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ABSTRACT

Including geometry in non-spatial automata elevates their expressiveness. This provides the context required
to understand many natural and built systems and facilitate their development. Indeed, the scope and types
of questions asked by domain experts are continually rising due to the varied and intertwined structures and
dynamics of hybrid systems. This is especially evident for heterogeneous models required to solve complex
problems. They benefit from using different modeling formalisms and simulation frameworks. In this paper,
an approach targeting the development of composable, heterogeneous, multi-resolution, spatiotemporal
models formalized according to modular, cellular automata, and multi-agent models grounded in parallel
DEVS, Modelica, and Geo-referenced Knowledge Interchange Broker methods is proposed. This approach
is used to develop a co-simulation framework supported by the DEVS-Suite and OpenModelica simulators
and the Functional Mock-up Interface. A multi-scale model for human breast cancer biology highlights
the use of the developed approach and the co-simulation framework.

1 INTRODUCTION

Numerous dynamical systems that are built from simple to complex parts are inherently structurally and
behaviorally multi-scale. Simulations of such systems involve combining separate models, each with its own
temporal and spatial characteristics. Models have some parts that should be described at high resolutions
while others are described at lower resolutions (Davis and Anderson 2003). Numerous research spanning
several decades, as exemplified in Section 2 have shown the benefits of multi-resolution (aka multi-scale)
models and simulations.

There are distinct reasons for needing multi-resolution models. Simulations of such multi-scale are
necessary when different kinds of models created by individual experts or groups should be used and/or
models necessarily differ in their spatiotemporal scales and also having varied structure and behavior
complexities. Multi-scale simulations may also be needed to achieve computational efficiency while
retaining acceptable accuracy (e.g.,

Considering simulation of human biology, different kinds of models that cut across a broad range of
biological scales, from molecule to cell to tissue, are beneficial (Dada and Mendes 2011; Hunt et al. 2013).
Molecular dynamics models can be defined to have discrete and continuous characteristics with varying
macro and micro scales. Also, various modeling methods can be applied within the same phenomenon,
e.g., particle diffusion is specified as multi-agent models at macro-scale or as partial differential equations
at micro-scale. In-silico simulation can help better understand and replicate actual, in-vivo, and in-vitro
biological processes.
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As an example of multi-scale computational (simulated) biology for studying human breast cancer,
three kinds of models are developed (Chang et al. 2015). Cellular and molecular phenomena are modeled
as discrete agent-based and differential equations. Cellular Automata are used to model cells and their
migration. Ordinary Differential Equations are used to model molecules that bind to the surface receptors
of cells. Partial Differential Equations can be used to model the environment that acts as a diffusion process
to control the migration of cells.

Model composability can be considered from the standpoint of component-based, heterogeneous, and
multi-resolution abstractions. The development of composite heterogeneous models is challenging (Simon
1962). Many approaches and frameworks use direct data read/write, object-orientation, and essentially
software techniques to glue together simulation models. There exist many such works that lean more on
simulation interoperability and less on model composability. For example, DEVS (Zeigler et al. 2018) and
Modelica (Åström et al. 1998), as super-formalisms (Sarjoughian 2006), can be used to include other types
of models. Continuous models can be embedded in DEVS models. Modelica can embed DEVS agent
models using a cellular automaton (Sanz and Urquia 2021). These differential and algebraic equations
(DAEs) and process-oriented discrete-event models are combined using function calls with continuous-time
input/output ports and connectors. Such approaches are restrictive in view of composing heterogeneous
model types with varying spatiotemporal scales and resolutions.

In this paper, the Knowledge Interaction Modeling approach (Sarjoughian 2006) is proposed for
specifying the interactions among multi-agent Cellular Automata DEVS and PDE models that have distinct
Geo-referenced spatiotemporal resolutions. This allows specifying the interactions among distinct modeling
formalisms as standalone Geo-referenced KIB models. A modeling and simulation framework is developed
using the DEVS-Suite and OpenModelica simulators integrated with the DEVS-FMI interface (ACIMS
2021).

