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ABSTRACT 

In this paper, we consider sustainable manufacturing decisions in semiconductor supply chains. A simu-
lation-based framework is designed to assess such decisions in a dynamic and stochastic environment. 
Requirements for performance assessment of sustainable manufacturing decisions are derived in a first 
step. The architecture of the framework is then designed. We specify components that model the 
supplied energy and the energy consumption of the manufacturing processes. Moreover, a component 
for demand generation is described. A component that deals with modeling user preferences with 
respect to conventional and to new sustainability performance measures is also sketched. The 
framework is illustrated by assessing the performance of an energy-aware scheduling algorithm for 
batch processing machines in a rolling horizon setting. 

1 INTRODUCTION 

Semiconductor supply chains require sophisticated planning and control approaches due to the sheer 
size of the involved manufacturing facilities and the supply chains, the permanent appearance of 
uncertainty, and the rapid technological changes (Chien et al. 2011; Mönch et al. 2018). It is well known 
that a performance assessment of related planning and control approaches under dynamic and stochastic 
conditions is highly desirable (Mönch 2007; Ponsignon and Mönch 2014) since the behavior of a 
planning approach in a dynamic and stochastic setting can be fundamentally different from the observed 
behavior in a static and deterministic environment (Sahin et al. 2013). In addition to process uncertainty, 
demand uncertainty is also an important factor that has to be modeled. Discrete-event simulation 
provides a risk-free environment to implement rolling horizon approaches by executing the planning 
and control instructions in the base system, i.e. on the shop-floor level. The simulation-based 
performance assessment approach is extensively used in the last two decades to assess the performance 
of planning and scheduling approaches for wafer fabs (cf., for instance, Mönch et al. 2007 for 
scheduling wafer fabs; Ziarnetzky et al. 2020 for production planning in wafer fabs). The basic 
simulation infrastructure requires extensions if specific features of the manufacturing system at hand 
have to be taken into account (cf. Drießel and Mönch 2007 where automated material handling system 
operations are addressed in an integrated scheduling approach for wafer fabs). 

Semiconductor manufacturing is energy-intensive with annual energy utility bills of $10-20 million 
for a single wafer fab (Mönch et al. 2018). However, sustainability issues for semiconductor supply 
have only recently begun to be considered in research and practice. With the emergence of such 
approaches, the question of their performance assessment is relevant. We argue that similar to a 
conventional manufacturing setting discrete-event simulation is a useful tool for performance 
assessment since in addition to demand and process uncertainty additional sources of uncertainty, for 
instance, for renewable energy such as wind or sun must be considered. In the present paper, we will 
therefore discuss the design of a simulation-based framework to support the performance assessment of 
sustainable decisions in semiconductor supply chains. The framework will be then applied within a case 
study for energy-aware scheduling in a wafer fab. 
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The paper is organized as follows. In the next section, we describe the problem and discuss related 
work. The simulation framework for performance assessment of sustainable manufacturing decisions 
is discussed in Section 3. This includes a discussion of requirements and of architectural issues. The 
proposed framework is applied to assess the performance of an energy-aware batch scheduling heuristic 
in Section 4. Conclusions and future research directions are provided in Section 5. 

2 PROBLEM SETTING 

2.1 Sustainability in Semiconductor Supply Chains 

Sustainable manufacturing requires the interaction of economic, environmental, and social domains 
(Jain and Kibira 2010; Zhou and Kuhl 2011). The economic domain includes manufacturing and 
financial aspects. These additional interactions compared to conventional manufacturing and supply 
chain management require a more sophisticated decision support and also a more elaborated 
performance assessment. 

This is especially true for the semiconductor manufacturing domain since wafer fabs belong to the 
most energy-intensive manufacturing systems due to the required cleanroom conditions inside wafer 
fabs and the large number of highly complicated machines typical for wafer fabs (Yu et al. 2018). 
Semiconductor manufacturing consumes more electricity than other industries such as steel or 
petrochemical. Non-CO2 greenhouse gases, for instance perfluorocarbons (PFCs), are used in wafer 
fabs. Since these gases have an extremely long atmospheric lifetime, it is highly desirable to reduce the 
PFC emission of wafer fabs (Mönch et al. 2018). Sustainability issues can be considered in principle on 
all planning and control levels of semiconductor supply chains. For instance, the penetration of wind, 
solar, and other renewable energy sources can be discussed on the strategic and tactical network design 
level, the reduction of CO2 emission approaches can be studied on the tactical and operative level, while 
energy-aware scheduling can be considered on the operational level.  

