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ABSTRACT

A common practice in semiconductor manufacturing is to give higher priority to certain “hot lots” to reduce
their cycle time and deliver them on time. Despite good performance of these high priority lots, expediting
might worsen the overall performance of the fab due to decelerating all other lots. Thus, this paper uses a
simulation model of a scaled-down wafer fabrication facility, to put a price-tag on hot lots and expediting
measures to derive suggestions for decision makers on (i) how much additional profit per hot lot is required
to compensate for increasing cost due to introducing hot lots, and (ii) the allowable maximum expediting
cost per period.

1 INTRODUCTION

In the age of digitalization, the availability of semiconductors is of strategic importance as they are critical
for economic success and even national security. Due to their essential role, a reliable and timely delivery of
these components is crucial for customer satisfaction. However, this is a challenging task for decision makers
in the industry given the complex manufacturing environment, a high degree of product differentiation,
and a multitude of product-specific routings through the manufacturing system. Therefore, sophisticated
coordination approaches are required, which take these aspects into account and, if needed, re-sequence
production orders to meet important deadlines. In semiconductor manufacturing some lots have higher
processing priority resulting in two classes of lots, namely high priority orders which are often denoted
as “hot lots” and regular orders which are hereinafter denoted as “cold lots”. Hot lots appear for different
reasons: They can be lots for developing new processes, pilot lots for new products, sample lots, and lots
for urgent orders. However, the presence of hot lots affects the performance of cold lots and thus impacts
overall performance (Ehteshami et al. 1992; Narahari and Khan 1997; Trybula 1993).

The paper by Ehteshami et al. (1992) studies the effect of hot lots on the cycle time of cold lots in
a semiconductor fab by using a dispatching rule that always prioritizes hot lots. Their simulation results
show that with increasing proportion of hot lots the average cycle time and the corresponding standard
deviation of cold lots increases. Zhou and Rose (2012) propose a dispatching rule to reduce tardiness of hot
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lots, as well as the work-in-process (WIP) balance of cold lots. They combine WIP balance and due date
oriented rules in one global dispatching rule and show that their approach results in low tardiness of hot
lots without harming WIP measures too much. Crist and Uzsoy (2011) investigate the impacts of several
policies for allocating resources to cold and hot lots on the shop floor using a scaled-down simulation
model of a wafer fab. Their focus is on engineering lots which are special lots that need the presence of an
engineer. They tested static and dynamic batching policies (with trigger when to switch to engineer lots)
at the bottleneck machine and showed that several of their tested scheduling policies could potentially be
the best fit depending on the goals and priorities of each corporation.

Furthermore, several capacity reservation approaches were introduced that reserve capacity for hot lots
that have not yet arrived. This may cause a negative influence on the flow of cold lots by decreasing tool
utilization, which is one of the major limitations of the reservation policy (Seo et al. 2015; Chung et al.
2017). Seo et al. (2015) introduce a two-step dispatching rule which in the first step tries to minimize
waiting times of hot lots and secondly aims for high utilization of the used tools. By using simulation they
show that their two-step dispatching rule outperforms static rules regarding on-time delivery of hot lots.
Chung et al. (2017) extend the former paper and present a dispatching rule which considers tool utilization
as well as the on-time delivery of hot lots. They use a simulation model to compare their approach with
static dispatching and conventional capacity reservation policies. Their results show that their dispatching
rule outperforms the benchmarks especially regarding the performance of cold lots. Finally, some papers
also include transport and material handling system into their analysis of how to handle the different classes
of lots: Wang and Chen (2012) propose a heuristic preemptive dispatching rule to ensure that the production
of hot lots will not be hindered by its automated material handling system. Ho et al. (2016) analyze the
performance of hot and cold lots in a thin-film-transistor liquid-crystal display fab. They use a simulation
model to compare different lot selection approaches for inter bay automated guided vehicles, intrabay
machines and the photo bay selection of lots and compare their results to an industry benchmark. They
find that if their newly introduced fuzzy-based dynamic bidding (for the lot selection problems) and the
earliest possible time method (for photo bay selection) are combined they perform better than the industry
benchmark.

However, all of these above papers neither evaluate the cost for introducing hot lots nor has any paper
evaluated the cost benefit of expediting hot lots instead of non-expediting. Thus, this paper aims to put
a price tag on hot lots and expediting which should help decision makers to determine (i) the needed
extra-profit for these special orders and (ii) the allowable increase in cost for prioritizing them. Therefore,
we use a simulation model of a scaled down wafer fabrication facility and use the Constant Load approach
(Rose 1999) for releasing orders over time. We test different utilization levels and ratios of hot lots and
compare the cost performance (consisting of holding and backorder costs) of using a First-In First-Out
dispatching rule with and without expediting of hot lots.