2 COMPOSITIONS OF MULTI-RESOLUTION MODELS

A selection of component-based cellular-based modeling methods supported with frameworks and tools are
briefly described. The emphasis is on the composition of simulatable models that can be chiefly categorized
as strongly monomorphic or polymorphic. The roles of these methods in view of visual model development
and rendering as well as visualizing their simulated dynamics are also considered. Detailed expositions
for select model compositions can be found in their respective citations. The descriptions for select works
are intended to highlight the unique capabilities proposed composition of heterogeneous models having
independent temporal and spatial scales. This approach for multi-resolution heterogeneous modeling with
its supporting co-simulation framework is founded on strong separation between model specification (model
composability) and simulation execution (simulation interoperability).

2.1 Homogeneous Models

A variety of mathematical formalisms have been developed to characterize systems, for example, as
continuous, discrete-time, and discrete event model types. It is not uncommon for a model type to be
combined with other model types. Many simulation frameworks and tools are commonly used. For example,
in a component-based modeling framework, a part of a discrete-event model can be abstracted to have
continuous behavior even though the whole model is simulated as if all components have discrete-event
dynamics. This idea, implemented in programming languages, can be found in many simulators. More
generally, the Functional Mockup Interface and others have been developed to integrate different kinds of
simulators, each supporting a particular kind of model structure and behavior.

Multi-agent models: These simulators are monolithic in the sense that each provides one approach to
model specification and an execution protocol. They are generally efficient since the agents have direct
access to read and write each other’s state variables. A side effect is they are not strictly modular (i.e., each
agent has input/output ports and communicates with others through message passing). They are considered
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“lightly” composable as other model types may be encapsulated in them. Each may provide built-in
visualization for the specific kind of model that can be simulated. It is common to use external visualization
tools for run-time or post simulations. An example is Multi-Agent Simulator Of Neighborhoods (MASON)
(Luke et al. 2005). As an object-oriented simulator, it is extended with Physiomimetic Mechanism Modules
defined as classes supported with required and provided interfaces (Hunt et al. 2013).

Cellular automata DEVS models: This is a cellular automata modeling based on the classic DEVS
formalism, commonly in 2D and 3D spaces. The atomic model behavior is defined by a set of rules. The
coupled model behavior is due to the atomic models and their relationships. Each cellular automata can have
its own tessellation and dimensions. Cellular automata models can be coupled using their inputs and outputs
to define other cellular automate models. The Cell-DEVS approach is implemented in CD++ simulator
(Wainer 2017). Cell-DEVS models and non-spatial DEVS models can be composed. The approach is mostly
monolithic from the DEVS model composition perspective since the overarching model and execution are
governed by the Cell-DEVS. Such a simulator can be combined with simulators supporting other model
types by encapsulating it in a Cell-DEVS atomic component. Simulation data can be stored in a log file
and then animated in 2D space and plotted as linear time trajectories.

Composable cellular automata models: This approach to cellular automata composability is to distinctly
specify cell-to-cell interactions within a cellular automata model from specifying cellular automata interacting
with other models (Mayer and Sarjoughian 2009). The Discrete Time Multi-Component (DTM) is a special
class of cellular automata where every cell share its state with its designated neighbors. A Composable
Cellular Automata (CCA) is a standalone model with the ability to be composed with other CCAs or I/O
modular models via external mapping functions. All cells within any CCA update simultaneously on a
common time interval. Any cell can communicate its local state with any other cells in terms of (explicit
or implicit) influencer-influencee relationships. The output from each cell will be mapped to the CCA and
then mapped to the input of the external model. Conversely, the input from the external system will be
mapped to the entire network and then to the individual cells. The CCA formalism intentionally excludes
the specification for these external mapping functions (Mayer and Sarjoughian 2009). A realization of the
CCA-DTM is developed for GRASS. GRASS GIS can be used to visualize stored simulation data.

