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ABSTRACT

We study a staffing optimization problem in multi-skill call centers. The objective is to minimize the total
cost of agents under some quality of service (QoS) constraints. The key challenge lies in the fact that the
QoS functions have no closed-form and need to be approximated by simulation. In this paper we propose a
new way to approximate the QoS functions by logistic functions and design a new algorithm that combines
logistic regression, cut generations and logistic-based local search to efficiently find good staffing solutions.
We report computational results using examples up to 65 call types and 89 agent groups showing that our
approach performs well in practice, in terms of solution quality and computing time.

1 INTRODUCTION

This paper concerns the management of staffing in a call center (or in general a contact center), which
can be generally defined as a central office used for receiving or transmitting customers’ requests by
telephone, computer, or other office equipment. Agents in a contact center work with customers to resolve
complaints, process orders, and provide information about an organization’s products and services. They
typically provide service by phone, email, text, or even through social media. Contact centers are very
popular in society and can be found in many customer care services, fire alarms, telemarketing, etc. The
contact center industry is continuously growing and playing an important role in society. For instance,
in the United States, in 2020, the contact center industry created about 2,999,400 jobs with a median
pay of about $35,830 per year, according to the Bureau of Labor Statistics in 2020 (https://www.bls.
gov/ooh/office-and-administrative-support/customer-service-representatives.htm#tab-1). For more about
call/contact centers, we refer the reader to Gans et al. (2003), Wallace and Whitt (2005), Avramidis and
L’Ecuyer (2005), and Koole (2013).

In this paper we focus on the staffing optimization problem in a multiskill contact center where the
objective is to minimize the staffing cost while ensuring that some quality of service (QoS) constraints
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are satisfied. This is one of the essential problems in the management of a contact center. In a multiskill
setting, i.e., agents have multi-skills and can serve different types of customers, the QoS functions do not
have closed-forms and often require simulation to be approximated. The literature has seen a number of
studies making use of simulation and the cutting plane method to practically solve the staffing/scheduling
problems. For example, Atlason et al. (2004) propose a method that combines cut generation and linear
programming to solve a scheduling problem in a single call type and single-skill call center with long-term
expected service level (SL) constraints. Cez̧ik and L’Ecuyer (2008) use the cutting plane method to solve
large-size staffing problems in a single time period for multi-skill call centers. Ta et al. (2021) use the
cutting plane method and a Benders decomposition to solve a two-stage stochastic staffing optimization
problem under arrival rate uncertainty. The cutting plane method is based on the observation that the QoS
functions often have an “S-shape” and the optimal solutions, in most cases, belong to the concave regions
of the QoS functions. This suggests the idea of generating linear cuts to approximate the concave regions
of the QoS functions. As highlighted in prior work (Atlason et al. 2008; Cez̧ik and L’Ecuyer 2008; Ta
et al. 2021), there are two issues associated with the cutting plane approach: (i) the cuts are based on
simulation and may remove good solutions due to simulation noise, and (ii) the QoS functions are not
concave everywhere and determining the region of concavity is difficult. This can lead to staffing solutions
that are far from optimal. In this paper, we address these issues by proposing a new approach based on
logistic regression to handle the nonlinear QoS constraints.

Our approach exploits the observation that the QoS function typically display “S-shaped” curves and
could be well approximated by logistic functions. We develop a new regression-based approach that combines
simulation, logistic regression and linear programming to quickly find a staffing solution satisfying the QoS
constraints. Moreover, observing that the approximations might be good only in some restricted regions,
we design a local search procedure in which at each iteration, we approximate the QoS by logistic functions
and only solve the approximated problem in a restricted area (a trust region) around the current solution
candidate. With the logistic-based approximation, we show that the sub-optimization problems to be solved
at each iteration of the local search can be linearly formulated and efficiently solved using an existing
solver such as CPLEX. This local search procedure allows us to improve any feasible solutions returned
by the regression-based model mentioned above, or the cutting plane method. Our logistic-based approach
differs from the cutting plane method as our method does not require to identify the concave regions of
the QoS functions. Moreover, since at each step of the local search, we only solve the approximate linear
program in a restricted area around the current candidate, simulation noises would yield less impacts on
the solution quality, as compared to the cutting plane method.

We design a new algorithm consisting of four main steps, namely, two steps to collect QoS values
and learn the shapes of the QoS functions using logistic regression, one step to generate linear cuts to
approximate the concave regions of the QoS functions (the cutting planes), and the final step to improve a
feasible solution using the logistic-based local search procedure. Our optimization procedure is a sequence
of steps of performing simulations to approximate the QoS and solving mixed-integer linear programs.
We test our approach on two call center examples, a medium one with 6 call types 8 agent groups,
and a large real-size one with 65 call types and 89 agent groups. The numerical results clearly show
the practical efficiency of our approach in finding good staffing solutions with reasonable computational
budgets, as compared to the conventional cutting plane method. Our method can be extended to solve other
staffing/scheduling problems in other settings.

