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ABSTRACT 

This paper documents an anomaly in intercept time of a ballistic re-entry vehicle (RV) by a ballistic 
interceptor.  Intuitively, it is expected that as soon as an incoming RV is detected, the defense will launch 
an interceptor.  However, we show that under some conditions (short range, lofted RV trajectory and an 
interceptor that is slower than the RV) it is best to delay the launch of the interceptor so that the intercept 
time is minimal.  This is important since by minimizing the intercept time, the interceptor can intercept the 
RV earlier, further away from the defense location and therefore safer for the defense.  In addition, with 
minimal intercept times, the defense may maximize the number of engagement opportunities.  This will 
allow the defense to improve the probability of raid negation.  That is, the probability of neutralizing all 
incoming RVs is greater with more engagement opportunities.  We will show how to minimize the intercept 
time using analysis in the phase space (velocities of the RV and the interceptor) and validate the results 
using MANA (Map-Aware Non-uniform Automata). 

1 INTRODUCTION 

Generally, ballistic vehicle trajectories can be determined using astrodynamics (Bate et al. 1971; Vallado 
1997).  Intermediate and long range ballistic missile defense is described for example by (Buontempo 2015; 
Carnegie Endowment for International Peace 2021; Weitz 2013).  We consider the problem of short range 
ballistic missile defense.   
      In this context, the earth is flat with gravitational acceleration equal to 𝑔 = 9.81 𝑚/𝑠𝑒𝑐2. The trajectory 
of a ballistic vehicle is completely determined by the initial conditions i.e. the initial location and the initial 
velocity of the vehicle. To intercept an RV, the interceptor detonates when it reaches a non-zero weapon 
range to the RV.    
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 The intercept equations are simple when the weapon range is zero. However, the intercept time solution 
becomes complex when the weapon range is non-zero. That is, the problem becomes intractable using 
calculus as it would involve a sixth order polynomial with hundreds of terms once the derivative is 
radicalized (Nguyen and Nguyen 1996). 
 We derive an analytical solution to the intercept time using geometry in the velocity phase space 
(Nguyen et al. 2022). This solution includes many parameters: the RV initial location, the RV initial 
velocity, the interceptor initial location, the interceptor launch delay time, the interceptor speed, the 
detonation range and gravity.    
 With this solution, we obtain the intercept time as a function of the interceptor launch delay time. To 
our surprise, it is not always better to launch the interceptor as soon as the RV is detected in the sense that 
to minimize the intercept time, sometimes it is best to delay the launch of the interceptor. We refer to this 
phenomenon as the anomaly in intercept time for short range ballistic RVs. If the intercept time is 
minimized, the defense may maximize the number of engagement opportunities and thereby maximize the 
probability of raid negation (the probability of neutralizing all incoming RVs). Therefore, the number of 
engagement opportunities is a key metric as described in (Armstrong 2014; Bourn 2012; Nguyen 2014; 
Soland 1987; Nguyen et al. 1997; Wilkening 1999; Mury and Nguyen 2007; Menq et al. 2007; Cranford). 
 This paper is organized as follows. Section 2 provides examples based on realistic data showing the 
anomaly.  Section 3 describes briefly the derivation of intercept time. Section 4 presents an algorithm to 
minimize the intercept time based on the interceptor launch delay time. We conclude in Section 5. 

2 EXAMPLES 

For illustrations, we assume that the RV has similar capabilities as those of the Scud missiles deployed 
during the gulf war by Iraq in 1990 – 1991 and the interceptor has similar capabilities as those of the Patriot 
missiles. Their characteristics are shown below (Patriot 2022). 

Table 1: Characteristics of the RV where MACH 1 is the speed of sound 0.343 km/s . 

Scud Type Speed (km/s) Range (km) and Location 
(Range, 0,0) 

Scud A  
1.7 (MACH 5) 

180 
Scud B 300 
Scud C 600 
Scud D 700 

Table 2: Characteristics of the interceptor. 

