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Plaza Ferrandiz-Carbonell
Alcoy, 03801, SPAIN

ABSTRACT

Connecting commercial discrete-event simulation packages to external software or programming languages
is essential to advance simulation modeling capabilities. For instance, this connectivity allows users to
link the simulation environment to metaheuristic optimization algorithms or to machine learning methods.
However, implementing these connections is not a trivial task, and may require API access and proper
settings configurations. This tutorial provides a step-by-step guideline to connect the FlexSim commercial
simulator with the popular Python programming language via sockets. Using this type of connection, a
simheuristic algorithm coded in Python aims at optimizing the product allocation in a warehouse, which
has been previously modeled in the aforementioned simulator. In addition, potential future applications
of this software combination will be discussed to provide insights into future developments such as more
advanced simheuristics or combinations of simulation with learnheuristics.

1 INTRODUCTION

Simulation represents a powerful tool to model and study complex and dynamic systems with non-linear
interactions. In particular, discrete-event simulation (DES) constitutes a common simulation approach in
many industries. There are several commercial simulators (e.g., Simio, AnyLogic, FlexSim, etc.) and also
non-commercial ones (SimPy, Salabim, etc.) that enable DES modeling. These simulators can significantly
enhance their potential when connected to other tools capable of performing advanced optimization or
machine learning studies (Peyman et al. 2021). In addition, it is usually desirable to integrate simulation with
a dedicated computational tool that leverages some of the computational work (Dehghanimohammadabadi
and Keyser 2017). Therefore, connecting DES platforms with external programming languages like Python,
Julia, R, or MATLAB enriches the simulation modeling by providing more mathematical and algorithmic
capabilities. Unfortunately, a publicly available API for the connection between a DES platform and
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some of the aforementioned programming languages is not always available. Python is an interpreted
high-level general-purpose open-source programming language (van Rossum and Drake 2009). It has a
diverse, wide, and international community of programmers. Calling simulation software from Python
may represent limitless advantages for data processing and manipulation, experimentation, optimization,
results analysis, and visualization. This is due to the multiple libraries for machine learning, optimization,
data science, and big data already available for this language, as well as to the possibility of developing
powerful metaheuristic algorithms over it. The DES platform selected for this work is FlexSim, which is an
object-oriented software environment used to develop, model, simulate, visualize, and monitor dynamic-
flow process activities and systems. It supports DES, as well as agent-based simulation and continuous
simulation, enables 3D simulation modeling and analysis, and has diverse potential applications in many
fields, among others: manufacturing, material handling, healthcare, and warehousing.

In this context, the proposed tutorial presents a two-fold goal: (i) to explain the integration between
FlexSim and Python; and (ii) to describe an illustrative example by implementing a simheuristic algorithm
designed to support decisions in warehouse management. Simheuristics represent a hybrid methodology
that extends (meta)-heuristics through simulation to solve stochastic combinatorial optimization problems
or COPs (Juan et al. 2018). Thus, this methodology enables us to deal with real-life uncertainty in a natural
way by integrating simulation (in any of its variants) into a metaheuristic-driven framework. The COP
studied in this work is the storage location assignment problem (SLAP), which is an NP-hard problem
of great importance in supply chain management. As described by Reyes et al. (2019), the SLAP is “an
operational decision associated with the accommodation and picking process, influencing batch definition,
classification, routing, and order sequencing”. Typically, the objective functions are related to warehouse
space utilization and the time required for order preparation and picking operations. Diverse restrictions such
as available storage capacity, order-picking resource capacities, and dispatching policies may be considered
as well. The rest of the paper is structured as follows: Section 2 presents a short literature review on
some of the keys topics analyzed in this paper. Sections 3 and 4 explain the steps required to connect
FlexSim and Python. Section 5 shows an illustrative example based on the SLAP problem. Afterwards,
Section 6 describes a few potential applications of discrete-event simheuristics combining DES software
with a programming language in the logistics field. Finally, Section 7 highlights the main conclusions of
this work.

