and (13) are used for the same purpose for the solar PVs. The 
nonnegativity of the decision variables is enforced by the constraint set (14). The constraint set (15) ensures 
the number of WTs and solar PVs are integers and bounded. 

The MILP model (1)-(15) incorporates lead times 𝐿𝑔𝑙
(𝑓) for the 𝑙th BN operation of product 𝑔 in wafer 

fab 𝑓. Here, the cycle time (CT) is the delay between work being released and its emerging as output. Lead 
times are estimates of the CT used for planning purposes. The 𝐿𝑔𝑙

(𝑓) values are computed recursively, taking 
into account the processing times of the operations between consecutive operations on the BN machines 
and flow factor values. Here, the flow factor of product g is defined as the ratio of the average time required 
for material started in the process to become available as FGI to the sum of the processing times of all its 
operations. Flow factor values are obtained from long simulation runs for a given BN utilization (BNU). In 
the MILP model, we apply integer lead times by rounding down the fractional estimates obtained from 
simulation. Therefore, the proposed MILP model is similar to the Simple Rounding Down (SRD) 
production planning formulation proposed by Kacar et al. (2013). The MILP model is initialized using half 
the mean demand over the planning window as initial FGI value. 

3.2 Parameterization and Implementation Issues 

We use a modified version of the MIMAC 1 simulation model (cf. Fowler and Robinson 1995) for a single 
wafer fab. The original model represents a large-scale wafer fab with 84 work centers and more than 200 
machines. Typical semiconductor characteristics such as batch processing, i.e. several lots can be processed 
at the same time on the same machine, and sequence-dependent setup times are included in the model. Two 
products with reentrant process flows and instantaneous material transfer between successive operations 
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are used by the model. Each product has a route with more than 200 process steps. The modified version is 
obtained by using routes obtained by concatenating the routes of the original model three times. We refer 
to this model as MIMAC 1 – 3X. The average CT is around 63 and 72 days for a BNU of 90% and between 
44 and 61 days for a BNU of 70%. The stepper tool group forms the planned BN in each wafer fab. We use 
a period length of one month. We take the routes and the offered BN capacity from the simulation model.  

Based on the MIMAC 1 – 3X simulation model, we generate normally distributed demand according 
to the planned BNU. Following Kacar et al. (2016), we generate stationary load (SL) demand that realizes 
a product mix of 1:1 for the two products. Moreover, we also consider time-varying (TV) demand. Here, 
we divide the planning window into three-period subintervals. For the scenarios with BNU=90%, the 
utilization for each subinterval is selected to be either 85% or 95% with a given probability 𝑝. The demand 
for each product is then set to achieve this BNU level. This leads to an average utilization level of 90% 
across all the periods. 

A wind and solar power generator taken from Villarreal et al. (2013) is used. The wind power ( WP ) 
and the solar PV power (PS) are estimated and aggregated. The WP  values are generated according to: 

 

          𝑃𝑤 ≔

{
 
 

 
 

0,         if  0 ≤ 𝜐𝑡 ≤ 𝜐𝑐
1

2
𝜂𝑤𝜌𝐴𝑤𝜐𝑡

3,   if  𝜐𝑐 ≤ 𝜐𝑡 < 𝜐𝑟

𝑃max,     if  𝜐𝑟 ≤ 𝜐𝑡 < 𝜐𝑠
0,              if 𝜐𝑠 ≤ 𝜐𝑡

,       (16) 

 
where the wind speed 𝜐𝑡  is distributed according to a Weibull distribution. The parameters of this 
distribution depend on the geographical location of the related wafer fab. The quantity ρ denotes the air 
density, AW is the area covered by the turbine blades, 0.5926=W  denotes a conversion rate, and Pmax is 
the maximum power capacity of the WT. The operating conditions in (16) are standby, constant, and cut-
off power. These conditions are described by the WT’s cut-in speed 𝜐𝑐, the rated speed 𝜐𝑟, and the cut-off 
speed 𝜐𝑠. The solar PV is modeled by the function 
 
        𝑃𝑠(𝐼𝑡 ,𝑀) ≔ ( )( )25005.01 0 −− TIAM tSS ,      (17) 

 
where the location-specific variable It. is the solar irradiance. The irradiance is the solar radiation received 
by a solar panel under clear sky conditions. Weather patterns such as a partly cloudy day or a cloudy day 
reduce the actual It value. The weather conditions typical for the wafer fab location are modeled using a 
discrete random variable M. The solar panel conversion rate, denoted as S , is set between 10-15%. 
Moreover, As denotes the panel area and To  is the PV operating temperature. 