The paper is organized as follows. In Section 2, we describe the used simulation model and Section 3
outlines the used experimental design. In Section 4 we present the results which is followed by our
Conclusion in Section 5.

2 SIMULATION MODEL

Regarding our simulation model we use a standard model from the semiconductor literature which was
developed based on attributes of a real-world semiconductor wafer fabrication facility (Kayton et al. 1997;
Kacar et al. 2012; Ziarnetzky et al. 2015, see Figure 1). According to Crist and Uzsoy (2011) the simulation
model was validated by management of the respective real world fab at the time when the simulation model
was developed. The major characteristics of semiconductor manufacturing are multiple products with
re-entrant product routings which vary in their length and visits to different work centers. Moreover, it
includes unreliable machines and work centers that perform batching operations. The respective model
has one re-entrant bottleneck work center which performs the photolithography process and includes two
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batching work centers (WC1 and WC2). The latter are located at the beginning of the product routings
and represent furnaces for diffusion and oxidation processes (see Figure 1).

Figure 1: Re-entrant bottleneck model process chart for products (Kacar et al. 2012).

The simulation model includes eleven work centers with one server each except the bottleneck work
center 4 that has two. Table 1 depicts the mean processing times and required batch sizes of the work
centers.

Table 1: Processing times and batch sizes.

Work center # Mean Std. Dev. Batch (Min/Max)
1 80 7 2/4
2 220 16 2/4
3 45 4 1
4 40 4 1
5 25 2 1
6 22 2.4 1
7 20 2 1
8 100 12 1
9 50 4 1

10 50 5 1
11 70 2.5 1

All processing times follow a log-normal distribution where the standard deviation is less than or equal
to 10 percent of the corresponding mean. Work centers 1 and 2 can process at least 2 and at most 4 different
types of products at once, while all other remaining work centers process only one lot at a time. Machine
failures are also included in the simulation model, as machines 3 and 7 break according to the following
gamma distributions:

• Mean Time To Failure: α = 7,200, β = 1 −→ mean = 7,200, Std. Dev. = 84.9;
• Mean Time To Repair: α = 1,200, β = 1.5 −→ mean = 1,800, Std. Dev. = 52.0.
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In the model, there are three different products with varying routings: Product 1 has 22 process steps
including 6 visits to the bottleneck work center, product 2 has 14 process steps with 4 visits to the bottleneck
work center and product 3 has 14 process steps and does not visit the bottleneck. The system is required
to produce a product mix that is 3 : 1 : 1 of Product 1, 2, and 3 respectively.

The two unreliable work centers 3 and 7 create most of the starvation at the bottleneck. As work
center 3 is additionally situated near the beginning of the process routings and is only visited once by each
product, it represents a gateway operation by opening and closing the flow of lots into the system. The other
unreliable work center can also lead to starvation at the bottleneck work center as it is a re-entrant work
center that is visited multiple times by product 1. This machine represents the Chemical Vapor Deposition
process which produces with high output rates.

3 EXPERIMENTAL DESIGN

This section introduces the experimental design of our study in terms of demand, order release, machine
dispatching and the respective parameterizations.

3.1 Demand

The demand is generated based on exponentially distributed inter–arrival times. This stochastic demand
is varied at two levels: in the low demand setting the bottleneck utilization was parameterized based on
an Immediate Release strategy to yield approximately 90%, i.e. orders arrive with a mean of one order
per 98 minutes, and in the high demand setting the bottleneck utilization is approximately 95%, i.e. an
order arrives on average every 93 minutes. To represent the desired product mix of 3:1:1 of product types
1, 2 and 3, the product type is randomly assigned based on a discrete uniform distribution, i.e. dunif{1,5}
where 1-3 represents product type 1, 4 represents product type 2, and 5 represents product type 3. With
regard to due date setting the due dates are set according to previous research (Mosley et al. 1998). First,
depending on the proportion x% of hot lots, orders are randomly defined as ”hot” or ”cold” based on a
uniform distribution (unif{0,100}). If the random number is smaller or equal to x, the order is defined as
hot irrespective of its product type. Otherwise, the order is a cold lot. The due date of hot lots is then
defined as follows:

DD j = ATj +uni f{0.5 ;1}∗CTi, (1)

where DD j represents the due date of order j, ATj is the arrival time of order j and CTi denotes the
average cycle time of the corresponding product type i of order j. On the other hand, the due date of cold
lots is defined as follows:

DD j = ATj +uni f{1.25 ;1.75}∗CTi. (2)

CTi was specified based on preliminary simulation runs using an Immediate Release strategy.