2 LITERATURE REVIEW

This section reviews some related works in the areas of: (i) the main software that will be employed in
this study; and (ii) the incorporation of ‘intelligence’ inside simulation models.

2.1 Software (DES): FlexSim

FlexSim is a state-of-the-art simulation modeling software used to analyze, visualize, and improve real-
world processes. It has an easy-to-use interface and a large library of standard objects to help users quickly
create rich discrete-event simulation models. The online manual, available at www.flexsim.com, is a clear
and complete source of detailed information. FlexSim provides a trial version of the software, intended
to new users for evaluation purposes, along with academic and professional versions. There are various
tools available in FlexSim to deploy optimization methods for the simulation models: (i) The build-in
optimization engine OptQuest, that can be used for running multi-objective optimization experiments; (ii)
External DLLs (dynamic-link libraries) to combine FlexSim with C and C++ programming language; (iii)
Flexiscript (internal script language) to exchange data with third-party software (like Python, as is the case
of the present study) and advanced customization.

In recent years, many researchers have employed FlexSim for different types of simulations. Nordgren
(2002) simulated manufacturing, warehousing, material handling processes, semiconductor manufacturing,
marine container terminal processes, and shared access storage network (SANS) using FlexSim. Zhu et al.
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(2014) simulated the operation of a cold-chain logistics distribution center for fruits and vegetables. They
examined the simulation results to determine the system’s bottleneck and idle resources. With some system
adjustments, they were able to improve the turnover rate of cold chain goods as well as the utilization
rates of equipment and workers. Wang and Chen (2016) used the time Petri net model and FlexSim to
simulate an automobile assembly workshop and production logistics system. They analyzed the simulation
results and proposed optimization methods to improve processes and efficiency while also increasing the
energy-producing effects of the entire assembly workshop.

2.2 Intelligent Perspective of Simulation

Artificial Intelligence (AI) is concerned with comprehending and learning the phenomena of human
intelligence, as well as developing computer systems capable of imitating human behavioral patterns and
creating knowledge relevant to problem-solving (Mahroof 2019). The combination of AI and simulation
has applications in a variety of industries. For instance, von Rueden et al. (2020) demonstrated the versatile,
potential combination possibilities of the two modeling approaches, machine learning and simulation, in
order to inspire and foster future developments of hybrid systems. Zhou et al. (2021) presented new
cyber-physical integration in smart factories for online scheduling of low-volume-high-mix orders. In
addition, based on Reinforcement Learning (RL), new reward functions were designed to improve the
decision-making abilities of multiple AI schedulers. Furthermore, Zielinski et al. (2021) presented a
tool for converting supervisory control theory controllers into RL simulation environments for intelligent
processing. In addition, an RL-based approach was proposed that recognizes and treats the context in
which the selected set of stochastic events occur, with the goal of finding appropriate decision making as a
supplement to the deterministic outcomes of supervisory control theory. Also, Dehghanimohammadabadi
and Keyser (2017) demonstrated how to connect Simio with MATLAB to enhance the optimization power
of the DES environment.

3 CONNECTION BETWEEN FLEXSIM AND PYTHON

This section explains the technical details associated with the creation of a link between FlexSim and
Python. In Figure 1 the general scheme of the connection and intercommunication process to be developed
in this paper is presented.

Figure 1: High level flow diagram of the connection and intercommunication process.
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3.1 General Considerations

There are multiple ways of connecting FlexSim and Python (and in general, any two pieces of software).
This connection might depend upon the type of interaction intended or the function to be performed by
each part. First of all, it is important to state that FlexSim is a commercial application (or program),
and that Python is a programming language. Therefore, what is shown in this tutorial, is how to connect
and communicate from a Python script to a single instance of FlexSim. A practical aspect to be defined
beforehand is the roles for each part of the connection, namely, what piece of software will start the
connection, what would be the protocol of communication, and how will the communication be terminated.