Speed MACH 2, 3, 4 
Range (km) 50, 100, 150, 200 
Detonation Range (m) 1, 2, 5 

 The defense (target of the RV) and the interceptor launch site are co-located at the origin for the 
simplicity of the illustration.  We also assume that the RV is launched from the maximal ranges of the 
interceptor. Figure 1 shows the trajectories of the RV for multiple ranges: 50 𝑘𝑚 to 200 𝑘𝑚 away from the 
defense location. The RV assumes an initial speed equal to 𝑀𝐴𝐶𝐻 5. There are two types of trajectories: 
the dashed lines correspond to the low angle trajectories while the solid lines correspond to the high angle 
trajectories. We refer the low angle (high angle) trajectories as the depressed (lofted) trajectories. The 
depressed trajectories have a maximal 𝑧 ≤ 20 𝑘𝑚 and the lofted trajectories have a maximal 𝑧 ≥ 120 𝑘𝑚 
where 𝑧 is the altitude of the RV. Here, the RV is launched from the ground (𝑧 = 0), travels from right to 
left, and aims for the defense location at the origin (0,0). 
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Figure 2 shows the time it takes to intercept the RV as a function of the interceptor launch delay time for 
multiple ranges, where intercept time is from RV launch to RV intercept.  The interceptor assumes a speed 
equal to 𝑀𝐴𝐶𝐻 4.   

Figure 1: RV lofted (high) and depressed (low) 
trajectories. 

Figure 2: The RV intercept time as a function of 
the interceptor launch delay time for multiple 
ranges with interceptor speed equal to MACH 4 for 
lofted (high) and depressed (low) RV trajectories. 

 The intercept times for the depressed trajectories are less than 125 𝑠𝑒𝑐𝑠 (dashed lines) and those for 
the lofted trajectories are more than 250 𝑠𝑒𝑐𝑠 (solid lines). The intercept times increase with the interceptor 
delay time for the depressed trajectories. However, the intercept times decrease and then increase with the 
interceptor delay time for the lofted trajectories. We analyze the intercept time of the lofted trajectory with 
a range of 200 𝑘𝑚 (solid yellow curve) shown in Figure 2 above.  In Case 1, if the defense waited for 
50 𝑠𝑒𝑐𝑠  after the RV is launched from a 200 𝑘𝑚  range at a lofted trajectory, the intercept occurs at 
approximately 300 𝑠𝑒𝑐𝑠.  In Case 2,  if the defense waited for 100 𝑠𝑒𝑐𝑠 after the RV is launched from a 
200 𝑘𝑚 range at a lofted trajectory, the intercept occurs at approximately 250 𝑠𝑒𝑐𝑠. This includes the 
100 𝑠𝑒𝑐𝑠 delay.  That is, the RV is launched at time zero, the interceptor is launched at time 100 𝑠𝑒𝑐𝑠 and 
the intercept occurs at time 250 𝑠𝑒𝑐𝑠 . This means that the time of flight of the interceptor is 
150 𝑠𝑒𝑐𝑠 (250 − 100 = 150 𝑠𝑒𝑐𝑠). At this interceptor launch delay time, we note that the RV intercept 
time is also a minimum.  With an interceptor launch delay time equal to 50 𝑠𝑒𝑐𝑠 (100 𝑠𝑒𝑐𝑠) the RV 
intercept time is equal to 300 𝑠𝑒𝑐𝑠 (250 𝑠𝑒𝑐𝑠). The time line for Case 1 and Case 2 are shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: An example of intercept time line. 
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 To validate our results, we make use of MANA (Map-Aware Non-uniform Automata) which is an 
agent-based model developed by the Defence Technology Agency of New Zealand (Lauren and Stephen 
2003). Agent-based simulations and characteristics are described by (Castle and Crooks 2006) and (Diallo 
et al. 2016). MANA was used by (Amyot-Bourgeois et al. 2021a) and (Serré et al. 2021) for data farming 
and by (Amyot-Bourgeois et al. 2021b) for a ground-based air defense scenario. The comparisons between 
our results (dash line) and those from MANA (bold line) are consistent as shown in Figure 4. Even though 
we only show the comparisons for the lofted trajectories, those for the depressed trajectories were also made 
and validated. 
 Intuitively, it is expected that the earlier the interceptor is launched, the sooner the RV is intercepted.  
Clearly, this is not the case as with the shorter launch delay of 50 𝑠𝑒𝑐𝑠 (compared to 100 𝑠𝑒𝑐𝑠), the RV 
intercept time occurs at a later time of 300 𝑠𝑒𝑐𝑠 (compared to 250 𝑠𝑒𝑐𝑠).  We refer to this phenomenon as 
the anomaly in intercept time that occurs for lofted trajectories based on numerical results. We examine this 
anomaly in the following sections. 
 