The rest of the paper is organized as follows. Section 2 presents the problem formulation and its
sample average approximation version. Section 3 presents our logistic-based approach. Section 4 provides
numerical results, and finally Section 5 concludes.

2 SIMULATION-BASED STAFFING OPTIMIZATION IN MULTI-SKILL CENTERS

We now give a formulation for the staffing optimization problem in multi-skill call centers. There are K
call types indexed as 1, . . .K, and I agent groups indexed as 1, . . . , I, and one period. Each agent group
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may have several skills and can serve different call types. To evaluate the quality of service offered by
the call center, we use service level (SL) in a long run (Atlason et al. 2008; Cez̧ik and L’Ecuyer 2008;
Avramidis et al. 2010). However, instead of imposing requirements for the expected SL, we are interested
in chance constraints on the randomness of the SL. Specifically, we require that the SL targets are satisfied
for a target proportion of the days, as in Ta et al. (2016), Chan et al. (2016). An example of a chance
constraint on the SL is, for example, that the probability that at least 95% of calls are answered within
τ = 2 seconds in a given time period is at least 85%. This constraint is used for the model of the Montreal
911 emergency call center presented in Ta et al. (2016).

Given a staffing vector x, let Sk(τk,x) be the fraction of calls of type k answered within τk seconds
(the SL for call type k) for k = 1, . . . ,K, and S0(τ0,x) be the fraction of all calls answered within τ0
seconds (the aggregated SL). All of these are random variables whose distributions depend on the entire
staffing. We consider the chance constraints of the form: the probabilities that the service levels are
satisfied are no smaller than some given thresholds. More precisely, the constraints can be written as
gk(x) := P[Sk(τk,x)≥ sk]≥ lk, where for k = 0, . . . ,K, sk is the target of SL for call type k, lk ∈ [0,1] is the
target for the probabilistic constraint for call type k, and k = 0 refers to the aggregation of all other types.

The objective is to minimize the operating cost of the center while satisfying a set of chance constraints
on SL. The objective function is the sum of costs of all agents, where the cost of an agent is a deterministic
function of its set of skills. The staffing optimization problem can be formulated as minx∈NI cTx subject to
gk(x)≥ lk for k = 0, . . . ,K, where c = (c1, . . . ,cI)

T is a cost vector, ci is the cost of an agent in group i. In our
context, the functions gk(x) are too hard to compute and must be estimated by simulation. Then we solve the
approximated problem in which the gk(·) are replaced by their estimates. This approach is known as sample
average approximation (SAA). Suppose we perform M simulation runs to get the estimates of probabilities.
We denote the empirical service level in the j-th replication by Ŝ j

k,M(τk,x) for each call type k = 1, . . . ,K, and

Ŝ j
k,M(τk,x) for the aggregation (k = 0). We denote ĝk,M(x) = 1

M ∑
M
j=1 I[Ŝ

j
k,M(τk,x)≥ sk], for all k = 0, . . . ,K,

where I is the indicator function. The SAA problem is:

(P1)

minimize
x∈NI

cTx

subject to ĝk,M(x)≥ lk k = 0, . . . ,K.

One can show that, under some conditions, by solving the SAA problem, almost surely we can retain a true
optimal solution when the sample size M is large enough, and the probability of getting an exact solution
approaches one exponentially fast when M grows to infinity (Ta et al. 2021).

A key issue when solving (P1) is that the functions ĝk,M(x) are nonlinear and often not smooth because
of simulation noise. In previous work (Cez̧ik and L’Ecuyer 2008; Ta et al. 2021), the nonlinear functions
are approximated by linear cuts, and a staffing solution is found by iteratively adding cuts and solving the
resulting linear programs. As mentioned earlier, these cuts can be noisy because of the simulation noise,
and sometimes eliminate a large area around the optimal solution. The method we propose here provides
a new way to overcome this problem, by constructing more stable cuts.

3 THE LOGISTIC REGRESSION AND LINEAR PROGRAMMING APPROACH

This section describes our approach to approximate the QoS functions ĝk,M(x) by logistic functions. We
present a logistic regression-based staffing optimization model and a logistic-based local search method.

3.1 Approximating the QoS by Logistic Functions

We first motivate with examples the idea of using logistic functions to approximate the QoS. Previous
studies (Chan et al. 2016; Ta et al. 2021) have shown empirically that with large enough sample size M,
the QoS function ĝk,M typically has the following properties:
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(i) ĝk,M(x) is a probability function, so ĝk,M(x) ∈ [0,1] for all x ∈ NI;
(ii) ĝk,M(0) = 0, limx→∞ ĝk,M(x) = 1, and there exists a staffing vector x̂ such that ĝk,M(x) = 1 for all

x≥ x̂;
(iii) If we fix the vector x = x∗ except for an element xi, then ĝk,M(x∗1, . . . ,xi, . . .x∗I ) as a function of xi

is constant or has the shape of a logistic function.