3.2 Communication

In this tutorial, it is assumed that the Python script behaves as the “server”, and FlexSim as the “client”. In
reality, both are communicating on par with each other, but it is Python the one that starts the communication
process, the one that listens for request/messages from FlexSim and provides an answer, and the one that
eventually closes the simulation and the communication channel. Also, in theory, multiple instances of
FlexSim could be communicating with the Python “server”. The communication is established through
sockets. Sockets are a robust, standard and potentially secure way for applications to communicate with each
other, allowing the extension of the simulation software capabilities (Rodrigues et al. 2005). The process
starts with Python creating a socket with the specified address and port. By default, the “localhost” address
and any port above port “1024” (e.g., “5005”) can be used for creating a local connection. Afterwards,
Python starts an instance of FlexSim, which in turn tries to establish a connection through the same socket
(i.e., the same address and port). The code details can be seen in Section 3.3 for Python and in Section 3.4
for FlexSim.

Figure 2: Detail flow diagram of the connection part of the process.
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3.3 Server Side (Python)

The information provided in this section is based upon various examples available at https://www.flexsim.com.
All the code shown herein is for illustrative purposes only, and has been simplified to a “minimal working
example” size. The creation of the socket connection, which is the start of the connection process shown in
Figure 2, is done by instantiating a Python class, which contains all the necessary functions for connection
and communication. The simplified code, for declaring the Python class and the functions within it, is
shown in Figure 3. The libraries for socket connection and for running sub-processes are imported at the
beginning of the code. The functions defined within the class are listed below:

• socket init: opens the socket at the specified address and port, using the Python “socket” library.
• socket end: closes the socket at the specified address and port, using the Python “socket” library.
• launch flexsim: starts a FlexSim instance using the Python “subprocess” library, and initiates the

socket by calling the socket init function.
• close flexsim: kills the FlexSim sub-process and shuts down the socket using the socket end

function.
• socket send: sends a message to the client (FlexSim).
• socket recv: receives a message from the client (FlexSim).

import subprocess
import socket
class FlexSimConnection():
   def __init__(self, flexsimPath, modelPath, address='localhost', port=5005):
       self.flexsimPath = flexsimPath
       self.modelPath = modelPath
       self.address = address
       self.port = port
   def _launch_flexsim(self):
       args = [self.flexsimPath, self.modelPath] # option to add aditional arguments
       self.flexsimProcess = subprocess.Popen(args)
       self._socket_init(self.address, self.port) 
   def _close_flexsim(self):
       self.flexsimProcess.kill()
       self._socket_end(self.address, self.port)
   def _socket_init(self, host, port): 
       self.serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
       self.serversocket.bind((host, port))
       self.serversocket.listen();
       (self.clientsocket, self.socketaddress) = self.serversocket.accept()
       message = self._socket_recv()
       if message != b"READY":
           raise RuntimeError("Did not receive READY! message")
   def _socket_end(self, host, port):
       self.serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
       self.serversocket.bind((host, port))
       self.serversocket.close()     
   def _socket_send(self, msg):
       totalsent = 0
       while totalsent < len(msg):
           sent = self.clientsocket.send(msg[totalsent:])
           if sent == 0:
               raise RuntimeError("Socket connection broken")
           totalsent = totalsent + sent
   def _socket_recv(self):
       chunks = []
       while 1:
           chunk = self.clientsocket.recv(2048)
           if chunk == b'':
               raise RuntimeError("Socket connection broken")
           if chunk[-1] == ord('!'):
               chunks.append(chunk[:-1])
               break;
           else:
               chunks.append(chunk)
       return b''.join(chunks)

Figure 3: [Python Code] Class for FlexSim environment connection.
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3.4 Client Side (FlexSim)

The information provided within this section and the settings required to set up the client side of the
communication are well documented in the aforementioned FlexSim website. The code is written in
FlexScript, which is the programming language that FlexSim uses internally. Alternatively, FlexSim allows
employing C++ dedicated DLLs for the same purpose. The connection has to start right after the FlexSim
instance is created, if the program is to be run automatically and without external intervention. For that, a
(global) event trigger called “OnModelOpen” can be used within FlexSim. This trigger, which fires when
the FlexSim instance is opened, executes the necessary code for the connection. A simplified example
of this connection code that is to be written inside the “OnModelOpen” FlexSim trigger is provided in
Figure 4.

connecttoserver("127.0.0.1",5005);
clientsend(getnodenum(node("/Tools/client", model())), "READY!");
// Request global parameters from server (e.g. simulation end time) or import tables
applicationcommand("reset");
applicationcommand("run");

Figure 4: [FlexScript Code] “OnModelOpen” trigger code.