2.2 Heterogeneous Models

Continuous-time and discrete-time models are combined to define a widely used class of composite models.
Formalisms such as hybrid-automata (Alur 2015) define concise syntax and semantics for specifying mixed
continuous and discrete models. Other modeling methods are essentially super-formalisms (Sarjoughian
2006) where one model type embeds others. Considering DEVS models, continuous models can be embedded
in them (Zeigler, Muzy, and Kofman 2018). Modelica can embed DEVS agent models assigned to a cellular
automaton (Sanz and Urquia 2021). Such approaches are restrictive in view of composing models, each
having its own spatiotemporal resolution. Differential and algebraic equations (DAEs) and discrete-event
models are combined using continuous-time input/output ports and connectors with function calls. Model
composition approaches with different groundings can be placed in two categories as described below.
There exist many such works that lean more on simulation interoperability and less on model composability.

Multiple single-scale cellular automata models: This approach to multi-scale modeling is based on
Complex Automata (CxA) that supports defining a collection of single-scale sub-models (Hoekstra et al.
2010; Chopard et al. 2018). In principle, multiple sub-models can be combined to define larger models.
All the sub-models are references that share a common spatial specification. The individual cells’ spatial
specifications define the spatial specification of the composed sub-models. Discrete changes to the states,
using certain update rules, are allowed. The update rules are constrained by propagation, collision, and
boundary crossing for propagation (sending data to neighbors), collision (updating the state of cells), and
boundary conditions. Non-contiguous spatial sub-models use scale bridging. Algorithms for micro-macro
conduits can be defined using sampling, splitting, homogenizing, projecting, and boundary condition
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alignments. Complex automata models can be visually developed as components with connectors, but it
cannot be said if run-time simulation data visualization is supported since the tool is not available.

Cellular automata and agents models Cellular automata and component-based (aka agent-models)
can be composed using the Knowledge Interchange Broker (KIB) approach (Sarjoughian 2006). An
example is the composition of CCA-DTM models with parallel DEVS agents models. A KIB specifies
the interactions between the CA and agent models in terms of their timing differences and concurrent
bi-directional data transformations between models that have distinct variable types, structural relationships,
and behavioral functions. The input, output, and state variables of model types have distinct characteristics.
Variables can be piecewise-constant, piecewise-continuous, and discrete-event. Components form some
uniform structure (e.g., multi-dimensional cellular automata), or components form some arbitrary (flat
or hierarchical) structure. Geo-KIB supporting spatial conversions for two-dimensional geographic data
maps with different regions is proposed Geo-referenced KIB (Boyd and Sarjoughian 2020). The Geo-KIB
is used for modeling agent-based human-landscape dynamics. Interactions between models that different
spatial-temporal data types and scales can be modeled without making any changes to the composed models.
Cellular Automata models that have different spatiotemporal scales and map regions can be composed.
The difference between the composed spatial models can be based on either map cell sizes or boundaries.

3 COMPOSABLE CELLULAR AUTOMATA MODELS

The rise of system complexity points to developing frameworks that can aid in developing composable
models at multiple spatiotemporal resolutions. In particular, the concept of cellular automata has shown
itself to be a cornerstone for numerous scientific and engineering pursuits. This is, in part, due to the
inclusion of geometric abstraction that results in Cellular Automata being more expressive than other kinds
of automata (von Neumann and Burks 1966). A cellular automaton has a set of individual cells that have
a set of common properties and synchronously change their dynamics with respect to one another using
a set of shared rules. The cells change their states under a uniform or non-uniform local neighborhood
configuration. It is important to observe that the use of space and time together in modeling dynamic
systems has a unique benefit in the same way Partial Differential Equations are more expressive than
Ordinary Differential Equations. This view is obvious in the natural and built worlds and presents Cellular
Automata to be well-suited for understanding and developing hybrid systems, among others (Mayer and
Sarjoughian 2016).

Cellular Automata are commonly used for single abstraction levels of a system. For example, a CA
specification for an airport roadway system can be defined to have seconds and centimeter scales. The
movement of people in the airport terminals connected by the roadways can have minute and meter scales.
Thus, an airport can be modeled at multiple abstraction levels (temporal and spatial resolutions), one for
the movement of people and another for the movement of vehicles. It is useful to have such abstractions,
on the one hand, be independent of one another and, on the other hand, to be composable.