3.2 Order Release

Besides Immediate Release, we also apply the so-called Constant Load (ConLOAD) approach in our
simulation study. ConLOAD is a continuous order release approach which seeks to keep the bottleneck
workload at a pre-defined level. This means that orders are released from an order pool until a certain
threshold level is reached which is denoted as ConLOAD limit. Once the ConLOAD limit is reached
an order can only be released from the order pool to the shop floor if an order has finished processing.
The workload contribution of an order to the bottleneck workload is hereby defined by the ratio of the
sum of bottleneck processing times and the mean cycle time of the respective product type (specified
like above). An order contributes to the bottleneck workload until its last processing step was performed.
Once processing is finished, the total workload contribution of the underlying order is removed from the
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bottleneck workload. In that case, a new order can be released from the order pool if the ConLOAD limit
is not violated (Rose 1999).

Since ConLOAD only controls orders that include a processing step at the bottleneck work center, all
other orders (i.e. product type 3) are released immediately when they arrive in the system.

3.3 Machine Dispatching

The sequence in which orders waiting in front of a work center are processed is based on the First-In
First-Out logic. However, within this FIFO approach hot lots are handled in two different ways: In the
first case, no difference is made between hot and cold lots. But in the second case, hot lots are given
priority over cold lots, i.e. an expediting mechanism is applied. Here, given the FIFO-sequence, hot lots
are always processed before cold lots.

3.4 Tested Parameters

An overview of the experimental design is provided in Table 2. The bottleneck utilization is varied at

Table 2: Overview of Tested Parameters.

Experimental Factor Tested Parameters
Bottleneck Utilization Low (90%), High (95%)
Proportion of Hot Lots 0%, 20%, 40%

Order Release
Immediate Release (IMRE)
ConLOAD (2, 2.25, 2.5, 2.75, 3)

Machine Dispatching
FIFO (without expediting),
FIFOEXP (including expediting of hot lots)

two levels, the proportion of hot lots at three levels and two order release approaches are applied where
five ConLOAD limits are tested for ConLOAD. While a proportion of 40% hot lots seems quite high, we
want to reveal the boundaries of expediting measures. Of course, these boundaries also depend on other
factors such as the cost parameters. Note that Immediate Release can also be interpreted as a ConLOAD
scenario with an infinite ConLOAD limit. Regarding machine dispatching, two alternatives are included
in the study. Based on a full factorial design, 60 scenarios have been simulated. Note that FIFOEXP only
makes sense for a proportion of hot lots greater than 0%. Regarding pool sequencing we also relied on
First-In First-Out. Therefore, orders are considered for release in the sequence of arrival.

The period length was set to 1,440 minutes (one day), each scenario was replicated 100 times, the
warm-up phase was set to 800 periods and data was collected over 1,000 periods. A cost function was
defined to evaluate the results which consists of the sum of WIP (WIPn,t) at each work center n, finished
goods holding FGI (FGIt) and backorder (BOt) cost over all periods t:

Total Cost =
T

∑
t=1

N

∑
n=1

ωWIPn,t +
T

∑
t=1

(πFGIt +κBOt) (3)

The relation of the cost parameters ω , π and κ were set according to previous research on semiconductor
manufacturing (Kacar et al. 2012; Kacar et al. 2013; Albey and Uzsoy 2015; Ziarnetzky et al. 2015;
Neuner and Haeussler 2021; Neuner 2021): 2 1

3 : 1 : 3 1
3 . Although it might appear more reasonable to

discriminate the backorder costs for cold and hot lots, we want to provide a method which, independent
of the cost structure, can be used to monetize expediting measures taken in practice. Note that we provide
a very conservative analysis since all effects would be larger when we set different costs for hot and cold
lots (e.g., higher backorder costs for hot lots).
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4 RESULTS