The “connecttoserver” function, which appears in the first line of the “OnModelOpen” trigger code,
is in charge of establishing the connection through the socket. Obviously, the address and port must be
the same as used on the Python server side. The rest of the lines are mainly for confirming the connection
by sending a “READY” message (alternative “shake-hand” protocols can be defined). Then, additional
messages can be exchanged in order to obtain global simulation parameters. Finally, the simulation is reset
and started. The code of that “connecttoserver” function is provided in Figure 5, and can be found in the
FlexSim website.

treenode connection = assertsubnode(node("/Tools",model()), "client", DATATYPE_NUMBER);
string hostname = parstr(1);
int portnum = parval(2);
int client = 0;
// Initialize the socket before trying to create a connection. socketinit() return TRUE
// if the initialization is successful and reutrns FALSE if it is not successful.
if(socketinit()) {
   client = clientcreate(); // Start the process to use Windows sockets as a client.
}
// clientcreate() returns TRUE if the process could start properly and FALSE if it couldn't.
if(client) {
   // Make the connection to this machine using given hostname and port number.
   if(clientconnect(client,hostname,portnum)) {
       // Set the client node created earlier with the connectin value.
       setnodenum(connection,client);
       return 1; // Return a 1 to indicate the connection was made.
   }
   else {
       msg("Client Error", "Failed to connect to server."); 
       if(!clientclose(client))
       msg("Socket Error", "Failed to close client socket.");
       return 0; // Return a 0 to indicate an issue.
   }
}
else // The process for socket connection could not start.
   msg("Socket Error", "Failed to create client socket."); 
return client; // Return value in client variable (0) to indicate an error.

Figure 5: [FlexScript Code] “connecttoserver” function.

4 INTELLIGENT DISCRETE-EVENT SIMULATIONS

In this section, we go one step further in terms of how to connect Python with FlexSim via a synchronous
link.
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4.1 Synchronous Communication

The connection method explained in Section 3 could already be used to run a single instance of a FlexSim
simulation with some initial parameters. However, this only allows for a somewhat limited algorithm
to be deployed. In this section the intercommunication process will be explained further to enrich the
capabilities of the proposed method. In terms of the type of interaction between software, it is common
in the simulation-optimization field that the communication process is in certain sense “asynchronous”.
This means that the optimization is performed in order to find a good candidate solution and after that, the
simulation is run in order to evaluate or confirm the goodness of the proposed solution. Alternatively, the
simulation could be run in order to obtain certain stochastic parameters that are then input into the analytical
optimization model. In any case, the communication is a one-off event, which happens before or after the
simulation run (Figueira and Almada-Lobo 2014). For this type of connection, FlexSim already provides
some options, like passing of initial parameters to a predefined simulation, or outputting simulation values
to an external file. In contrast, in the intended application shown in this paper, the interaction will be
continuous or “synchronous”, meaning that the simulation software and the Python script are exchanging
messages (maybe thousands) as the DES evolves, with potential re-optimizations on every step. The
intercommunication process is detailed in Figure 6.

Figure 6: Detail flow diagram of the intercommunication part of the Simheuristic process.