2.2 Related Work and Problem Statement 

There is a large body of knowledge related to manufacturing and sustainability. Due to space limitations, 
we discuss only work connected to simulation-based performance assessment of sustainability 
strategies in manufacturing and logistics and to modeling and simulation applications in this area.  

The role of discrete-event simulation for sustainable discrete manufacturing is discussed by Kibira 
and McLean (2008). Expected changes with respect to performance measures, data sets, simulation 
tools, and case studies are described. Jain and Kibira (2010) propose a system dynamics framework to 
evaluate sustainable decisions on the strategic level. Energy-related key performance indicators for 
discrete manufacturing are assessed using discrete-event simulation by Barletta et al. (2014). Discrete-
event simulation is also used to support the design process of sustainable manufacturing systems 
(Hailala et al. 2008; Johansson et al. 2009). A simulation toolkit for sustainable operations, mainly in 
logistics, is described in a series of papers by Kuhl and Zhou (2009), Zhou and Kuhl (2010), and Zhou 
and Kuhl (2011). Special emphasis is given to the usage of performance measures that allow for 
assessing the environmental performance. Discrete-event simulation is also used in case studies to 
assess sustainable policies in different manufacturing and supply chain settings (for instance, Jaegler 
and Burlat 2012; Lee et al. 2012). Survey papers related to sustainable operations and simulation are 
provided by Thiede et al. (2013) and Moon (2016). 

Sustainability issues are only rarely discussed in the semiconductor-related literature. There are 
only a few papers on energy conservation issues, namely Villarreal et al. (2013) and Santana-Viera et 
al. (2015). A design problem for a sustainable distributed power generation system for a wafer fab is 
discussed by Villarreal et al. (2013). Simulation-based optimization is applied to determine an 
appropriate number of solar photovoltaics (PVs) and wind turbines (WTs) to use renewable energy in 
addition to the main grid under uncertain wind speed and solar irradiance. This design problem is 
integrated with production planning by Ziarnetzky et al. (2017). Simulation-based optimization is used 
to tackle this problem. A stochastic programming model to handle contract-based demand requests 
received by a wafer fab owning onsite wind and solar generation units is studied by Santana-Viera et 
al. (2015). Chiang and Hsu (2017) consider sustainability issues in master planning for a foundry setting 
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by incorporating carbon taxes and subsidies into a linear programming formulation. The technology–
organization–environment (TOE) framework is applied by Hwang et al. (2016) to determine factors to 
be considered in green semiconductor supply chains, and test it using the semiconductor industry in 
Taiwan as a use case. Recently, energy-aware scheduling heuristics are proposed by Rocholl et al. 
(2020) and assessed in a static and deterministic environment. 

Overall, it seems that a simulation framework that supports sustainable manufacturing on different 
planning and control levels is not described in the literature so far. While simulation is popular to 
address problems of sustainable manufacturing most of the existing work is either on a conceptual level 
or fairly ad-hoc. This is especially true in semiconductor manufacturing. In the present paper, we are 
interested in reducing this gap by enriching the simulation framework and infrastructure proposed by 
Mönch et al. (2007) and Ponsignon and Mönch (2014) by elements that are required for sustainable 
manufacturing.  

3 SIMULATION FRAMEWORK FOR SUSTAINABLE MANUFACTURING DECISIONS 

3.1 Requirements for the Framework 

We distinguish requirements from a functional and also from a technical point of view. The following 
functional requirements are identified: 

 
1. The base system, i.e. resources such as machines and operators, and the base process, i.e. system 

objects such as lots and the related routes have to be modeled and represented in the framework 
(Mönch et al. 2013). In addition to a pure conventional manufacturing setting where this is also 
required (cf. Ponsignon and Mönch 2014), more resources such as the main grid, grid-based 
distribution generation (DG) system, WTs, and PVs are required. The base system has to be 
considered in a broader view, i.e., parts of the manufacturing system environment also belongs 
to the base system. The dynamic and stochastic behavior of the base system and process have 
to be modeled and represented. 

2. The energy consumption and the usage of specific gases caused by manufacturing processes 
have to be modeled.  

3. The environmental consequences of the production processes, for instance, direct PFC or 
indirect CO2 emissions have to be estimated.  