3.1 Discrete-Time Multicomponent Modeling

The Cellular Automata modeling approach, as in many others, allows abstracting systems to be self-
contained. That is, the CA cells have input, output, state, and functions, and as a system, they have some
inner structure and behavior. The input and output for a Cellular Automaton are fundamentally those
that belong to its cells that are connected among the parts (neighborhood). The behavior is defined as
the collection of the state of all cells computed using a time-based function applied to each cell and its
neighborhood.

As noted above, it is useful to have composable multiple Cellular Automata. A modeling formalism called
CCA-DTM (Composable Cellular Automata Discrete-time Multicomponent) is defined for specifying CAs
that have exogenous input and output modularity (Mayer and Sarjoughian 2009). The modeling formalism
has a discrete-time characteristic and is based on multicomponent system specification (Zeigler, Muzy,
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and Kofman 2018). In a CCA-DTM, states of all cells are uniformly computed using a shared discrete
time base. The behavior of every influenced cell can change due to its own state as well as the state of
one or more influencing neighbors. The (partial) state of every influencing neighbor is its output. The
neighbors’ outputs constitute the influenced endogenous inputs of the CCA-DTM. The internal structure
and behaviors of the cells and their relationships are separated from any exogenous I/O the CCA may have.
As a standalone model, CCA-DTM can be composed of any other discrete-time I/O system specification.
In other words, the CCA-DTM formalism is developed such that it can be coupled with I/O modular CA
and non-CA discrete-time models.

3.2 Discrete Event System Specification Modeling

The composition of models that have strong input/output modularity (i.e., communication between different
models is only via input and output ports) is fundamental for correct-by-construction of complex, time-based
models (Sarjoughian ). To achieve strong internal and external I/O modularity, the CCA-DTM is extended
to support the Parallel DEVS formalism. This is achieved by replacing models of cells from discrete time
to discrete event system specification and multicomponent to coupled models. The result is CCA-DEVS
where DEVS atomic models are for cells that are geometrically arranged and coupled together to represent
Composable Cellular Automata DEVS models (Zhang, Sarjoughian, and Seok 2020). In this approach,
the cells and the CCA are all I/O modular, thus support strong means for composing CCA-DEVS models
with any other model that has a well-defined time base and I/O modular.

The individual cells in a CCA-DEVS model have input and output ports connected to each other and
also to other modules. As a result, hierarchical cellular automata models can be specified. Furthermore,
the discrete-event cellular automaton and the discrete-event cells have a common continuous time base.
The external I/O mapping functions for CCA-DEVS conform to the atomic and coupled DEVS system
specifications. A formal specification of the CCA-DEVS can be found in (Zhang, Sarjoughian, and Seok
2020). An input/output modular discrete-event cellular automata framework based on the Discrete Event
System Specification (DEVS) has been developed. This framework is built using the Cellular Automata
DEVS (Zhang and Sarjoughian 2017) that is a part of the DEVS-Suite simulator (ACIMS 2021).

The differences between CCA-DTM and CCA-DEVS are important to be noted from the vantage point
of the heterogeneous model composition. The CCA-DEVS formalism is modularized by using ports of I/O
for communication, while the CCA-DTM system only has external ports for coupling with other models.
The hierarchical structure of DEVS is organized from the atomic model to the coupled model, while the
CCA-DTM is a standalone I/O system without any hierarchical structure. The cells in CCA-DTM do not
have defined input and output ports with explicit connections. To compose discrete-time CCA with other
CCA or non-CCA models, simulation synchronization for all the sub-systems (CCA or non-CCA) must be
defined using a natural number time base. The discrete time base for CCA-DTM is defined as T =N. Time
is a set of finite time intervals {h0, . . . ,hk}) where hi ∈ {(N∪{0})−{∞}}, i ∈ {0, . . . ,k}. The CCA-DEVS
uses continuous time base is defined T = R+

0,∞. This time base allows composing I/O modular cellular
automata and other types of automata to have mixed continuous or discrete event time bases.