4.2 Implementation

After the connection is successfully established, the FlexSim simulation starts and the Python script remains
listening. Like within any DES software, as the FlexSim simulation proceeds different events will occur
(e.g., in a warehouse context, a new order is received, a worker finishes her task, etc.), thus triggering other
events or actions. The key idea of this type of “continuous” connection is that the action to be executed
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by FlexSim is to send a message to the Python script through the socket, and wait for the answer. In
this regard, FlexSim allows for a “blocking” or “non blocking” behavior. This means that the FlexSim
program execution could be frozen until something is received from the Python server. Since there could
be potentially multiple messages sent during a small fraction of the simulation time, the blocking behavior
option is to be used in this type of communication, in order to avoid misunderstanding between both
software due to the lag between message and response. On the Python side, each message received must be
classified. This means that all possible events, that are defined in FlexSim as requiring input from Python,
have to be mapped to an answer in the Python script. These Python answers are normally a calculation
based on the status of the simulation. For that reason, it is important that the status is either contained
in the message passed through the socket or through reading directly the information from an external
table or a database. The answer to be sent by the Python script is always a string, and the “meaning” of
that string is to be interpreted by FlexSim. This is what makes this communication protocol so versatile.
In a sense, it could be understood as the basis for well researched intelligence enhancers for simulation,
like simheuristics, reinforcement learning, or learnheuristics (Calvet et al. 2017). The Python main code,
i.e., the one that controls the “runtime” execution (as opposed to the communication class definition), is
shown in Figure 7. Once the FlexSimConnection class is instantiated (as FS in the code example), it can
be used to open FlexSim and to send or receive messages. There can be some initial communication in
order to establish some simulation parameters (e.g., for how long the simulation will run, or the number or
resources to be employed). This parameter setting needs to happen before the simulation starts running in
FlexSim. The most important piece of code is the while loop, which keeps the Python server “listening”
to the messages coming from FlexSim. Once a message is received, it is classified and replied using the
if and elif logic.

if __name__ == "__main__":
   FS = FlexSimConnection(
       flexsimPath = "C:/Program Files/FlexSim 2022/program/flexsim.exe",
       modelPath = "C:/Users/.../simulation.fsm")
   FS._launch_flexsim()
   # Simulation initial set-up (optional):
   END_TIME = 1000 # example: time to end the simulation
   FS._socket_send(str(END_TIME).encode())
   # Running simulation:
   done = False
   while not done:
       try:
           # Receive message
           msg_recv = FS._socket_recv().decode('utf-8')
           if msg_recv == "x":
               ANSWER = calc_answer_x()
               FS._socket_send(str(ANSWER).encode())
           # Other message answer calculations in here...    
           elif msg_recv == "done":
               done = True
       except: 
           done = True
           FS._close_flexsim()
   FS._close_flexsim()

Figure 7: [Python Code] Main section of the Python script.

At specific events (e.g., every time that a product arrives to the warehouse), which are programmed
beforehand in FlexSim, some information might be needed from the Python server script (e.g., where to
place the new item optimally in the warehouse). For that, a message has to be sent, and an answer must be
awaited. The FlexScript code shown in Figure 8 allows this event-driven intercommunication. The code
can be adapted and used at almost every point where a decision have to be made, overriding the default
FlexSim decision making. This is especially powerful when combined with the FlexSim process flow tool
for defining the simulation logic.
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clientsend(getnodenum(node("/Tools/client", model())), "x!");
string answer = clientreceive(getnodenum(node("/Tools/client",model())), NULL, 1024, 0);
// do something with the answer like assign it to a label
token.label = answer;

Figure 8: [FlexScript Code] How to send and receive messages through the socket.

5 A SIMHEURISTIC ILLUSTRATIVE EXAMPLE

In this section, FlexSim and Python are combined to implement a simheuristic example related to warehousing
logistics.