4. External factors that impact the functions of the manufacturing process have to be modeled and 
represented in a time-dependent manner in the framework. This includes demand for products, 
but also weather conditions, and energy supply. The evolution of forecasts and other external 
factors must be included in the framework to correctly represent the occurrence of planning and 
control instances in rolling horizon approaches. 

5. The planning and control processes that are applied to take into account sustainable goals have 
to be represented in the framework. This means especially that the approaches can be applied 
in a rolling horizon manner, i.e., consecutive planning and control epochs are considered. 

6. Since there is always a tradeoff between financial and environmental objectives the planning 
and control behavior of human decision makers must be modeled and represented in the 
framework.  

 
The following technical requirements have to be fulfilled: 
 

1. The dynamic and stochastic behavior of the base system and process have to be captured by 
discrete-event simulation. This requires the coupling of the planning and control approaches to 
be assessed by a discrete-event simulation tool.  

2. The different external factors and their time-dependent evolvement must be coupled with the 
planning and control approaches and the simulation tool. 

3. Involving human decision-makers in the decision-making process require that the simulation 
infrastructure is able to allow for interventions by decision makers.  

 
The different requirements are taken into account during the framework design. 
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3.2 Overall Architecture 

The architecture is based on the principle simulation infrastructure proposed by Mönch (2007) and 
Ponsignon and Mönch (2014). It is shown in Figure 1. The components surrounded by grey frames 
belong to the principle simulation-based architecture for performance assessment of planning and 
control approaches. There are three additional components that are required for addressing 
sustainability issues. Note that we do not address interactions with the social domain. Instead of this, 
we mainly concentrate on modeling the interaction of the economic and environmental domains. 

Figure 1: Component architecture of the framework. 

3.3 Design of the Different Components 

3.3.1 Simulation Component 

This component is formed by the commercial simulation engine Autosched AP and a simulation model 
representing the base system and process. A blackboard-type data layer (Mönch 2007) is between the 
simulation model and the control component. It is located in the memory of the simulation computer. 
The data layer contains important business objects of the base system and process. Their status is 
updated in an event-driven manner using notification functions of AutoSched AP. Whenever a business 
object changes its status in the simulation the corresponding object of the data layer is also updated. 
The data layer is the base for generating problem instances taking into account the current status of the 
base system and process. The simulation component is also responsible for calculating the values of 
different performance measures. This includes measures of ecological performance. 

3.3.2 Demand Component 

This component implements the martingale model of forecast evolution (MMFE) proposed by Heath 
and Jackson (1994). The MMFE allows for generating demand that models demand correlation across 
products and periods for planning purposes. The MMFE with its additive and multiplicative variants is 
a quite general and powerful approach (Chen and Lee 2009). The MMFE requires as an input the 
variance covariance (VCV) matrices of the update vectors and the demand means of the different 
products. Demand evolution is important for implementing realistic rolling horizon schemes 
(Ziarnetzky et al. 2020). The demand generator can be considered as a simple forward simulation tool. 
Demand forecasts for planning purposes, but also demand realizations for executing planning 
instructions have to be provided. 
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3.3.3 Planning and Control Components 

The planning and control components contain the algorithms used for performance assessment. 
Moreover, specific functions to generate problem instances taking into account feedback from the base 
system and process via the blackboard-type data layer and information from the demand component are 
included. A stop-and-go approach is used to implement rolling horizon schemes, i.e., the planning or 
control components solve the current problem instances and return a planning or control decision to the 
data layer. The data layer provides instructions to the simulation engine which are executed until the 
next planning instance has to be generated and solved. The planning and control components have to 
interact with the preference module whenever several possible instructions are available. Energy-related 
information, namely energy demand and supply have to be passed to the planning and control 
components to make sustainable planning and control decisions. 

3.3.4 Demand-side Energy Component 

This component determines which energy consumption is associated with a certain planning or control 
decision. It is far away from being trivial to estimate the energy demand of an entire wafer fab or even 
for a lot of a specific product (Hu and Chua 2003; Hu et al. 2010). Since the energy price often depends 
on the energy usage in a specific quantity at a specific time, this component is also responsible for 
determining the energy cost used in planning and control approaches, i.e., it is possible to implement 
different types of demand response programs (Albadi and El-Saadany 2008). Among them the time-of-
use (TOU) electricity cost is an important price-based demand response program, i.e., the energy price 
depends on the period of the energy usage. 