3.2.1 Multi-agent Modeling

Agent-based and Cellular Automata models, from a basic perspective, have a common basis in terms of
creating whole models from parts. The parts in an agent-based model (ABM) may not necessarily have
spatial structures (i.e., agents do not have to have any spatial structures). In contrast, cellular automata
models have regularly formed spatial structures. Each agent in ABM and each cell in CA is an independent
entity. These entities as a collection can have some emergent behaviors.

Movement is a key feature for some cellular automata models. Individual and collective movements
of agents can lead to behaviors with specific patterns for the whole model. Cells can be modeled as agents
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moving from one grid cell to another. For example, one agent moves towards the high-density regions of
a PDE model while another agent moves randomly.

The CCA-DEVS can be used to model agents that move (Zhang and Sarjoughian 2017). It is advantageous
to use CCA-DEVS due to being discrete – composability makes agents with agents and agents with the
environment separable. The discrete event paradigm allows agents to interact via time-based events.

Figure 1: Illustration of the CCA-DEVS multi-agent movement algorithm.

Agent movement in discretized cellular automata space is represented as it changes its grid cell position
to its neighbor position. The neighbor cell changes its state to have an agent instead of being empty. Any
grid cell can be initialized as Has Agent-i or Empty. If the cell has the property of Has Agent-i, it
sends the SENSING output event to one of its neighbors (i.e, a target cell) or it does not send any output
event for some time duration. When the agent receives the COME input event from an neighbor grid Cell
that is Empty, it changes it state to Agent-i Moves to Cell(m,n), sets its state Empty and send
an input to cell(m,n). This logic is defined in the agent’s external, internal, and output functions.

A grid cell may have no agents (i.e., its state is Empty). Such a grid cell may receive multiple
SENSING input events from its neighbors with state Has Agent-i. Then the empty grid cell randomly
selects one neighbor Cell, sets its state to Coming Cell(m,n), and sends the COME event as input to
the selected source cell. The empty cell state changes from Coming Cell(m,n) to ‘Empty’ again and
waits for the agent to come. After the grid cell receives the signal with Agent-i, it becomes the cell
with Has Agent-i.

The CCA-DEVS formalism supports multi-agent models and various collision conditions where there
exist simultaneous input events and/or output events. In a two-dimension space, the agents may move in
eight directions (i.e., Moore neighborhood), but only one direction is chosen. The empty cell may have
more than one neighbor whose agent wants to move into it. In both cases, the agents randomly determine
where to move and for the empty cells to decide which agents to accept. The external, internal, confluent,
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output, and time advance functions in parallel DEVS are employed to schedule all input and output events,
state changes, and timing.

An example for a CCA-DEVS with four grid cells is shown in Figure 1. In this illustration, cell(0,0)
and cell(0,2) are empty and cell(0,1) and cell(0,3) having Agent 1 and Agent 2. Agents randomly choose
to move to grid cell(0,2), a cell without an agent. Agent 1 in cell(0,1) is shown to be randomly chosen
to move to cell(0,2). The empty cell(0,0) is not chosen by Agent 1 (i.e., cell(0,0) does not receive any
sensing signal from Agent 1). The empty cell(0,2) chooses Agent 1 to occupy it. Then, cell(0,2) sends
a message to Agent 1 which in turn moves to cell(0,2), with cell(0,1) becoming Empty. In Figure 1 the
rounded rectangles boxes show the state information of the particular grid cells, the circles show decision
functions, the arrows with dash lines show internal transition activities, the arrows with solid lines show
external transition activities, and the arrows with [msg: · · ·] denote output functions.

3.2.2 Diffusion Modeling

The CCA-DEVS can be used to define partial differential equation models. Diffusion models can have
simple to complex dynamics. A simple model has a constant rate of change in the diffusion gradient. It can
be specified using the finite difference scheme (Recktenwald 2004) where the partial differential equations
are discretized in space and time. Stability is a key part of defining PDE models (Cellier and Kofman
2006). Satisfying some desired accuracy and precision of the individual and collective dynamics of PDE
models is subject to the models that it is composed with. The CCA-DEVS can specify cellular automata
PDE Diffusion models.