In view of the above properties, it appears reasonable to approximate the QoS functions by logistic
functions, of the form h(x,αk) = 1

/(
1+ exp(−(α1

k )
Tx+α0

k )
)
, k = 0, . . . ,K, where α1

k ≥ 0 is a vector of
size I and α0

k ≥ 0 is a scalar, for each k. We expect that h(x,αk) should give a good fit to the function
ĝk,M(x), or equivalently that a linear function should fit well with ln(1/ĝk,M(x)−1). We can then apply
standard least-squares linear regression to estimate the vector α by fitting this function to the linear function
(−(α1

k )
Tx+α0

k ). However, ln(1/ĝk,M(x)−1) is undefined when ĝk,M(x) is 0 or 1. To get around this
problem, we define

νk,M(x) =


ĝk,M(x) if 0 < ĝk,M(x)< 1,
νk,M(x) = ν1 if ĝk,M(x) = 0,
νk,M(x) = ν2 if ĝk,M(x) = 1,

where ν1 and ν2 are two constants such that ν1 is close to 0 and ν2 is close to 1, but not too close, to avoid
numerical issues. Note that since ĝk,M(x) is the average of M indicator functions, if 0 < ĝk,M(x)< 1, then
we always have ĝk,M(x) ∈ [1/M,1−1/M]. We will use these νk,M(x) throughout the rest of the paper.

The least-squares fitting is done by solving

(P2) minimize
αk∈RI+1

1
T

T

∑
t=1

wk(xt)

(
−(α1

k )
Txt +α

0
k − ln

(
1

νk,M(xt)
−1
))2

,

where wk(xt), k = 0, . . . ,K, are weight values used to prioritize points whose QoS values are close to the
targets. (P2) yields a closed form optimal solution αk = (X TX )−1 X Tg̃k, where X is matrix of size
T × (I+1) whose t-th row is vector (

√
wt(xt)(xt)T,

√
wt(xt)) and g̃k is a vector of size T with t-th element

g̃k
t =

√
wk(xt) ln(1/νk,M(xt)−1).

We illustrate this with two examples, both based on a small call center model with two agent groups
and two call types. Group 1 can serve only call type 1, and Group 2 can serve both call types (1 and
2). Agents in group 2 prioritize calls of type 2 over those of type 1, and arriving calls of type 1 are
first routed to idle agents in group 1, if any. We also assume that, for the two call types, each caller
abandons immediately with probability 2% if it has to wait and patience times are exponential with means
10 and 6 minutes. The length of the period is one hour. The parameters in the SL constraints are
τ1 = τ2 = τ0 = 120 (seconds), s1 = s2 = 80% and s0 = 85%. We consider the SAA ĝk,M(x) for k = 2,
using M = 1000.

Example 1: Fitting ĝ2,M(x) and ln(1/ĝ2,M(x)−1) with different logistic and linear functions. We
evaluated the function ĝ2,M(x) at a staffing (for Group 2) x2 ∈ {4,5, . . . ,16} and x1 = 15 for Group 1. On the
left side of Figure 1, we plot ĝ2,M and the functions of the form 1/(1+ exp(−α1x2 +α2)), and on the right side

we plot ln(1/ĝ2,M(x2)−1) and linear functions−α1x2+α2, where α ∈
{
(1.14,9.9),(1.14,10.9),(1.24,9.9)

}
.

Clearly, with α = (1.14,9.9), the corresponding logistic and linear functions seem to fit very well with
ĝ2,M(x2) and ln(1/ĝ2,M(x2)−1), in particular with x2 ∈ [6,14] and ĝ2,M(x2) ∈ [0.03,0.998]. Note that the
values α = (1.14,9.9) are obtained by fitting the linear function with 13 values of 1/(1+ exp(−α1x2 +α2))
(evaluated at x2 ∈ {4,5, . . . ,16}).