Only a single WT and PV type is considered in the computational experiments. A maximum single WT 
and PV capacity of one MW is assumed. The average wind speed and its standard deviation are based on 
Chang et al. (2015) for a hub height of 100 m and are set to 8.0 m/s and 1.4 m/s, respectively. Cut-in, rated, 
and cut-off speed are 2.5 m/s, 11.0 m/s, and 54.0 m/s, respectively. The number of sunny days is 215, while 
the PV efficiency and skin temperature are 22.5% and 45 °C, respectively. The fixed load for providing the 
cleanroom environment, powering the recirculation air fans, and supplying ultrapure water and pure gases 
is 60% of the total wafer fab load (cf. Villareal et al. 2013). A total fixed load of 6173.798 MWh per month 
(Hu and Chuah 2003) is considered. The energy consumption for a single lot is derived from Hu and Chuah 
(2003). The average number of completed lots per year in the simulation model ensures a 40% power usage 
by manufacturing activities. The fixed installation cost for a WT and PV capacity of one MW is $2,025,000 
and $2,493,000, respectively, while the annual operating and maintenance cost is $9,533.33 and $1,687.50 
per month, respectively (National Renewable Energy Laboratory 2022). A payoff period of 12 years is 
assumed where the annual interest rate is 1%. Three levels of minimum percentage of renewable energy 
penetration, namely 𝜆(𝑓) ∈ {0.20, 0.50, 0.70}, are investigated. The unit penalty cost for not reaching the 
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target percentage δ(𝑓) is set to $0.30 and $0.72 per kWh. A revenue 𝑐𝑟𝑡
(𝑓) per unit of surplus power returned 

to the main grid of $0.06 per kWh is used (cf. OECD 2022), while the cost per unit of power taken from 
the substation 𝑐𝑒𝑡

(𝑓) is $0.15 per kWh (cf. National Public Radio 2022).  
For the sake of simplicity, it is assumed that the wafer fabs in parallel are identical. The construction 

time in periods for a  single WT or PV is one period. Moreover, we use 𝑛𝑤𝑡𝑚𝑎𝑥
(𝑓)

 = 𝑛𝑝𝑣𝑚𝑎𝑥
(𝑓)

= 100|𝐹| in 
the computational experiments. The cost settings are taken from Ziarnetzky et al. (2017) and Kacar et al. 
(2016). We use 𝜔𝑔𝑡

(𝑓)
=$14,000, ℎ𝑔𝑡

(𝑓)
= $18,000, and 𝑏𝑔𝑡

(𝑓)
= $40,000 per month. The unit revenue is set 

to 𝑟𝑔𝑡
(𝑓)

= $80,000, considering the CT values observed by the MIMAC 1- 3X simulation model.  
The commercial solver IBM ILOG CPLEX 12.8 is used in the performed computational experiments. 

In order to be able to run multiple computations simultaneously, we utilize several services offered by 
Amazon Web Services (AWS). The computations are performed in the cloud using eight virtual CPUs 
(cores) of the types Intel Xeon Platinum 8175M and 8259CL, both operating at 2.5 GHz. 64 GB of RAM 
are assigned to most of the instances, while for some of the long-running instances a total of 107 GB of 
RAM is required. 

4 COMPUTATIONAL EXPERIMENTS 

4.1 Design of Experiments 

We are interested in studying the behavior of the MILP model under different experimental conditions. We 
expect that the number of wafer fabs in parallel, the minimum amount of renewable energy penetration, 
and the penalty cost influences the behavior of the model. In a first set of experiments, we look at the 
computing times depending on the factor levels of the design. Moreover, we are interested in demonstrating 
that the number of installed WTs and solar PVs depends on the minimum percentage of renewable energy 
penetration and the value of the unit penalty cost for not reaching the target percentage of renewable energy 
penetration. In the last set of experiments, we are interested in demonstrating that the number of installed 
renewable energy resources follows the demand pattern, i.e., when the demand increases, more resources 
are installed. To avoid horizon effects towards the end of the planning window, we add 6 additional periods 
to each problem instance. Each of these additional periods has the mean demand over the last 3 regular 
planning periods as its demand. 

Table 1: Design of experiments. 