Finite difference solvers can be used for simulating PDE models. A finite difference scheme is essentially
a numerical method where space is discretized on a regular grid of points with state variables changing
using discrete time steps. The density of the diffusion is defined using uniform grid with locations (x,y)
and time instances tn = t0+n∆t,n ∈N. Considering two-dimensional PDEs, discretization can be achieved
using explicit FTCS (Forward-Time Central-Space) method with a limit on time discretization satisfying
some stability condition (e.g., ∆t ≤ ∆x2

4D for ∆x = ∆y with D as a diffusion coefficient) (Recktenwald 2004).

4 COMPOSITIONS OF MULTI-AGENT AND DIFFUSION MODELS

The composable cellular automata modeling can be used to define and compose agent-based and diffusion
model types. These two model types can have the same or different spatial dimensions and resolutions.
Agents may move within their cellular space while the diffusion process is taking place. The CCA-DEVS
models can have regular grid space structures with continuous and/or discrete time bases. In an agent
CCA-DEVS model, each CA grid cell can have an agent model (i.e., a DEVS atomic model). An agent’s
movement is defined by assigning it to a grid cell (i.e., a grid cell has a Boolean state variable having value
equal to either occupied or empty (see Section 3.2.1). When the continuous time base is used, an agent
can have different movement speeds while any number of other agents do not move and/or play a role in
the movement of other agents.

4.1 Cellular Automata DEVS, PDE and KIB Models

It is beneficial to use strongly polymorphic composite modeling instead of strongly monolithic composite
modeling for certain types of systems. An example is cancer biology (Chang et al. 2015). Heterogeneous
models can be composed using the Knowledge Interchange Broker (KIB) approach instead of using data
sharing or message passing. Given the DEVS and PDE model types, each with its own syntax and semantics,
another model defines their dynamical interactions. This interaction has its own syntax and semantics.
The interactions are defined in terms of mapping functions, timing, control, and concurrency. The KIB
approach leads to the composed models as well as their interactions to be strongly modular. This is key
when the models to be composed are yo be strictly independent of one another (each model has its syntax
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and semantics). It is straightforward to develop a KIB DEVS model for Composable Cellular Automata
models (Zhang, Sarjoughian, and Seok 2020).

4.2 Geo-referenced KIB

The Geo-referenced Knowledge Interchange Broker (Geo-KIB) approach lends itself to specify spatial
scaling and resolution between cellular automata models (Boyd and Sarjoughian 2020). It has GeoMaps
for data transformations between CAs that have independent spatial scales, grid cell sizes (resolutions),
and boundaries. A GeoMap has structures and values associated with Geo-referenced data transformations
for composed CAs. The number of rows and the number of columns define the grid cell sizes. They are
used to define MapRegions. A MapRegion has north, south, west, and east bounds. The boundaries can
be absolute or relative to CA dimensions. Theoretical approaches exist for transforming space from one
resolution to another (Goodchild 2011). Geo-KIB uses two-dimensional cellular automata models that have
linear spatial scales and mappings.

An input region (source map) can be mapped to an output region (destination map). A two-dimensional
space with values specified for a destination map can be defined given a source map. The boundaries of
the destination map can then be matched with the source map to find an overlapping area. The value of
one destination cell is determined by finding an average of the values from the corresponding (overlapping)
area of the source map with weighted area sizes. For each source map cell, its value is multiplied by
the size of the area of overlap between the source and destination cells. The products are added from all
the corresponding source cells to create a weighted sum. Similarly, the sizes of the overlapping areas are
added to find a total area. The weighted sum is divided by the total area to find the weighted average value
for the destination cell. Because of differences in resolution, the destination cell may not align with the
boundaries of cells from the source map. It is possible for a destination cell to overlap multiple cells from
the source map in different area proportions.