Example 2: The shapes of ĝ1,M(x) and ln(1/ĝ1,M(x)− 1) in 3D. This example illustrates how
ĝ1,M(x) and ln(1/ĝ1,M(x)−1) look in 3D, noting that call type 1 can be served by both agent groups. We
vary both x1, x2, so function ĝ1,M(x) becomes ĝ1,M(x1,x2). We compute 23× 32 values of ĝ1,M(x1,x2),
where x1 ∈ {1, . . . ,23} and x2 ∈ {1, . . . ,32}. We draw the 3D surface plots given by ĝ1,M(x1,x2) and
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Figure 1: Fitting ĝ2,M(x) with logistic and ln(1/ĝ2,M(x)−1) with linear functions.

ln(1/ĝ1,M(x1,x2)−1) in Figure 2, noting that when computing ln(1/ĝ1,M(x1,x2)−1), if ĝ1,M(x1,x2) = 0
or 1 then we replace it by 0.0001 and 0.9999 to avoid numerical issues. We see that ĝ1,M(x1,x2) on the
left hand side seems to have a shape of a logistic function. On the other hand, ln(1/ĝ1,M(x1,x2)− 1)
has approximately a linear shape in the area where the ĝ1,M(x1,x2) are not too close to 0 or 1, e.g.,
ĝ1,M(x1,x2) ∈ [0.001,0.995].

Text

Figure 2: 3D surface plots of ĝ1,M(x1,x2) and ln(1/ĝ1,M(x1,x2)−1).

3.2 Logistic Regression-based Optimization Model

When the logistic model h(x,αk) can provide a good approximation of the QoS function ĝk,M(x), we
can replace the chance constraints by constraints on h(x,αk), which can be transformed into linear ones.
Let α∗k = {(α1∗

k ,α0∗
k )} denote the set of parameters obtained after fitting function h(x,αk) with ĝk,M(x).

Given these parameters, we can replace the constraints in (P1) by h(x,α∗k )≥ lk, for all k = 0, . . . ,K, and
these constraints can be transformed equivalently into linear ones as −(α1∗

k )Tx+α0∗
k ≤ ln(1/lk− 1) for

k = 0, . . . ,K. Then, (P1) can be equivalently formulated as the integer linear programming problem:

(P3)

minimize
x∈NI

cTx

subject to (α1∗
k )Tx≥ α

0∗
k − ln(1/lk−1) , k = 0, . . . ,K.

Problem (P3) can then be solved conveniently using a commercial solver such as CPLEX.
The regression-based optimization model (P3) can be combined with the fitting procedure in an iterative

manner to find good staffing solutions, as follows. At iteration t, we add (xt , ĝk,M(xt)) to the training set
of the regression model and update α∗k , k ∈ {0, . . . ,K}. To obtain new solutions, we replace ĝk,M(xt)
by h(x,α∗k ) and solve the approximate problem (P3) with constraints h(x,α∗k ) ≥ lk, k = 0, . . . ,K. When
the training set has enough points, the parameter estimates α∗k , k ∈ {0, . . . ,K} become stable and we can
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stop the iterative procedure and return the best solution found. In general, this approach does not require
estimating the sub-gradients as in the conventional cutting plane method, so it is generally less expensive.

3.3 Logistic-based Trust Region Local Search

We now outline a local search procedure that allows to improve any feasible staffing solution. The algorithm
incorporates the idea of the trust region method used in continuous optimization (Nocedal and Wright
2006). This is an iterative procedure in which, at each iteration, we build model functions approximating
the QoS functions and define a region around the current solution within which we trust the model functions
to be adequate representations of the QoS. Then, we find a next solution candidate by minimizing the
optimization problem in which the QoS are replaced by the model functions, and inside the region we trust,
we hope to find a new candidate solution with better objective value. The size of the region is reduced or
enlarged according to the quality of the new solution found.

The difference between our approach and other conventional trust region algorithms in the literature
is that we build the model functions based on the idea of approximating the QoS functions by logistic
functions. The idea is to approximate the ln(1/νk,M(x)−1) by linear functions of x, and build model
functions based on the estimated gradients of ln(1/νk,M(x)−1).

More precisely, let us define vk(x) = ln(1/νk,M(x)−1) , k = 0, . . . ,K. Given a point x̄, let ∇vk(x̄)
denote a (tentative) estimation of the subgradient vk(.) at x̄. The vector vk(x̄) has no closed-form and need
to be approximated by simulation. Similar to the cutting plane approach, the i-th element of ∇vk(x̄) can
be approximated by finite difference as

∇vki(x̄) =
vk(x̄+dei)− vk(x̄)

d
=

1
d

ln
(
(1−νkM(x̄+dei))νkM(x̄)
(1−νkM(x̄))νkM(x̄+dei)

)
, k = 0, . . . ,K, (1)

where d is a step size. We normally choose d = 1, but we may need to increase d, e.g., d = 2,3, to avoid
simulation noise when the number of samples M is not large enough.