3 FORMULA FOR THE INTERCEPT TIME 

Nguyen, Amyot-Bourgeois and Astles derive the intercept time formula for an interceptor exploding at a 
non–zero detonation range from the RV.  𝑡𝑖𝑛𝑡 is the earliest intercept time in the sense it is the shortest 
time for the interceptor to reach the detonation range from the RV given an interceptor launch delay time 
𝑡 measured from the launch time of the RV.  Therefore, 𝑡𝑖𝑛𝑡 is a function of 𝑡.  Among the possible 
interceptor launch delay time 𝑡, there could be a minimal intercept time , 𝑡𝑖𝑛𝑡 as shown in Figure 4.  The 
formula for 𝑡𝑖𝑛𝑡 is needed for examining such a trend. 

        (1) 

where , 𝛼, 𝛽 and 𝑐𝑜𝑠(𝜃0) are dimensionless and are defined as: 

,   ,    and   . 

 
  is the position of the launch site of the interceptor;  is the position of the RV at 
the interceptor launch time (this is not necessarily the position of the launch site of the RV as the defense 
might delay the launch of the interceptor while the RV is travelling); ∆𝑟0 = (𝑥𝑚

0 − 𝑥𝑖
0, 𝑦𝑚

0 − 𝑦𝑖
0, 𝑧𝑚

0 − 𝑧𝑖
0); 

𝛼0 is the detonation range; is the velocity of the RV subjected to gravity and it is known 
while 𝑣 is the speed of the interceptor. We note that Equation (1) is not trivial since the argument of the 
square root is a sixth order polynomial in time 𝑡 for a non – zero detonation range. The RV intercept time 
accounting for the interceptor launch delay time is equal to T=𝑡 + 𝑡𝑖𝑛𝑡(𝑡). This is shown for example on 
the vertical axis of Figures 2 and 4. Using the intercept time in Equation (1), we can also determine the 
direction of the velocity of the interceptor (Nguyen, Amyot-Bourgeois and Astles forthcoming). There are 
two steps in determining the trajectory of the interceptor due to the particularity of the solution. First, we 
generate a straight line solution.  Second, we add gravity to the straight line solution. 
 Figure 5 shows the intercept of the  RV trajectories in orange and the interceptor trajectories in blue 
without gravity.  The RV moves from right to left while the interceptor moves from left to right. The solid 
lines correspond to the lofted trajectories while the dashed lines correspond to the depressed trajectories. 
The RV is intercepted when the trajectories intersect one another. These are the straight line solutions. 
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Figure 4: RV (lofted trajectories) intercept time as a function of interceptor launch delay time for multiple 
ranges obtained from MANA (bold line) and calculation (dash line) (interceptor speed MACH 4). 

 Figure 6 shows the physical intercept of the RV  trajectories in orange and the interceptor trajectories 
in blue with gravity. The RV moves from right to left and the interceptor moves from left to right. The solid 
lines correspond to the lofted trajectories while the dashed lines correspond to the depressed trajectories. 
The RV is intercepted when the trajectories intersect one another. These are the physical solutions that 
include gravity. Clearly, the physical trajectories are not straight line trajectories.  
 