It should be noted the term Geo-reference is generally used for surface modeling. Nonetheless, it
captures the concept for spatial (dis)aggregation between CAs with different scales and resolutions. Such
a use-case is where multi-agent and diffusion cellular automata have different spatial resolutions.

4.3 Modeling Human Breast Cancer

It is beneficial to gain insight into the composite modeling approach described using cancerous cells
interacting with their environment. On the one hand, the diffusion modeling is appropriate to define the
gradient formation of chemokine (signaling proteins) named L12. On the other hand, the Composable Multi-
agent Cellular Automata DEVS modeling approach lends itself for describing the chemotaxis movement of
cancer cells. The chemotaxis is constrained by chemokine gradient. The spread of cancer involves cancer
cells and diffusion processes to interact with one another. Models of cancer focuses on a signaling axis
involving CXCL12 ligand and CXCR4 and CXCR7 receptors and their bindings to CXCL12+, CXCR4+,
and CXCR7+ cells (Chang et al. 2015). The diffusion of soluble CXCL12 is modeled using 2D Partial
Differential Equation (PDE). The cancer cells are modeled as agents in 2D space. The CXCL12+ cells secret
CXCL12 chemokine. The CXCR4+ cells move towards the chemoattractant CXCL12, and the CXCL12+
and CXCR7+ cells move randomly. Interactions between the cells and with its environment take place at
discrete time steps. More details can be found in (Zhang, Sarjoughian, and Seok 2020; Zhang 2021).

The diffusion process of the CXCL12 phenomenon is defined based on discretizing the space continuum
into a grid of square shapes. In CCA-DEVS, three types of cancer cells (CXCR4+, CXCR7+, and CXCL12+)
are modeled as agents with the ability to move in a 2D cellular space. The environment for the cancer
cells to move within is modeled as CXCL12 chemokine. The environment serves as gradient diffusion
to control the movement and speed of cancer cells. The diffusion space is can be discretized to be the
same size as the grid cells for the cancer cells. Each grid cell of CXCL12 chemokine is a 4th-order ODE
developed in OpenModelica solving by RK4 with the step size of 10ms, which is easily exported as a
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Figure 2: UML class diagram depicting the essential classifiers and relationships of the Geo-referenced
CCA-DEVS, KIB, and OpenModelica simulation framework.

Functional Mock-Up Unit (FMU). The spatial x and y dimensions for each grid cell hosting one cancer
cell is 10×10 µm. The cellular spatial dimension of the environment is 60×20.

Simulating this hybrid model for a 24-hour period shows the expected chemotaxis of the CXCR4+
cells. These cells move toward the region of the environment with high-density CXCL12 chemokine while
the CXCR7+ and CXCL12+ cancer cells move randomly (Zhang 2021). The CXCL12+ Cell agents move
randomly while releasing some amount of L12 protein. The coupling between these the CCA multi-agent
and diffusion models is uni-directional. It is from the CXCL12+ Cell agents to the L12 chemotaxis diffusion
process. The benefit of separating the diffusion and agent models is important for tracking and inspecting
the dynamics of the cells selectively and individually.

5 CO-SIMULATION OF HYBRID AGENT-BASED MULTI-AGENT AND DIFFUSION MODELS

The DEVS-Suite, OpenModelica, and FMI are used to create, simulate, and evaluate the above breast
cancer phenomena. The UML class diagram in Figure 2 shows (i) the CCA-DEVS, (ii) GeoKIB, and (iii)
OpenModelica with the JavaFMI (https://bitbucket.org/siani/javafmi/wiki/Home/). This simplified depiction
of the implemented co-simulation framework highlights support for the composition of multi-resolution,
multi-agent CA-based DEVS and Modelica models with the Geo-referenced GeoKIB.