Given the vector ∇vk(x̄), we can approximate vk(x) by a linear model mk(x) such that mk(x̄) = vk(x̄)
and ∇mk(x̄) = ∇vk(x̄), ∀k = 1, . . . ,K, which leads to

vk(x)≈ mk(x) = vk(x̄)+∇vk(x̄)(x− x̄). (2)

Quadratic model functions are more commonly used in the trust region literature. However, in our
empirical experiments, linear functions turned out to be a better choice (in our context) to approximate
ln(1/ĝk,M(.)−1). Moreover, as shown in the following, linear model functions yield linear sub-problems,
which are practically more convenient to deal with. Our trust-region local search algorithm works as
follows. We start with a feasible solution, i.e., a solution that satisfies the QoS constraints. At each iteration
t with solution xt we define a model function mk(x) as in (2) and a region where we have confidence that
the model approximates the objective function well enough. We then solve the optimization model with
constraints on mk(x) to find a new solution x̄t . If x̄t satisfies the chance constraints and gives lower cost, i.e.,
cTx̄t < cTxt , then we update xt+1 = x̄t and enlarge the trust-region radius. Otherwise, we keep the current
solution, i.e., xt+1 = xt , and reduce the trust region. We stop the algorithm when none of the operations
result in a strict decrease in the agent cost.

To obtain a new solution using the model function mk(x), we seek a solution to the following sub-problem

(P4)


minimize

x∈NI
cTx

subject to mk(x) = vk(xt)+∇vk(xt)(x− xt)≤ ln(1/lk−1)

||x− xt || ≤ ∆t , (3)

where ∆t is the trust-region radius at iteration t, and ||x− xt || is a norm of vector x− xt . We choose the
L1-norm for the trust-region constraints (3) so that these constraints can be linearized conveniently using
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auxiliary variable z ∈ RI as (i) xi− xt
i ≤ zi, (ii) xt

i− xi ≤ zi and (iii) ∑i zi ≤ ∆t . Constraints (3) can also be
linearized with L∞-norm, but we use L1-norm to have smaller trust regions. Moreover, since we only seek
integer solutions, we should have ∆t ≥ 1.

The above mixed-integer linear program (MILP) can be handled conveniently using a MILP solver such
as CPLEX. During the local search procedure, we iteratively solve (P4) to get new solutions. Note that xt

is feasible to (P4) for any ∆t ≥ 0, so if x̄t is an optimal solution to (P4), then we always have cTx̄t ≤ cTxt .
Moreover, if we find a solution x̄t by solving (P4) and x̄t does not satisfy the chance constraints, then we
need to reduce the trust region radius ∆t to improve the accuracy of the model mk(x). In the case that
∆t ≤ 1 but we still cannot find a solution that is feasible to the QoS constraints and giving a better agent
cost, then we can stop the local search procedure.

In comparison with the regression-based approach described in Section 3.2, the trust-region approach
is more expensive, as it requires gradient approximations, but works better when the logistic functions do
not fit well globally with the QoS values. We can benefit from the strengths of both methods by combining
them in the algorithm described in the next section.

3.4 Algorithm

We summarize our approach in Algorithm 1. The algorithm has four main steps. In Step 1, we start with an
initial staffing solution given by the fluid model. Then, we select call types for which the QoS constraints
are not satisfied and we add more agents to the groups that serve these call types. This process allows to
improve the QoS values until all the QoS constraints are satisfied. After Step 1, we can get one feasible
solutions and a set S containing several staffing vectors and their corresponding QoS values.

In Step 2, we use this set to estimate the parameters α of the logistic functions, and iteratively solve
the regression-based optimization model (P3) to (hopefully) get a good staffing solution. In Step 3, we
use the cutting plane method to create piece-wise linear and concave functions that outer-approximate the
concave parts of the QoS functions. The cutting plane procedure consists of two main steps, namely, a
simulation step to compute subgradient vectors given, and a step of adding a linear cut for each QoS value
that does not satisfy the QoS constraints. The cutting plane in Step 3 differs from the stand-alone cutting
plane method (Atlason et al. 2004; Atlason et al. 2008) in the fact that we use some constraints based on
the regression model (obtained in Step 2) to make sure that cuts are generated based on points that are not
too far from the optimal solutions. Thus these cuts should belong to the concave regions.

We stop the cutting procedure when all the constraints are satisfied, or we find a staffing vector giving
a higher cost than the solution found from Step 2. The latter occurs when the linear cuts generated are
not good and eliminate good staffing solutions. In this situation, the cutting plane method cannot return a
better solution than the regression-based approach.

After Steps 1, 2 and 3, we obtain a solution that is feasible to the QoS constraints. The final step
allows to further improve that solution by searching around its neighbourhood. After getting an estimation
of the gradient of vk(xt) (Step 4.1), we replace the QoS functions by the approximate model mk(·) and
solve the corresponding sub-problem to find a new candidate solution. In case the solution is not feasible,
which means that the approximate models mk(.) do not provide good approximations to the QoS within
the region identified by ∆t , we need to reduce ∆t to improve the accuracy of mk(.). Moreover, if we find a
solution that is identical to the current one xt , then we can stop the local search, as one can show that we
cannot find a better solution by just reducing the trust region. On the contrary, if we obtain a solution that
is feasible to the QoS constraints and giving a better cost as compared to the current one xt , we move to
that better solution and continue the local search, and enlarge the trust region. In general, the algorithm
stops when we are in the situation that the local search cannot further improve the current solution.