3.3.5 Supply-side Energy Component 

The component deals with modeling the energy supply. An important task is the representation of 
renewable energy sources in the framework. This requires, for instance, modeling the uncertain wind 
speed and solar irradiance which are time- and location-dependent. Physical laws must be used to 
determine the power provided by a single WT after the wind power volatility is determined. The same 
can be done for the power output of solar PVs. The provided power is determined by the PV orientation, 
tilt angle, calendar day, solar angle, latitude, and weather conditions. We refer to Villarreal et al. (2013) 
for the details. In principle, this component can be considered as a simulation tool which provides power 
forecasts and realizations.  

3.3.6 Preference Component 

This component is responsible for modeling preferences of decision makers in planning and control 
situations with multiple, conflicting objectives. Different approaches to articulate preferences, i.e. prior, 
interactive, or posterior, have to be modeled and supported. Moreover, different interaction styles, for 
instance, choosing a set of solutions, pairwise comparison, or reference points (Shin and Ravindran 
1991) must be supported by the component. It is also important to support different types or notions of 
convergence, i.e. convergence in a mathematical sense or only in a psychological sense when no better 
solutions are found. 

4 APPLICATION OF THE FRAMEWORK 

4.1 Static Scheduling Problem 

We are interested in assessing the performance of a local scheduling approach for a group of parallel 
batch processing machines based on wafer fab-wide performance measures. Batch processing machines 
are chosen since it is well known that they influence the dynamic behavior of a wafer fab to a large 
extent (Mönch et al. 2013).  

We start by describing the static and deterministic scheduling problem. A finite scheduling horizon 
of length 𝑇𝑇 is divided into discrete periods of length ∆. The considered machine group consists of 𝑚𝑚 
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furnaces capable of processing multiple lots simultaneously in a batch. The furnaces are identical, i.e., 
all have the same processing speed, power consumption, and batch capacity. The latter limits the 
number of lots that can be assigned to a single batch. There is a total of 𝑛𝑛 lots to be scheduled. All lots 
being processed in the same batch are started and finished at the same time. Only lots belonging to the 
same family can be batched together. All lots of the same family have the same processing time. The 
processing time of a batch is equal to the processing time of any of its lots. Lot 𝑗𝑗 becomes available at 
𝑟𝑟𝑗𝑗 ≥ 0 and has a (local) due date 𝑑𝑑𝑗𝑗 related to the batching machine group. Furthermore, each lot has a 
given weight 𝑤𝑤𝑗𝑗 describing its importance. 

The two objectives to be minimized in the static problem are the total weighted tardiness (TWT) 
and the electricity power cost (EPC). The TWT of a schedule 𝑆𝑆 is defined by 

 
          𝑇𝑇𝑇𝑇𝑇𝑇(𝑆𝑆) = ∑ 𝑤𝑤𝑗𝑗𝑇𝑇𝑗𝑗𝑛𝑛

𝑗𝑗=1 ,          
 

where 𝑇𝑇𝑗𝑗 ≔ (𝐶𝐶𝑗𝑗 − 𝑑𝑑𝑗𝑗)+ is the tardiness, 𝐶𝐶𝑗𝑗 the completion time of lot 𝑗𝑗 in 𝑆𝑆 and the abbreviation 𝜒𝜒+  ∶
=  max(χ, 0) is used for an arbitrary real number Ç. We denote the EPC value in period 𝑡𝑡 by 𝑒𝑒(𝑡𝑡). Then 
the EPC value of a schedule 𝑆𝑆 can be calculated by 
 
         𝐸𝐸𝐸𝐸𝐶𝐶(𝑆𝑆) ≔ ∑ ∑ 𝑒𝑒(𝑡𝑡)𝑧𝑧𝑡𝑡𝑖𝑖𝑚𝑚

𝑖𝑖=1
𝑇𝑇
𝑡𝑡=1 ,          

 
where 𝑧𝑧𝑡𝑡𝑖𝑖 is 1 if a batch is processed in period 𝑡𝑡 on machine 𝑖𝑖 in 𝑆𝑆 and zero otherwise. No assumption 
is made regarding the preference for either one of the objectives. Instead, an a posteriori method is used 
to compute the set of non-dominated solutions. A schedule 𝑆𝑆  is called non-dominated if no other 
schedule 𝑆𝑆’ exists with 𝑇𝑇𝑇𝑇𝑇𝑇(𝑆𝑆′) ≤ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑆𝑆) and 𝐸𝐸𝐸𝐸𝐶𝐶(𝑆𝑆′) ≤ 𝐸𝐸𝐸𝐸𝐶𝐶(𝑆𝑆), and at least one of the two 
inequalities is strict. 