5.1 Problem Description

Warehouses are a crucial component in supply chain management. The improvement of efficiency in daily
warehouse operations can provide significant benefits for companies. Typical activities in a warehouse
include reception, storage, order-picking, and dispatch. Storage is defined as a buffer of accumulated
products to guarantee the quantities demanded in the shortest possible time. Product storage and retrieval
are considered as the most crucial and resource-intensive activities in warehouses (van den Berg and Zijm
1999). These processes imply product allocation decisions that affect the general performance of the storage
systems. The storage location assignment problem is an operational decision problem that concerns the
allocation of products into a storage space and the optimization of the storage space utilization. There
are many solution approaches available in the literature, being one of the most common approaches based
on policies and rules. The most representative policies include random storage, dedicated storage, and
class-based storage. For a more comprehensive review of this problem, readers can refer to Reyes et al.
(2019). The SLAP that this paper tries to solve aims to locate, in a certain warehouse, N types of products in
M spaces, where M > N (i.e., there will be free spaces after all items are located). The goal of this problem
consists in minimizing the traveled distance of all warehouse workers (both inbound and outbound). This
minimization of the traveled distance increases the throughput, defined as the number of items dealt with
per unit time, which is a measure of the efficiency of the warehouse. The size and shape of the warehouse
has been chosen based on some toy examples from the literature (Xie et al. 2014). Figure 9 shows the
scheme of the warehouse instance evaluated in this work. At this stage, the exact size of the warehouse is
somehow irrelevant, since the main objective of the tutorial is to prove the advantage of implementing a
simheuristic method that helps solving the SLAP.

Figure 9: Problem description scheme.

As in real life, some types of product have higher arrival and pick-up frequency than others. Therefore,
the products and the orders arrive at a certain rate (randomly), and according to a given probability
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distribution. As the products arrive to the inbound area, these are placed in their corresponding slot in the
warehouse. Upon order arrival (which can be assumed to be a request for a certain type of product), a
product needs to be retrieved from the warehouse shelves. The problem, therefore, consists in assigning
specific slots to the arriving products, such in a way that the overall efficiency of the process is optimized.

The two main policies in the literature that are proposed for tackling the SLAP are the random assignment
and the dedicated or fixed assignment strategy. The former implies that the location for each type of product is
decided randomly. The latter has a pre-assigned fixed location for each type of product. This pre-assignment
is usually done based on the relative demand frequency for each product, trying to minimize the distance
traveled by the workers. Each strategy has its own applicability and advantages depending on the warehouse
configuration. For the warehouse instance investigated in this example, since the type of products N are
less than the available slots M, the fixed location is expected to provide significantly better results. This
is because the more demanded type of products can be placed closer to the exit reducing the workers’
average traveled distance. As can be seen in Section 5.4, our simheuristic method was able to validate
this expected behavior. In contrast with solving a “static” instance of the warehouse, different “dynamic”
simulation-based policies can be tested using the intercommunication method presented in Section 3. The
simulation part of the method represents a natural way for treating stochastic demand constraints, as well as
allowing for a more realistic evaluation of the objective function (which takes into account the warehouse
geometry, interaction between workers, sequence of operations, etc.). After the method is validated with
the comparison between random and fixed policy, an improved storage location assignment policy was
designed (see Section 5.2). This policy will try to beat the previous policies by incorporating information
about the incoming warehouse orders “dynamically”, i.e., during the simulation time.

5.2 The Proposed Algorithm

The algorithm proposed to further improve the fixed allocation strategy was not an optimization based on
the current status of the warehouse, but rather a heuristic action based upon the future orders to be fulfilled.
In a certain sense, the list of orders that need to be prepared in the warehouse is indeed part of the current
status of the warehouse, but neither the random or fixed strategies make use of this available information.
For that reason, it is expected that incorporating this additional information will improve the warehouse
efficiency. The improved heuristic for placing a new item in the warehouse is shown in Algorithm 1.

Algorithm 1 Improved SLAP
1: location← fixed(status, item)
2: if item ∈ orders then
3: loop: slot
4: if out distance(slot)< out distance(location) then
5: if has space(slot) = true then
6: location← slot
7: end