Note that the logistic approximation is a heuristic. We have no theoretical result that guarantees the
quality of this approximation. Its relevance and quality is measured only empirically.
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Algorithm 1:
# Step 1. Collect QoS values and find a staffing solution by the regression-based optimization
Select a step size d,s ∈ N and an initial solution x. Set S = /0
repeat

1.1. Select k̄ = argmink ĝk,M(x), and randomly and uniformly select i ∈ Gk̄
1.2. Set xi← xi + s and compute ĝk,M(x), k = 0, . . . ,K, via simulation
1.3. Update the training set S = S∪{(x, ĝM(x))}

until ĝk,M(x)≥ lk, for all k = 0, . . . ,K;
# Step 2. Solve the logistic regression-based optimization model (P3) to find a staffing solution
repeat

Solve (P2) using the training set S to obtain parameters α , solve the regression-based optimization
model (P3) to get a new solution x̄, simulate to obtain ĝk,M(x̄), k = 0, . . . ,K, and update the set
S = S∪{(x̄, ĝM(x̄))}

until We find some feasible solutions;
Denote by x∗ the best feasible solution found so far
# Step 3. Cut generation
3.1 Given any solution candidate, using simulation to compute the QoS, add sub-gradient cuts for any call

type k such that ĝk,M < lk to a master problem, and solve the master problem to find new candidate
staffing solutions

3.2. Stop the algorithm when a feasible solution to (P1) is found
# Step 4. Local search
Set t = 0, denote by x0 the best feasible solution found so far, choose an initial radius ∆t . Select

0 < δ1 < 1 <δ2.
repeat

4.1. Compute ∇vk(xt) by (1)
repeat

4.2. Solve the trust-region sub-problem (P4) and obtain x̄, compute ĝk,M(x̄), k = 0, . . . ,K via
simulation

4.3. if ∃k such that ĝk,M(x̄)< lk then
∆t ← δ1×∆t # reduce the trust region

else
If cTx̄ < cTxt , then ∆t ← δ2×∆t # enlarge the trust region

Until ∆t < 1 or x̄ = xt or (cTx̄ < cTxt and ĝk,M(x̄)≥ lk, ∀k);
4.4. If cTx̄ < cTxt and ĝk,M(x̄)≥ lk, ∀k, then set xt+1 = xt , t← t +1.

Until ∆t < 1 or x̄ = xt ;
Return xt .

4 NUMERICAL EXPERIMENTS

We present experimental results using two multi-skill call center examples, namely, a medium-sized example
with 6 call types and 8 agent groups, and a large-sized call center of 89 call types and 65 agent groups.
The latter is inspired by a large real-life call center operated by Bell Canada. These examples were used
in previous staffing optimization studies (Cez̧ik and L’Ecuyer 2008; Ta et al. 2021).

4.1 Experimental Settings

We test our algorithm with targets l0 = 85% and lk = 80%. The agents’ costs are defined based on the number
of skills in the agent’s skill set as ci = 1+0.1(|Si|−1) for each group i, where |Si| is the cardinality of
Si. For the medium-sized example, the acceptable waiting times are chosen as τk = 120 (seconds), and
the targets for SLs are sk = 80%, for all k = 0, . . . ,K. For the large-sized example, we choose τk = 20
(seconds) and the targets of SLs are sk = 50% for all k = 1, . . . ,K, and s0 = 80%. We assume that calls
arrive according to stationary Poisson processes. For each call center example, we define 10 different
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instances by varying the arrival rates. In practice, the arrival rates depend on many factors such as the day
of the week, time of the day, level of business, holidays and special events, are also random (Channouf
et al. 2007; Ibrahim et al. 2016; Oreshkin et al. 2016).

We solve each instance by Algorithm 1, denoted by RCLS, an abbreviation for Regression, Cutting
Plane and Local Search. We also try the cutting plane method (CP) as in Cez̧ik and L’Ecuyer (2008), Ta
et al. (2021), and the regression-based optimization approach defined by Steps 1–2 of Algorithm 1, denoted
by RO. We use the same initial settings for both RO and RCLS approaches and use the best implementation
of CP methods from prior works. Some hyperparameters of CP were also carefully turned to achieve the
best performance. We always take sample size M = 1000. Moreover, the same set of realizations used
to approximate the QoS is reused during the optimization process. The solutions obtained by different
approaches are then evaluated via an out-of-sample study. That is, for each solution x, we compute the
corresponding QoS values with sample size M′ = 2000 that are independent of those used to obtain the
solutions. Then, we report the average number of QoS values that violate the requirements, i.e., for which
ĝk,M′(x)≤ lk−κ , k = 0, . . . ,K. Here, we use two values of κ , namely, κ = 0 and κ = 0.005. The former
refers to the exact QoS constraints, while for the latter we relax a bit the QoS requirements.