When the CCA-DEVS master simulation starts, the JavaFMISimulation is instantiated and initialized
by loading the generated FMU for the human breast cancer model. The FMU data inside the Simulation is
overwritten by the CCA-DEVS multi-agent model executed in the DEVS-Suite simulator in each simulation
cycle. Then, the doStep() operation provided in the JavaFMI Simulation causes the OpenModelica
RK4 solver to execute. Upon completing the FMU simulation steps, the output from FMU is read and used
by the CCA-DEVS model via the ModelicaModel. This sequential procedure for writing and reading
data in the master simulator repeats until the Simulation stops or is terminated. The diffusion model
is modeled and simulated using OpenModelica. The cancer cells are developed using the DEVS-Suite
simulator. These simulators are integrated using JavaFMI for co-simulation.
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Figure 3: Simulation and visualization framework for composable multi-resolution CA-based DEVS, KIB,
and Modelica models. (a) CCA multi-agent and diffusion models with identical geometric regions. (b)
CCA diffusion models with overlapping geometric regions.

A set of experiments are defined, developed, simulated, and shown to be comparable to a custom-built
multi-scale BrSimulator (Chang et al. 2015). The simulation experiments of the composite breast cancer
model, using Two One-Sided Test and Chi-Squared Test, are shown to be statistically comparable to
those that can be obtained from the custom-built BrSimulator (Zhang, Sarjoughian, and Seok 2020). This
comparison is carried out to note the developed heterogeneous model composition approach supports the
degree of fidelity employed in realistic simulations of human breast cancer biology. This co-simulation
framework is used to simulate some four hundred thousand cells with CCAs having different spatial and
resolution scales on a desktop computer with Intel i7 2.60 GHz CPU, 64 GB RAM, and Windows 10 OS.

The co-simulator framework offers multi-scale multi-agent CAA-DEVS visualization. Figure 3 shows
run-time combined animations for agent-based and diffusion CCA-DEVS models that have the same
spatial scales but different resolutions. Another example is shown where two models have different spatial
scales and resolutions. Other features include the flexibility to examine models’ dynamics independently
as linear and superdense input, output, and state time trajectories. The content of the input and output
messages exchanges between neighboring cells and customizable Cellular Automata animations can be
tracked and examined step-by-step. Animation of message passing can be set in the simulator’s control
panel for playback. These features do not require writing scripts or developing and integrating code into the
simulator. The simulator also supports black-box testing, an important capability for validating simulations.
These capabilities support step-by-step run-time simulation, debugging, testing, and storing large-scale
simulation results in a PostgreSQL database for post evaluations and visualization.
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6 CONCLUSION

This research describes a multi-agent Cellular Automata DEVS and Modelica models that can have
distinct spatiotemporal scales and resolutions. Heterogeneous model composition is achieved using the
Geo-referenced Knowledge Interchange Broker modeling approach supported with strong input/output
modularity and componentization. Cellular automata models can have their independent temporal, spatial,
and resolution structures and behaviors. Along this path, heterogeneous model composition aids model
verification, simulation validation, formulation of experiments, and visual analytics in an autocatalytic
fashion. The co-simulator framework offers unique features for configurations and run-time visualizations.
The CA-DEVS and CCA-DEVS models with GeoKIB can help better model, simulate, and understand
cell-to-cell and CCA-to-CCA interactions.

It is anticipated that the proposed composable modeling approach and co-simulation framework to
lead to research in two directions. First, enabling increases in model scale and complexity should serve
simulation studies that require compositions of very large multi-resolution heterogeneous models (e.g.,
models with billions of parts and numerous configurations) supported with high-performance and distributed
computing platforms. Second, aiding domain experts in biological, environmental, and social systems to
systematically develop and simulate hybrid models to pose questions and find answers to them. This
suggests some models should have extreme spatial and time scales with complex structures and behavior
dynamics under varying configurations.

ACKNOWLEDGMENTS

We acknowledge the reviewers’ helpful critiques and particularly suggestions by one of them on an early
version of this paper. We are also thankful to Rodrigo Castro, Theresa Roeder, and Gabriel Wainer.

REFERENCES

ACIMS 2021. “DEVS-Suite Simulator”. https://acims.asu.edu/software/devs-suite/. [accessed
5th May 2022].

Alur, R. 2015. Principles of Cyber-Physical Systems. London: MIT Press.
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