4.2 Concretization of the Framework for the Present Situation 

Since we know that deterministic scheduling approaches can be assessed in a rolling horizon setting in 
a more realistic way (Mönch et al. 2011), we are interested in applying the simulation-based framework 
sketched in Section 3. We will discuss the tailoring of the different components in the order in which 
they are specified in Subsection 3.3. 

4.2.1 Simulation Component 

We use the MIMAC I simulation model which is publicly available under MIMAC I (2021) in a slightly 
modified version. In particular, the number of furnaces of the OXIDE_1 tool group is reduced, i.e., only 
two furnaces are considered to ensure that this tool group is the planned bottleneck of the wafer fab. A 
batch capacity of six lots is assumed. The first product is processed at the furnaces twice with a 
processing time of 253.8 minutes and 1409.4 minutes. The second product visits the furnaces once with 
135.0 minutes of processing time. Consequently, three lot families are considered. Global due dates are 
obtained by adding a default cycle time value of 20 days, multiplied with a random factor taken from 
𝑈𝑈[0.5,1.5] to the release date of a lot. Here, 𝑈𝑈[𝑎𝑎, 𝑏𝑏]  refers to a uniform continuous distribution over 
the interval [𝑎𝑎, 𝑏𝑏]. Moreover, weights are randomly chosen according to 𝐷𝐷𝑈𝑈[1,20] where 𝐷𝐷𝑈𝑈[𝑎𝑎, 𝑏𝑏] 
refers to a discrete uniform distribution over the set of integers {𝑎𝑎, … , 𝑏𝑏} . Machine failures are 
exponentially distributed. A single simulation run is 90 days long. Five independent replications of each 
simulation run are performed to obtain statistically significant results. The average of these five 
replications are reported. The small simulation horizon and the low number of replications are due to 
the large computational burden of the frequently applied scheduling heuristic. 

Instead of showing the TWT values with respect to the global due dates and the total EPC values 
for the OXIDE_1 tool group, those values are divided by the number of finished lots. As the output of 
the wafer fab may differ depending on the scheduling decisions, we also include the weighted tardiness 
of unfinished lots as if they were finished at the end of the simulation. This value is divided by the 
number of unfinished lots and the resulting value is added to the average TWT. 
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4.2.2 Demand Component 

Since we do not consider any specific production planning functionality, sophisticated demand schemes 
are obsolete. We simply use two planned bottleneck utilization (BNU) levels of 70% and 90%, 
respectively. There are two products in the MIMAC I model. Although real-world arrival pattern can 
be more sophisticated, for the sake of simplicity, exponentially distributed inter arrival times are used 
for both products with a mean of 5 hours for BNU=90% and 7.5 hours for BNU=70%, respectively. 
The simulation is initialized with a work in process (WIP) distribution obtained from long simulation 
runs at the requested BNU level to avoid a warm-up period for the simulation. 

4.2.3 Planning and Control Components 

The static scheduling problem described in Subsection 4.1 is solved by applying a non-dominated 
sorting genetic algorithm (NSGA II)-type heuristic, i.e., we apply the GGA-HYB heuristic proposed by 
Rocholl et al. (2020). It is a grouping genetic algorithm (GGA), i.e., the chromosomes are sets of 
batches. The first encoding scheme is based on list scheduling. A first portion of all batches is scheduled 
in such a way that small TWT values are the result, whereas the second portion is scheduled to obtain 
small EPC values. The second encoding scheme is based on the idea that idle time between 
consecutively scheduled batches should be inserted to account for the fact that the EPC measure is non-
regular. Obviously, it is necessary to keep machines idle in intervals with high electricity prices to 
compute schedules with a low electricity cost. We refer to Rocholl et al. (2020) for the details of the 
GGA-HYB heuristic due to space limitations. 

The heuristic is applied in a rolling horizon setting, i.e., it is performed at regular intervals 
throughout the simulation horizon. When the heuristic is called, current machine availability and lot 
data is derived from the simulation model and prepared to generate the problem instance for the current 
scheduling epoch. In particular, all time-related properties are mapped to the scheduling horizon. All 
lots waiting for being processed at the OXIDE_1 tool group are considered. In addition, lots currently 
in process at the immediate preceding step of their routes are considered with their remaining processing 
time as release time in the scheduling horizon. The families and processing times of the lots are derived 
for the static scheduling problem from their routes. 