The CP method is implemented similarly as in Ta et al. (2021). For the RO method, we use the fluid
scheduling model as in Cez̧ik and L’Ecuyer (2008) to obtain an initial staffing vector to start collecting
QoS values. The step size is chosen as s = 1 and we run Step 1 simultaneously on 8 physical CPUs to get
as many points as possible. For estimating the α parameters, we select the weight vector as wk(xt) = 4
if |ĝk,M(xt)− lk| < 0.05 and wk(xt) = 1 otherwise. For Step 4 of Algorithm 1, we select ∆0 = 8 as an
initial trust region radius. The parameters to enlarge and reduce the trust region are chosen as δ1 = 0.7
and δ1 = 1.3. These parameters are chosen manually to achieve good performance for Algorithm 1. For
the definition of νk,M(·), note that with sample size M = 1000, if ĝk,M(xt) > 0 and ĝk,M(xt) < 1, then
ĝk,M(xt) ∈ [0.001,0.999], so we choose ν1,ν2 such that ν1 < 0.001 and ν2 > 0.999. In this experiment we
choose ν1 = 0.0001 and ν2 = 0.9999. The sub-gradient ∇vk(xt) are estimated with step size d = 1. The
“repeat-until” in Step 2 stops when we find 5 feasible solutions and we just return the best one found. In
general, since there are quite a lot of points generated after Step 1, Step 2 finishes after just a few iterations.
We use these settings for both RO and RCLS methods.

We use the solver cplexmilp from CPLEX to solve mixed-integer linear programming (MIP) models
under default settings. For the medium instances, we let CPLEX run to optimality and for the large
instances, the relative optimality gap was set to 0.05%. To solve the linear least-squares problem (P2),
we use lsqlin from MATLAB 2015a. The experiments were conducted on a machine running Debian 8
with Intel(R) Xeon(R) CPU E5620 (2.40GHz). The simulations were performed using the ContactCenters
simulation library (Buist and L’Ecuyer 2005), developed with the SSJ simulation package (L’Ecuyer and
Buist 2005).

4.2 Medium-sized Call Center

We first report numerical results for the medium call center with 6 call types and 8 agent groups in Table
1 where the best costs obtained by the three approaches are indicated in bold. We also emphasize in red
the costs that are remarkably higher than the others for each instance.

In terms of agent cost we generally see that the RO returns better costs than the CP in 7/10 instances.
Moreover, in 4/10 instances, the CP gives very high costs as compared to the two other approaches. This
clearly indicates the instability of the CP and can be explained by the issue that the fluid constraints are
not be able to eliminate all the non-concave points, leading to poor sub-gradient cuts. The RCLS approach
basically gives the best costs for all the instances. More precisely, RCLS improves the agent costs by
8.69% over CP and by 0.38% over RO, on average. Moreover, RO improves the agents costs by 8.33%
over CP.
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Table 1: Agent costs, CPU times and out-of-sample results for the medium call center examples.

Agent cost CPU time (hour)
Out-of-sample

# violated QoSs
κ = 0 κ = 0.005

Targets Instances RO CP RCLS RO CP RCLS RO CP RCLS RO CP RCLS

(8
0%

,8
5%

)

1 197.0 198.2 195.8 0.24 0.23 0.9 0 0 0 0 0 0
2 189.5 189.5 189.2 0.14 0.12 0.46 0.1 0 0 0 0 0
3 189.4 188.9 188.5 0.13 0.08 0.42 0 0 0 0 0 0
4 196.1 264.3 195.1 0.19 0.16 0.74 0 0 1 0 0 0
5 182.5 182.4 182.0 0.15 0.23 0.59 2 0 0 0 0 0
6 189.6 235.5 189.4 0.15 0.08 0.32 2 0 0 0 0 0
7 175.0 176.7 174.1 0.12 0.22 0.58 0 0 0 0 0 0
8 159.9 160.4 158.7 0.04 0.23 0.67 0 0 0 0 0 0
9 192.4 212.5 192.2 0.11 0.3 0.32 2 0 1 1 0 0

10 209.9 287.5 209.2 0.22 0.17 0.82 2 0 0 0 0 0
Average 0.15 0.18 0.58 0.81 0 0.2 0.1 0 0

In terms of CPU time, RO is the fastest method as expected, and RCLS requires remarkably higher
CPU times compared to the two other approaches. Even so, the RCLS requires only half an hour on average
to solve one instance, which is viable in practice.