Figure 5: Feasible straight line intercept (without 
gravity) for high speed interceptor. 

Figure 6: Feasible ballistic trajectory intercept 
(with gravity) for low speed interceptor. 

 Figure 7 shows the intercept of the  RV trajectories in orange and the interceptor trajectories in blue 
(green) for an interceptor launch delay of 110 (50) seconds without gravity. The RV moves from right to 
left while the interceptor moves from left to right. The RV is intercepted when the trajectories intersect one 
another. These are the straight line solutions. Figure 8 shows the physical intercept of the RV trajectories 
in orange and the interceptor trajectories in blue (green) for an interceptor launch delay of 110 (50) seconds 
with gravity. The RV moves from right to left and the interceptor moves from left to right. The RV is 
intercepted when the trajectories intersect one another. These are the physical solutions that include gravity.  
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Figure 7 and Figure 8 illustrate the anomaly.  That is, launching an interceptor later (110 sec as 
opposed to 50 secs) yield an earlier intercept (254 secs as opposed to 312 secs). 

 

 
Figure 7: Feasible straight line intercept for two 
interceptor launch delay times without gravity after 
interceptor launching. Interceptor speed is MACH 4 
from left to right and RV speed is MACH 5 from 
right to left. 

 
Figure 8: Feasible ballistic trajectory intercept for 
two interceptor launch delay times with gravity. 
Interceptor speed is MACH 4 from left to right and 
RV speed is MACH 5 from right to left. 

4 THE ANOMALY IN THE INTERCEPT TIME 

To show the anomaly i.e. there is a minimal intercept time 𝑇 as a function of the interceptor launch delay 
time 𝑡, we provide an argument substantiating the fact that 𝑡𝑖𝑛𝑡 is a decreasing function of 𝑡. While there 
are rigorous ways to show this, we make use of the Taylor series of 𝑡𝑖𝑛𝑡 around the time of flight of the RV.  
This is feasible as the RV aims for the defense location that coincides with the interceptor launch location.  
This means that if the interceptor does not move or equivalently is delayed by the time of flight of the RV, 
the RV will reach the interceptor which implies that this is a solution in 𝑡𝑖𝑛𝑡 = 0. Therefore, this is a feasible 
solution. We rewrite 𝑡𝑖𝑛𝑡 as: 

 

𝑡𝑖𝑛𝑡 =
∆𝑟0

𝑣
∙

−𝐹 + √𝐹2 + (1 − 𝛽2) ∙ (1 − 𝛼2)

1 − 𝛽2
∙

𝐹 + √𝐹2 + (1 − 𝛽2) ∙ (1 − 𝛼2)

𝐹 + √𝐹2 + (1 − 𝛽2) ∙ (1 − 𝛼2)
, 

 

                                                                       𝑡𝑖𝑛𝑡 =
∆𝑟0

𝑣
∙

(1−𝛼2)

𝐹+√𝐹2+(1−𝛽2)∙(1−𝛼2)
 .        (2) 

      Since the detonation range is small, we neglect 𝛼 in the proof of the anomaly. However, we include 𝛼 
in the final calculation. Let 𝑇𝐹 be the time of flight of the RV, 𝜒 = 𝑡/𝑇𝐹 be the interceptor launch delay 
time scaled by 𝑇𝐹, 𝑅 is the ground range from the RV launch site to the interceptor launch site, 𝜃 is the 
launch angle of the RV with respect to the ground,  tan(𝜃) = 𝑢𝑦/𝑢𝑥, and  𝛾 = 𝑣2 ∙ 𝑇𝐹

2/𝑅2. The following 
parameters can be expressed as: 
 