In this section we analyze the results for the simulated scenarios under a low and high demand. For brevity, we
only present the results for the best performing scenarios in terms of total cost measures but provide the results
for all simulated scenarios in our data repository available under: http://dx.doi.org/10.17632/zvm9b7mgvv.1.
Table 3 shows the cost measures for the best performing scenarios under a low (upper part) and high demand
(lower part). The first column denotes the respective scenario and its parameterization. A quadruple is
used for each scenario: The first component corresponds to the machine dispatching approach, i.e. FIFO
−→ without expediting and FIFOEXP −→ with expediting of high priority orders. The second component
denotes the ConLOAD limit (note that a ConLOAD limit of 1000 in the data repository means Immediate
Release), the numbers 0, 20 or 40 in the third component represent the proportion of hot lots in % and the
fourth component denotes the demand level. The second column then highlights which results are referred
to in the remaining columns, i.e. the results over all orders in a given scenario or only the results for hot
or cold lots. The remaining columns show the mean Backorder, WIP, Finished Goods Inventory (FGI),
Timing (Backorder + FGI) and Total cost values over all replications.

For a given proportion of hot lots, here 20% or 40%, differences between the respective FIFO and
FIFOEXP scenarios are tested at a significance level of p = 0.05 based on a Wilcoxon/Mann-Whitney-U
Test. All values marked with an asterisk are not significantly different from the corresponding FIFOEXP
values. For example, FIFO 3 20 90 does not yield significantly higher WIP cost than FIFOEXP 2.75 20 90.

It can be seen that, for a low demand, expediting hot lots improves the overall cost performance compared
to handling all lots the same way. While the WIP cost between the respective FIFO and FIFOEXP scenarios
do not significantly differ, expediting reduces total cost due to improving the timing performance of orders
as indicated by the lower backorder and inventory cost. Focusing on the cost measures only for hot lots,
we can say that expediting hot lots significantly reduces backorder and WIP cost as those high priority lots
rush through the shop floor which leads to higher inventory cost due to finishing them earlier than their
due date. Overall, the total cost of hot lots can be drastically reduced by expediting measures. However,
by reviewing the cost measures for cold lots, the downside of expediting becomes obvious. By speeding
up hot lots, all other lots are given less priority which decelerates them at the shop floor level resulting in
higher backorder and WIP cost but lower inventory cost. Nevertheless, this detrimental effect on cold lots
is outweighed by the drastic cost reduction for hot lots which results in a cost performance improvement
for all lots.

While the qualitative effect is exactly the same for a high demand and a proportion of 20% hot lots,
the overall cost performance is deteriorated by expediting for a high demand and 40% hot lots. Again,
hot lots rush through the production resulting in lower backorder and WIP cost but higher inventory cost
and cold lots are decelerated resulting in higher backorder and WIP cost but lower inventory cost. But in
this case, the overall cost performance is no longer improved. Each of the cost measures for all lots is
not significantly lower for FIFOEXP 3 40 95 compared to FIFO 3 40 95. This indicates that expediting
becomes obsolete for a higher demand level in conjunction with a higher proportion of hot lots.

While the findings so far have demonstrated the potential of expediting hot lots under given circumstances,
we now want to focus on putting a price tag on hot lots and expediting measures. This issue is tackled
from two perspectives, namely a sales/profit and a operations/cost viewpoint.

Regarding the sales/profit perspective, the relevant question is ”what does it cost if hot lots are introduced
in the wafer fab?”. Thus, decision makers need to know how much additional margin hot lots need to
generate. This can be relevant for example for a sales department, where this information can be used in
the negotiation process with the customer. Therefore, the focus is on the FIFO scenarios, where Figure 2
shows the mean WIP and timing (backorder + inventory) cost measures for the above best performing
scenarios for a low and high demand, respectively. We illustrated the respective relationships by the solid
(blue and orange) arrows: Since all best performing scenarios without expediting, i.e. FIFO, have the
same ConLOAD limits for a given demand level, the WIP cost are exactly the same. However, the higher
the proportion of hot lots, the worse the timing performance of orders and hence the higher the timing
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cost. These differences in timing cost illustrated by the solid (blue and orange) arrows are summarized in
Table 4. The absolute cost deviations need to be put in relation to the number of hot lots (see Table 3).

Table 4: Cost deviations from sales/profit perspective for different hot lot proportions and demand levels.

Hot Lots Low Demand High Demand
20% 2015.87 9596.59
40% 4043.41 19,145.28

Therefore we conclude for a low demand level, that profits for hot lots need to increase at least by about
20% of the unit backorder cost (e.g. 2015.87 divided by 2945 divided by 3.33) to outweigh the total cost
increase compared to having no hot lots in the wafer fab. Additionally, increasing the demand level means
that the marginal profit needs to increase even more per hot lot to at least 93% of the unit backorder cost.