In the out-of-sample study with κ = 0, we observe some violated QoS constraints. It is interesting to
see that the average numbers of violated QoS given by the CP are less than the other approaches. However,
if we relax a bit the QoS constraints, i.e., ĝk,M(x) ≥ lk−0.005, then there is no violated QoS for all the
solutions returned by the three approaches, except for one RO solution. In general, we can see that RCLS
seems to return solutions under which the QoS values are very close to the targets. Moreover, a sample
size of M = 1000 seems large enough to ensure that the QoS values only vary in small intervals in different
sets of realizations.

4.3 Large-sized Call Center

We now consider a larger call center model with K = 89 call types and I = 65 agent groups, inspired by
a real-life call center previously operated by Bell Canada, and available at http://www.iro.umontreal.ca/
∼lecuyer/myftp/ld-example2/. This example is also used in Cez̧ik and L’Ecuyer (2008) and we refer the
reader to this paper for more details. Table 2 reports numerical results for 10 instances. We also indicate
in bold the best costs obtained. We can see that CP is more stable and always gives better costs than RO.
However, RCLS always returns the best costs among the three approaches, for all instances. We can also
see that RCLS improves the agent costs by 1.55% over CP and by 4.66% over RO, on average. Moreover,
CP gives about 3.16% better agent costs than RO on average.

In terms of CPU time, RO is obviously much faster than the other approaches. This is because RO does
not need to compute the sub-gradients qk and ∇vk, which requires 8 and 89 simulations for the medium
and large examples, respectively. The CPU times required by RCLS are about 43% higher than for CP.
Even so, RCLS needs less than four hours to solve one instance, which is viable in practice.

The out-of-sample results are not surprising for these large instances. Similarly to the medium call
center, we observe some violated QoS constraints with κ = 0, but their number is very small, considering
that there are about 90 QoS constraints to satisfy. When we relax a bit the requirements with κ = 0.005,
there is no violated QoS constraint. We also observe that the average number of violated QoS values with
RCLS is higher than for CP, indicating that the QoS values given by the RCLS solutions are tighter with
the targets, as compared to those from CP.

It is worth noting that the performance of RO strongly depends on how well the logistic functions fit
with the QoS ones in the areas of interest (i.e., around the optimal solutions). For medium-sized instances,
we can see that RO returns good solutions, implying that the logistic functions can fit well with the QoS
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Table 2: Agent costs, CPU times and out-of-sample results for the large call center examples.

Agent cost CPU time (hour)
Out-of-sample

# violated QoSs
κ = 0 κ = 0.005

Targets Instances RO CP RCLS RO CP RCLS RO CP RCLS RO CP RCLS

(8
0%

,8
5%

)

1 873.1 836.7 832.1 0.44 1.69 1.89 0 0 0 0 0 0
2 842.8 819.6 801.6 0.42 1.82 2.50 1 0 0 0 0 0
3 861.8 834.7 819.0 0.46 2.71 2.31 0.1 0 0.7 0 0 0
4 821.6 790.7 779.9 0.41 1.58 2.55 1 0 1.5 0 0 0
5 869.6 850.3 841.0 0.39 1.93 2.43 0 0 0 0 0 0
6 831.0 806.2 798.3 0.40 2.08 3.68 1 0 0 0 0 0
7 896.2 870.8 847.9 0.38 2.49 2.17 0 0 0 0 0 0
8 838.7 810.5 797.2 0.37 1.59 2.44 0 0 0 0 0 0
9 831.8 796.2 793.1 0.35 1.69 3.19 0.9 0.1 0.1 0 0 0

10 868.7 850.3 827.0 0.39 2.62 1.78 0 0.5 1 0 0 0
Average 0.40 2.02 2.49 0.4 0.06 0.33 0 0 0

values. In contrast, for large-sized instances, RO performs poorly but the RCLS is able to significantly
improve solutions given by the RO and CP methods, implying that the logistic functions would be not
globally good approximations, but still can locally fit well with the QoS.

5 CONCLUSION

We have introduced a new approach to solve the chance-constrained staffing optimization in a multi-skill call
center. Our methodology is based on the observation that the QoS functions generally display “S-shapes”, so
they can be approximated by appropriate logistic functions. We have designed an algorithm that combines
a regression-based step to collect QoS values and approximate QoS functions by logistic ones, a step that
generates linear cuts to approximate the QoS constraints, and a local search procedure to further improve
feasible solutions. We tested this approach on two call center examples, one with medium and one with
large numbers of agent groups and call types. The numerical results show the efficiency of our approach in
finding good staffing optimization in reasonable computing time. Our methodology is general, in the sense
that it can be applied in other settings, e.g., the staffing problem with SL constraints considered in Cez̧ik
and L’Ecuyer (2008) or the scheduling problem in Avramidis et al. (2010). It might be also promising
for larger-scale problems, e.g., a staffing or scheduling optimization problem under uncertainty (Ta et al.
2021).
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