(∆𝑟0(𝑡))
2

= 𝑅2 ∙ (1 − 𝜒)2 ∙ (1 + 𝑡𝑎𝑛(𝜃)2 ∙ 𝜒2), 

𝑢(𝑡)2 =
𝑅2

𝑇𝐹
2 ∙ [1 + 𝑡𝑎𝑛(𝜃)2 ∙ (1 − 2 ∙ 𝜒)2], 
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𝑢⃑⃑(𝑡) ∙ ∆𝑟0(𝑡) =
𝑅2

𝑇𝐹
∙ (1 − 𝜒) ∙ (1 − 𝑡𝑎𝑛(𝜃)2 ∙ 𝜒 + 2 ∙ 𝑡𝑎𝑛(𝜃)2 ∙ 𝜒2), 

𝑡𝑖𝑛𝑡 =
𝑇𝐹 ∙ (1 − 𝜒) ∙ (1 + 𝑡𝑎𝑛(𝜃)2 ∙ 𝜒2)

(1 − 𝑡𝑎𝑛(𝜃)2 ∙ 𝜒 + 2 ∙ 𝑡𝑎𝑛(𝜃)2 ∙ 𝜒2) + √𝛾 + 𝑡𝑎𝑛(𝜃)2 ∙ [−1 + 2 ∙ 𝜒 + 𝜒2 ∙ (𝛾 − 1)]
, 

 

𝑡𝑖𝑛𝑡 = 𝑇𝐹 ∙ (1 − 𝜒) ∙ 𝑡𝑖̅𝑛𝑡 , 

 

                                              𝑡𝑖̅𝑛𝑡 =
(1+𝑡𝑎𝑛(𝜃)2∙𝜒2)

(1−𝑡𝑎𝑛(𝜃)2∙𝜒+2∙𝑡𝑎𝑛(𝜃)2∙𝜒2)+√𝛾+𝑡𝑎𝑛(𝜃)2∙[−1+2∙𝜒+𝜒2∙(𝛾−1)]
 .       (3)

           

 Since 1 − 𝜒 is a decreasing function in 𝜒, if 𝑡𝑖̅𝑛𝑡 is also decreasing in 𝜒 then 𝑡𝑖𝑛𝑡 is decreasing in 𝜒.  We 
will show this below.  Using Mathematica, we expand 𝑡𝑖̅𝑛𝑡 about one in a Taylor series up to the second 
order in 1 − 𝜒. 

𝑡𝑖̅𝑛𝑡 = 𝑡0̅ + 𝑡1̅ ∙ (1 − 𝜒) + 𝑡2̅ ∙ (1 − 𝜒)2 + 𝑂((1 − 𝜒)3), 

𝑡0̅ =
𝑎2

𝑎2 + 𝑎√𝛾
, 

 

𝑡1̅ =
(𝑎2 − 1) ∙ (𝑎2 − 𝑎√𝛾)

(𝑎2 + 𝑎√𝛾)2
, 

 

𝑡2̅ =
(𝑎2 − 1) ∙ [−5 ∙ 𝑎2 ∙ 𝛾 + 4 ∙ 𝑎4 ∙ 𝛾 + 𝛾2 + 𝑎3 ∙ √𝛾 + 3 ∙ 𝑎 ∙ 𝛾3/2 − 4 ∙ 𝑎3 ∙ (𝛾)3/2]

2 ∙ 𝛾 ∙ (𝑎 + √𝑎 ∙ 𝛾)3
, 

 

                          𝑡2̅ =
(𝑎2−1)∙(𝑎−√𝛾)∙√𝛾∙(𝑎2+4∙𝑎∙√𝛾∙(𝑎2−1)−𝛾)

2∙𝛾∙(𝑎+√𝑎∙𝛾)3 ,                                             (4) 

                       

 where 𝑎2 = 1 + 𝑡𝑎𝑛(𝜃)2 > 1. As suggested in Figure 4, we consider 𝛾 = 𝑣2 ∙ 𝑇𝐹
2/𝑅2 < 1 meaning that 

the interceptor speed is less than the RV speed along the horizontal axis. Since the interceptor speed has to 
be greater than zero for the interceptor to travel, we also get 𝛾 > 0. Hence, 0 < 𝛾 < 1. This implies that 
𝑡0̅ > 0  and 𝑡1̅ > 0 . Also 𝑡2̅ > 0  under a condition shown below. Let 𝛾 = 𝜆2 , then the last factor in the 
numerator of 𝑡2̅  can be written as: 