Figure 2: Comparison of the cost for (a) low demand levels and (b) high demand levels.

Regarding the second perspective, we focus on the operations/cost viewpoint: In this regard, we are
now asking ”what is the most we can pay for expediting measures without losing money?”. Here the
dashed (violet and red) arrows are relevant, i.e. the relationships between FIFO and FIFOEXP for a given
level of hot lots. It can be clearly seen in Figure 2 that expediting measures improve the cost performance
compared to FIFO as WIP and timing cost are decreased. Although the WIP cost reduction is insignificant,
the timing cost can be reduced significantly with one exception of high demand and 40% hot lots (see
Table 5). For the operations/cost perspective, we assume that expediting is performed by an operator on
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Table 5: Cost deviations from operations/cost perspective for different hot lot proportions and demand
levels.

Hot Lots Low Demand High Demand
20% 5600.18 5783.24
40% 6119.23 not significant

the shop floor which means that we are now calculating the maximum cost for this operator per period
(1000 periods were simulated). Regarding both demand levels and 20% hot lots, the operator can cost up
to about 170% of the unit backorder cost per period, while for a low demand and 40% of hot lots the
maximum cost go up to about 180% of the unit backorder cost. Finally, for a high demand and 40% hot
lots we do not recommend to execute expediting measures as the higher cost of introducing hot lots can
no longer be outweighed by speeding up those high priority lots.

5 CONCLUSION

Earlier semiconductor manufacturing research on high priority – so-called ”hot lots” – shows that speeding
up these orders at the machine dispatching level has positive effects on their cycle time and delivery
performance. Despite that, these positive effects might be outweighed by deteriorating effects on all other
lots as they are decelerated on the shop floor. However, literature focused mainly on the impact of hot lots
on the cycle time and the corresponding standard deviation of cold lots (Ehteshami et al. 1992; Zhou and
Rose 2012). The questions of how much more profit a hot lot needs to generate and secondly how much
the increased effort of expediting may cost is hard to assess and is to the best of the authors’ knowledge
not addressed in literature. Thus, the main contribution of our study is to put a price tag on hot lots and
expediting measures. Therefore, we use a simulation model of a scaled down wafer fabrication facility
and use ConLOAD for making order release decisions. We test different demand scenarios and ratios of
hot lots and compare the cost performance (consisting of holding and backorder costs) of using a First-In
First-Out dispatching rule with and without expediting of hot lots.

We tackle this issue from a sales/profit and a operations/cost perspective. Starting with the sales/profit
viewpoint, we find that for a low demand level profits for hot lots need to increase at least by about 20%
of the unit backorder cost to outweigh the total cost increase compared to having no hot lots in the wafer
fab. Additionally, for a high demand level this marginal profit per hot lot needs to be increased at least by
about 93%. Regarding, the operations/cost view, for both demand levels and 20% hot lots, the operator to
expedite hot lots can cost up to about 170% of the unit backorder cost per period. For a low demand and
40% of hot lots the maximum cost go up to about 180%. Finally, for a high demand and 40% hot lots we
do not recommend to execute expediting measures as the higher cost of introducing hot lots can no longer
be outweighed by speeding up those high priority lots.

The study provides important insights, but also includes some limitations. Firstly, the results are
limited to the experimental design and further experiments are necessary to validate the findings also for
large-scale semiconductor fabs, e.g. based on MIMAC or SMT2020 models (Kopp et al. 2020). However,
the simulation model still captures the major characteristics of semiconductor manufacturing and also the
cost structure is fitted to the wafer fab environment. Nevertheless, the details of the procedures (e.g.,
defining hot lots based on their average cycle time) depends on the specific wafer fab and need to be
parameterized accordingly. Still the study provides a method of how to monetize expediting . Secondly,
while expediting measures are often based on a static definition of hot lots, future research could also focus
on dynamic hot lot assignments. This seems reasonable assuming that some hot lots are delivered prior
to their due date and thus, should have been decelerated at some point at the shop floor. Thirdly, future
studies should also consider expediting in conjunction with other order release approaches (Neuner and
Haeussler 2021; Schneckenreither et al. 2021), especially workload control mechanisms (Haeussler and

3346



Neuner, Haeussler, Fodor, and Blossey

Netzer 2020; Neuner and Haeussler 2021). Fourthly, adding further experimental factors such as different
due date slacks, pool sequencing and scheduling rules might be beneficial.
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