Factor Level Count 

Number of wafer fabs |𝐹| 1, 2, 10 3 

Minimum percentage of renewable energy penetration 𝜆(𝑓) 0.20, 0.50, 0.70 3 

Unit penalty cost for not reaching the target percentage of 
renewable energy penetration 𝛿(𝑓) 0.00030, 0.00072 2 

Length of the Planning Window 𝑇 12, 36, 60 3 

Independent demand scenarios 

SL (70%) 
SL (90%) 

TV (90%, 𝑝 = 0.75) 
TV (90%, 𝑝 = 0.25) 

4 

Independent demand replications  2 
Independent replications of the wind and solar profile  2 

Total number of problem instances  864 
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Overall, 864 problem instances are solved in the cloud environment.  

4.2 Computational Results 

We show the results of the first experiment in Table 2. Instead of comparing all problem instances 
individually, we group the results according to levels of factors. We report the relative MIP gap in %, the 
average computing time per instance, and the number of installed WT and solar PV units. We observe from 
Table 2 that the number of wafer fabs and the length of the planning window lead to large values of the 
MIP gap and to fairly high average computing times. The same is true for larger 𝜆(𝑓) values. A larger 
penalty term 𝛿(𝑓) also causes under most experimental conditions a larger MIP gap and larger computing 
times. We can also clearly see from Table 2 that larger 𝜆(𝑓) and 𝛿(𝑓) values lead to more installed WT and 
solar PV units as expected. Overall, the MILP is not practical for some instances when both the number of 
wafer fabs and the number of planning periods of the planning window are high. Although we only 
conjecture that the planning problem discussed in this paper is NP-hard, the computational experiments 
support this conjecture. 

Table 2: Computational results for the different problem instances. 

Factor/Level MIP Gap (in %) Computing Time (in min) #WT #PV 

|𝐹|/ 𝑇     
1/12 0.00 0.00 0.00 78.22 
1/36 0.00 0.01 2.42 78.46 
1/60 1.22 8.79 4.52 78.42 
2/12 0.00 6.87 0.00 156.05 
2/36 19.20 43.02 3.80 156.51 
2/60 58.37 83.59 9.26 156.82 

10/12 70.31 120.02 0.00 784.54 
10/36 265.52 120.11 10.90 764.03 
10/60 117.54 119.93 39.94 723.28 
 / δ     

0.20 / 0.00030 14.70 47.04 0.14 143.85 
0.50 / 0.00030 55.22 53.85 0.00 403.76 
0.70 / 0.00030 61.13 60.25 0.00 433.33 
0.20 / 0.00072 80.49 49.20 0.00 153.00 
0.50 / 0.00072 106.73 57.76 0.02 416.95 
0.70 / 0.00072 36.52 66.80 47.06 433.33 
 
Moreover, we show in Figure 1 the ramp-up situation where low demand in the beginning leads to a 

later installation of renewable energy resources. Here, we aggregate over all instances with 𝑇 = 36 and 
𝛿(𝑓) = 0.00072. We observe from Figure 1 that the renewable energy base is installed after the first 12 
periods when the demand is increased. Moreover, we can also see that the construction time for WTs and 
solar PVs is respected by the model. 

5 CONCLUSIONS AND FUTURE RESEARCH 

We proposed a long-term planning model that considers renewable energy, namely WTs and solar PVs, for 
a set of wafer fabs operated in parallel. The model tries to ensure a prescribed penetration level for using 
renewable energy. A MILP formulation was established for this problem. Designed computational 
experiments using the MILP model were carried out that demonstrated that the model shows several 
expected effects. 
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Figure 1: Situation for increasing demand over 36 periods. 

 
There are several directions for future research. First of all, we are interested in a more detailed 

examination of the proposed MILP model. We strive to prove that the planning problem at hand is NP-
hard. For instance, the impact of different WT and PV types and the resulting construction times should be 
studied. Moreover, it would be desirable to consider a set of heterogeneous wafer fabs and also location-, 
i.e. fab-specific wind and sun values. We are also interested in testing the proposed MILP model using 
modern large-scaled wafer fab simulation models as recently proposed by Kopp et al. (2020). As a third 
research avenue, we believe that simulation-based optimization in combination with discrete-event 
simulation can be used to make the release and installation decisions (Liu et al. 2011). Such an approach is 
desirable since it would allow taking into account the uncertainty of the manufacturing process and the 
weather uncertainty in a direct way. 
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