The logic followed can be explained as a sequence of actions (heuristic): (i) use the fixed location
assignment as baseline; (ii) check if the next few orders (5 - 10) contain the item to place; (iii) check if
there is available space closer to the exit than its default assigned place; and (iv) place the item in the
best location. In Figure 10, the implementation of the algorithm in Python is provided. It is important
to note that some simulation actions will be performed by FlexSim using its own pre-programmed logic.
This means that the proposed simheuristic controls only part of the simulation logic, and other parts are
controlled by FlexSim (e.g., the first-in-first-out logic in some queues). For that reason, it can be expected
that further improvements on the efficiency can be obtained if more actions/operations are mediated by the
heuristic.
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def simheuristic(list_prod, dict_loc, wh_status, list_orders, prod, f):
   # Get the address for product using fixed strategy:
   location = fixed(wh_status, list_prod, dict_loc, prod)
   # Check if product is in first "f" places of the orders list:
   if len(list_orders) >= f:
       list_orders = list_orders[0:f]
   if (prod in list_orders):
       # Loop through locations:
       for slot in list(dict_loc.keys()):
           # Compare output distances using dictionary of locations:
           if dict_loc[slot] < dict_loc[location]:
               # Check if has_space is True:
               if has_space(wh_status,slot):
                   location = slot
   return location

Figure 10: [Python Code] ”Algorithm 1” implementation in Python.

5.3 Intercommunication Sequence

The intercommunication sequence detailed in this section is based upon the more generic intercommunication
process explained in Section 3 and depicted in Figure 2. Here, the more specific intercommunication
protocol between Python and FlexSim will be explained. In particular, the communication-trigger events,
its corresponding message and the calculated answer are listed below:

• A new item arrives: the message “product” is sent to Python. The type of product is calculated
based on the probability associated with each type. FlexSim receives the item identification (ID)
and the type of product to which the item belongs.

• A new order arrives: the message “order” is sent to Python. The type of product is calculated
based on the probability associated with each type. FlexSim receives the type of product required
in order to fulfill the order.

• An item needs to be placed: the message “slot” is sent to Python, followed by the associated type
of product. The calculation is performed using the selected policy in the Python script. Three
options are available: 1 random, 2 fixed, or 3 improved. FlexSim receives the “address” where the
item is to be placed according to its type.

• A worker has finished her current job: the message “work” is sent to Python. The next order is
calculated based on a priority list and in the current status of the warehouse, which is available in
an external file. FlexSim receives the next order to be picked-up from the warehouse.

• A stopping condition has been met: the message “done” is sent to Python. The FlexSim application
is closed and Python perform some final metrics calculation based on the status of the warehouse
and the total distance covered by the workers.

Heuristic computations are fast, which allows to provide a prompt answer for the FlexSim simulation,
which remains frozen in the meanwhile. In the previously described model, half an hour of simulation
time is computed in approximately 10 seconds, with more than 100 messages passed back and forth.

5.4 Results

Since the simulation is of stochastic nature, the results have to be treated statistically. In the example, the
source of random variables is not in the arrival time for items and orders, but on the type of products that
arrive and that are requested to be picked-up. The actual model implementation in FlexSim can be seen
in Figure 11.

The main results are summarized in Table 1 and in Figure 12. The metrics employed were the throughput
(τ) and the average distance (d̄). The throughput can be defined in different ways depending on the context,
but for a warehouse it is usually measured as the number of items processed by unit of time. Specifically,
the throughput in our example was defined as the number of products that were output from the warehouse
(nout) divided by the total simulation time (t), as expressed in Equation (1):
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Figure 11: Screenshot from the FlexSim simulation.

τ =
nout

t
. (1)

Similarly, the average distance was defined as the number of meters “walked” by unit of output products.
This is calculated by summing all the individual distances (dw

i ) covered in each trip i completed by each
worker w, divided by the number of products that exit the warehouse, as in:

d̄ =
∑i ∑w dw

i
nout

.

Table 1: Results summary.

τ d̄
policy mean std. dev. mean std. dev.
1 random 227.8 6.9 62.7 1.9
2 fixed 280.2 9.9 51.0 1.8
3 improved 289.1 13.9 49.1 1.9

The results are the summary of 10 simheuristics runs for each policy (30 runs in total). It can be
seen that implementing a dedicated or fixed assignment policy can indeed increase the efficiency of the
warehouse. This is in line with the literature, and can be seen as a validation of the simheuristic model.
The gains from introducing the improved placement logic (i.e., by looking into the future orders) are
much smaller in comparison, but they are still worth the implementation. Even modest improvements in
warehouse efficiency can result in significant operational cost reduction, specially for large warehouses.