𝑎2 + 4 ∙ 𝑎 ∙ 𝜆 ∙ (𝑎2 − 1) − 𝜆2.                                                                (5) 

which is a parabola in 𝜆 that opens down. There are two roots:  
 

𝜆− = 2 ∙ 𝑎 ∙ (𝑎2 − 1) − √(2 ∙ 𝑎 ∙ (𝑎2 − 1))
2

+ 𝑎2, 
 

𝜆+ = 2 ∙ 𝑎 ∙ (𝑎2 − 1) + √(2 ∙ 𝑎 ∙ (𝑎2 − 1))
2

+ 𝑎2 

 
 as dictated by the quadratic equation. Since 𝑎 > 1 , 𝜆− < 0  and 𝜆+ > 1 , therefore if 0 < 𝜆2 < 1 , 
Equation (5) is greater than or equal to zero. This confirms that 𝑡2̅ > 0  . Assuming the Taylor series 
converges, we have a decreasing function 𝑡𝑖̅𝑛𝑡.   
 To find the minimum, we solve the following equation numerically: 

2031



Nguyen, Amyot-Bourgeois, and Astles 
 

 

𝑇′ = 0 = [1 + 𝑡𝑖𝑛𝑡(𝑡)′]. 

 We choose Mathcad (Parametric Technology Corporation 2007) but other software such as 
Mathematica (Wolfram Research 2020) or algorithms such as the bisection algorithm could be used. We 
provide an example below. 𝑅 = 200 𝑘𝑚 , trajectory is lofted (high angle), 𝑢 = 𝑀𝐴𝐶𝐻 5 , and 𝑣 =
𝑀𝐴𝐶𝐻 4. That is, the RV is initially 200 𝑘𝑚 away from the defense, the RV speed is 𝑀𝐴𝐶𝐻 5 and the 
interceptor speed is 𝑀𝐴𝐶𝐻 4. The intercept time 𝑇 has a minimum when the interceptor launch delay time 
is equal to 𝑡 = 110.245 𝑠𝑒𝑐 (110.25 𝑠𝑒𝑐𝑠) if the detonation range is 5 𝑚 (0 𝑚). This is consistent with 
the red circle on the yellow curve in Figure 4. As shown in Figure 2, depressed trajectories do not exhibit 
minima. 
 For completeness, below is the equation of motion for short range ballistic missiles (both the RV and 
the interceptor): 

, 

  where 𝑟0 is the initial location of the ballistic vehicle; 𝑣⃑ is the initial velocity; 𝑡 is the time measured 
from the moment the vehicle as at 𝑟0; 𝑔 is gravity and 𝑧̂ is the unit vector along the altitude from the ground.  
The vehicle can be launched from anywhere including from an aircraft for example (Burk and Foote 2009).  
This equation of motion is suitable for high level studies and does not include environmental effects such 
as air drags (de Carpentier 2014).   

5 DISCUSSION 

In this paper, we analyze a formula for intercept time of a ballistic RV by a ballistic interceptor at a non – 
zero detonation range. We show that there is an anomaly in the intercept time in the sense that launching 
the interceptor early does not necessarily yield an early intercept. Since the intercept time affects the number 
of engagement opportunities, the anomaly has ramifications in the probability of raid negation (the 
probability of neutralizing all RVs). By minimizing the intercept time, we may maximize the number of 
engagement opportunities: an idea that we will explore in the future. There are also many sensitivity 
analyses that can be done using the intercept time such as examining the ratio of the detonation range to the 
initial distance or the ratio of the RV’s speed to the interceptor’s speed etc. We endeavor to also undertake 
these analyses in the future. 
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