Moreover, internal due dates are computed based on global due dates of the lots using a dynamic 
hot factor. Therefore, we first calculate the difference from the global due date 𝑑𝑑𝑗𝑗

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and the current 
time 𝑡𝑡. Let 𝑘𝑘 be the process step to be performed next on the machine of the OXIDE_1 tool group, and 
let be 𝑞𝑞 the total number of process steps to complete lot 𝑗𝑗. The processing time of step 𝑜𝑜 of lot 𝑗𝑗 is 𝑝𝑝𝑗𝑗𝑔𝑔. 
The hot factor is then defined as 

          ℎ𝑗𝑗𝑗𝑗 ≔  �𝑑𝑑𝑗𝑗
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑡𝑡� ∑ 𝑝𝑝𝑗𝑗𝑔𝑔

𝑞𝑞
𝑔𝑔=𝑗𝑗� .        

 
Local due dates are then calculated by 

 
           𝑑𝑑𝑗𝑗𝑔𝑔𝑔𝑔𝑙𝑙: = 𝑟𝑟𝑗𝑗𝑗𝑗 + ℎ𝑗𝑗𝑗𝑗𝑝𝑝𝑗𝑗𝑗𝑗,         

 
where 𝑟𝑟𝑗𝑗𝑗𝑗 is the ready time of the lots at the OXIDE_1 tool group. By design, the used scheduling 
heuristic can only find a feasible schedule if all lots can be completed within the prescribed scheduling 
horizon. To ensure feasibility, it might be necessary to restrict the number of lots to be scheduled in 
high workload situations. Lots are preselected by a simple heuristic approach. First, all available lots 
are sorted by their slack values in non-decreasing order, ties are broken by the release date in non-
decreasing order and then by the lot weights in non-increasing order. Batches are then formed in a first-
fit manner. Subsequently, those batches are assigned to machines with a simple list scheduling 
algorithm. From the so formed temporary schedule, all lots assigned to batches that can be completed 
within the first half of the scheduling horizon are passed to the scheduling routine. All other lots are 
automatically postponed to the next scheduling epoch. A limitation of the workload within the 



Rocholl and Mönch 
 

 

scheduling horizon is necessary to preserve some degree of freedom for decisions on batch formation 
and intended idle times.  

The execution of a schedule in the simulation model is enforced by setting explicit start times to 
each lot based on the start times of the batches they are assigned to in the schedule. Lots are only 
selected by a machine if the current time is larger than their start time and kept in a waiting state 
otherwise. Hence lots with the exact same starting time and family are automatically assigned to the 
same batch. 

4.2.4 Demand-side Energy Component 

A TOU tariff for 24 hours forms the base of this component. The tariff information is deterministic and 
remains constant over the entire simulation horizon. The demand is implicitly modeled by the utilization 
of the furnaces. The details of the tariff are shown in Figure 2. 

Figure 2: TOU electricity price tariff. 

4.2.5 Supply-side Energy Component 

This component is fairly simple in the present situation. Only an infinite power supply is assumed, i.e., 
shortages are not considered. The source of the supplied energy is not interesting for the purpose of the 
performance assessment task to be conducted. 

4.2.6 Preference Component 

An object of a class called decision_maker implements the preference component. The purpose of this 
object is choosing a single schedule from a set of non-dominated schedules provided by the control 
component. Therefore, properties of the set of solutions can be exploited. In addition, the object 
possesses a property representing its current preference for one of the objectives. The preference can 
change over the course of the simulation and also influences the decision. A constant preference value 
𝜌𝜌 ∈ [0,1] is used to calculate a combined objective function value by  
 
        𝑍𝑍(𝑆𝑆) =  𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇(𝑆𝑆) + (1 − 𝜌𝜌)𝐸𝐸𝐸𝐸𝐶𝐶(𝑆𝑆)          
 
for each schedule S from the available set of non-dominated schedules. The one with the smallest 𝑍𝑍(𝑆𝑆) 
is selected and executed. We perform simulation runs with preference values 𝜌𝜌 ∈ { 0.0, 0.33, 0.66, 1.0}.  

4.2.7 Implementation Details 

The different components of the simulation-based framework are coded in the C++ programming 
language and integrated with the simulation tool AutoSched AP 11.3 which is itself a class library 
written in the C++ programming language. 