6 POTENTIAL FUTURE APPLICATIONS

Integrating simulation software packages with programming languages such as Python, offers new op-
portunities to develop advanced intelligent simulation modeling. As a platform that generates clean and
structured data, simulation output can be efficiently utilized by multiple algorithmic approaches to support
decision making. In this section, a few potential future applications of the FlexSim-Python integration is
discussed to provide insights for researchers and developers for further developments.
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Figure 12: Simulation results showing the comparison among the different SLAP strategies.

6.1 Combined Simheuristics and Learnheuristics Methods

As simulation is not an optimization tool, it must be used in conjunction with optimization methods whenever
the goal is to maximize system performance while using limited resources or minimize system operation
costs while maintaining a given level of service quality. In this tutorial, we only provided an illustrative
example of a simheuristic algorithm for solving SLAP. However, simheuristic algorithms are a general
framework and can be employed to solve many other optimization problems under uncertain conditions
(Grasas et al. 2016). For instance, simheuristic can be applied to solve stochastic vehicle routing problems
with stochastic transportation time that vary according to the traffic conditions of the simulation. In this
way, the solution obtained in the optimization process can be modeled in the stochastic environment of the
simulation to evaluate its robustness and reliability under stochastic conditions. Furthermore, in addition
to uncertain conditions, many real-world optimization problems also contain dynamic components. With
the integration of FlexSim and Python we presented in this tutorial, learnheuristic-based approaches that
integrate machine learning techniques within a metaheuristic or simheuristic framework can be used to
address these dynamic components during the optimization process.

6.2 Applied Deep Reinforcement Learning

Reinforcement Learning (RL) is a rapidly emerging field of machine learning with promising applications
to solve problems with sequential decision making. The two major components of RL are the agent and the
environment. By interacting with the environment, the agent continuously improves its decision-making
mechanism to maximize the expected accumulated reward. Therefore, in RL the agent discovers which
actions yield the most reward by trial-and-error (Sutton and Barto 2018). In order to reach convergence, RL
needs a large number of learning samples (observations) to complete its training process. This can be difficult
for real-life applications, due to the limited resources and the expensive cost of performing experimental
runs. Integrating RL with a simulated environment makes the learning process feasible with low cost and
short time. The proposed intelligent model in this study can be applied to develop a simulation-based RL
framework. A replica of a real-world model can be simulated in FlexSim, while the RL agent coded in
Python can complete its training by integration with the simulation model. This could ease the use of RL in
industrial applications. Moreover, RL training should be generalized enough to handle system’s behavioral
changes, hence updating its policy based on the continuous feedback it receives from the environment.
Finally, DES packages such as FlexSim, provide visualization capabilities that can be used to illustrate the
RL policy to managers and decision makers.

1398



Leon, Peyman, Li, Dehghanimohammadabadi, Calvet, Marone, and Juan

7 CONCLUSIONS

Modern simulation software offers many advantages to model and simulate complex stochastic systems
and processes. Still, their capabilities can be largely extended by allowing DES models to interact with
external optimization algorithms or machine learning methods. Thus, for example, the combination of
DES models with metaheuristic optimization algorithms allow us to develop rich DES simheuristics, which
can then be employed to optimize complex stochastic systems. In a similar way, DES models can also be
combined with reinforcement learning or other machine learning methods, including learnheuristics. These
different hybridized approaches allow for considering the system dynamic behavior and also to predict
how the system will change in the future in response to the decisions made by a manager. In order to
illustrate the previous ideas, the paper explains the technical details that allow to create a link between the
FlexSim simulator and the popular Python programming language. In addition, a case study regarding the
simulation and enhancement of a warehouse system is introduced. The numerical results support the need
for including optimization methods inside DES models and, in particular, the benefits that can be obtained
by developing DES simheuristics using Python and a simulation software.

As future work, we plan to: (i) investigate how to develop DES learnheuristics capable of addressing
complex systems with both dynamic and stochastic components; and (ii) develop other applications of DES
simheuristics in the areas of logistics, transportation, and manufacturing.
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