4.3 Design of Experiments 

Every six hours of simulation time, respectively four times a day, the scheduling heuristic is performed 
with a prescribed computing time limit of 30 seconds of real time to find a set of non-dominated 
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schedules. The scheduling horizon is four days with a time slot size of five minutes. The TOU tariff as 
shown in Figure 2 is implemented. We are interested in computing the average global TWT value and 
the average EPC values for the OXIDE_1 tool group depending on the BNU levels. Moreover, we look 
at the impact of the preference values 𝜌𝜌. 

The results are compared against scenarios employing a simple first-in-first-out (FIFO) dispatching 
rule. In scenario FIFO_1, as soon as a furnace becomes available, a batch is formed with available lots 
of the same family by the order of their arrival at the machine group. Similarly, in the second scenario 
FIFO_6 lots are as well considered by the order of their arrival, but only full batches are actually started. 

4.4.  Simulation Results 

To demonstrate that the scheduling decisions are executed correctly in the simulation, Gantt charts for 
a period of 14 days of the simulation employing the scheduling heuristic are depicted for different 
decision preferences in Figure 3. The charts show more and longer idle times for schedules with a 
preference set towards the EPC measure. That is because the starting of lots is postponed to less 
expensive periods. 

 
Table 1 shows the average fab performance for the different simulation runs in moderate and high 

workload situations. Generally, the formation of full batches leads to lower energy costs which can be 
observed from the results of FIFO_6. That is, because the energy consumption is defined on the level 
of batches, not lots. A preference toward the EPC minimization can further decrease the cost by around 
4% in the moderate workload situation and around 8% in the high workload situation. However, such 
savings are accompanied by a very high increase of the TWT measure (30-357%). Only small decreases 
of TWT can be achieved compared to the FIFO_1 scenario, but the schedules obtained with a preference 
toward TWT minimization actually prove to dominate those solutions. 

Table 1: Objective function values from a simulation horizon of 90 days. 

Heuristic BNU =70% BNU= 90% 
TWT (in 
min) 

EPC TWT (in min) EPC 

FIFO_1 141.20 13495.14 145.44 9726.06 
FIFO_6 195.00 5444.24 166.31 5601.52 

GGA-HYB (ρ=1.00) 140.80 10069.04 139.29 8571.80 
GGA-HYB (ρ=0.66) 145.80 7587.96 152.27 6447.04 
GGA-HYB (ρ=0.33) 155.00 6748.50 176.25 5637.70 
GGA-HYB (ρ=0.00) 254.90 5255.20 594.47 5175.36 

 

Figure 3: Visualization of the impact of preferences on machine utilization. 
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Schedules from a simulation run with BNU=70% are shown in Figure 4. The tradeoff between the 
two objectives becomes obvious as lower values for the one objective function come along with higher 
values of the other one. Indeed, the obtained schedules are non-dominated, all but the one found in the 
FIFO_1 scenario which is dominated by the solutions obtained by using the GGA-HYB heuristic with 
a preference of Á =1.00. It is demonstrated that scheduling decisions made locally in a rolling horizon 
manner can have a strong impact on the overall performance of a wafer fab. Moreover, it can be 
observed that always taking the extreme decision toward minimizing TWT does not only lead to a 
reduced TWT in this case but also shows savings regarding the EPC value compared to the FIFO_1 
dispatching rule. This is caused by the fact that using the GGA-HYB schedules are chosen from the set 
of non-dominated schedules. Thus, in situations with locally loose internal due dates, lots can be 
postponed to avoid machine usage in expensive time slots. In contrast, the FIFO dispatching rule does 
not consider the TOU tariff at all, and there is no mechanism to arrange for intended idle times.  

5 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we presented a framework for simulation-based performance assessment of sustainable 
manufacturing decisions in semiconductor supply chains. Requirements for the framework were 
discussed. We then described the main components of the framework. The application of the framework 
was illustrated by applying it to the performance assessment of an energy-aware scheduling heuristic 
for a batch processing tool group in a rolling horizon manner.  

There are several directions for future research. First of all, the framework must be applied to more 
use cases. A natural application is the extension of the integrated planning formulations studied by 
Ziarnetzky et al. (2017) in a rolling horizon setting using the framework. It seems also possible to study 
strategic network design problems in the semiconductor domain taking into account renewable energy 
sources based on the proposed framework. 
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