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ABSTRACT

Simulation is an excellent tool to study real-life systems with uncertainty. Discrete-event simulation (DES)
is a common simulation approach to model time-dependent and complex systems. Therefore, there are a
variety of commercial (Simio, AnyLogic, Simul8, Arena, etc.) and non-commercial (SimPy, Salabim, etc.)
software packages that enable users to take advantage of DES modeling. Although these tools are capable
of modeling real-life systems with a high accuracy, they generally fail to conduct advanced analytical
analysis (i.e., machine learning, interactive visualizations) or complicated optimization (i.e., simheuristics).
Therefore, coupling these DES platforms with external programming languages like Python offers additional
mathematical operations and algorithmic flexibility. This integration makes the simulation modeling more
intelligent and extends its applicability to a broader range of problems. This study aims to provide a
step-wise tutorial for helping simulation users to create intelligent DES models by integrating them with
Python. Multiple demo examples are discussed to provide insights and making this connection based on
commercial and non-commercial DES packages.

1 INTRODUCTION AND RELATED WORK

Simulation packages are a perfect tool to model complex and dynamic systems with non-linear interactions.
Several review papers and tutorials are written to enable users building simulation models using a simulation
software or languages. Based on a subjective evaluation of parameters, Dias et al. (2016) made three
clusters of simulation tools. The first cluster includes ProModel, FlexSim, Simul8, and WITNESS. The
second cluster discusses ExtendSim, Simio, PlantSimulation, and AnyLogic. Finally, the third cluster covers
SimProcess, AutoMod, Micro Saint, QUEST, Enterprise Dynamics, and Process Model. Arena appears in
a different cluster. In another work, Schriber et al. (2012) provided several examples in AutoMod, SLX,
ExtendSim, and Simio to guide user with simulation modeling. Besides, Dagkakis and Heavey (2016)
reviewed an open-source DES with application in manufacturing, services, supply chain management, and
logistics. In addition, authors evaluated and identified the best fitted simulation tools for different modeling
needs. Later, Guimarães et al. (2018) developed a new method for selecting the right DES software to
help and improve the efficiency of processes.

In certain scenarios, simulation models need to be empowered with external environments to support
advanced calculation, optimization, or evaluation. This highlights the importance of intelligent simulation
modeling, where a DES platform is connected with a powerful programming language such as R, Python,
or MATLAB. Due to the ongoing growth of machine learning techniques and optimization algorithms,
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this combination becomes even more necessary than ever. However, there is a lack of tutorials on how to
efficiently combine simulation software with data science programming languages such as Python.

Yuriy and Vayenas (2008) connected AutoMod and Simul8 with an genetic algorithm engine to optimize
equipment reliability assessment. Dehghanimohammadabadi and Keyser (2017) developed an intelligent
simulation model by integrating MATLAB and Simio to perform multiple optimization analysis. In a
similar integration, Dehghanimohammadabadi et al. (2017) created a simheuristic model for a patient
scheduling optimization. Also, van der Ham (2018) introduced a new open-source and object-oriented
package called Salabim. This package is developed in Python, and it includes an animation engine. Salabim
has been used, for instance, to simulate a complex control system in logistics and production environments.
Liu (2020) introduced Simulus, which supports event-driven and process-oriented simulation by utilizing
Python packages and available modules.

Python is a popular language in the field of data science and artificial intelligence. It is widely
used to solve statistical and scientific problems. Combining simulation software with Python will provide
enormous advantages for experimentation, optimization, results analysis, and professional data visualization.
Additionally, it is an open-source language supplemented with multiple libraries for scientific computing,
machine learning, optimization, data science, and big data (Raschka and Mirjalili 2019). Therefore, this
paper aims to promote the development of intelligent simulation modeling by combining different simulation
environments with Python. Some of our main goals are:

• To provide some insights on the use of an open-source simulation package such as SimPy.
• To show how it is possible to integrate commercial simulation packages (i.e., AnyLogic, Simula8,

etc.) with Python.
• To show how the combined approaches can be used in practice to develop powerful simheuristics

(Guimarans et al. 2018; Chica et al. 2020; Rabe et al. 2020).

It has to be noticed that the examples provided in this paper are demo models with simplified details.
Therefore, the applied search or optimization algorithms are simple in order to ensure that the tutorial goals
are met. Users can benefit from the discussed examples and learn how to integrate their simulation models
with Python based on their intelligent simulation needs.

2 SIMPY AND PYTHON

SimPy is an object-oriented and method-based open-source library. It is a powerful tool for developing
DES models. Since it is built in the Python environment, interfacing SimPy models with other Python
algorithms is seamless and trivial. Using SimPy, a user can create simulation models by including methods,
messages, supplies, and vehicles as active components. Additionally, users can get access to other Python
libraries to extend their modeling needs. Hence, SimPy is a non-commercial DES platform that can be
used to simulate different models, such as production planning, hospital operations, and vehicle routing
(Sanguesa et al. 2019). This section shows how to build a DES model using SimPy, and how to perform
a simple execution. To install SimPy, the pip install simpy command has to be prompted.

This example models several electric vehicles (EV) sharing a unique charging station. This model
considers 3 types of EV, each one with a different charging time (12, 24, and 36 hours), whilst the charging
station provides only 2 charging points. The simulation works as follows: each vehicle starts to request a
charging point, if any is available, then it gets parked and proceeds to be charged during its charging time.
Otherwise, it waits until one becomes available. When an EV releases the charging point, it completes
the cycle carrying out a 5 hours trip. This cycle repeats over and over for a specified time horizon of 3
days. The Figure 1 shows the implementation of this model using Python-SimPy. This code defines a class
(ElectricVehicle) with two methods, run() and charging(). SimPy is initialized by calling simpy.Environment
to create an object environment env, which represents the simulation environment. Then, env is passed to

https://simpy.readthedocs.io/en/latest/contents.html
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1 c l a s s E l e c t r i c V e h i c l e :
2 c a r i d = 1
3 d e f i n i t ( s e l f , env , c h a r g i n g , s t a t i o n , d t r i p ) :
4 s e l f . env=env
5 s e l f . c a r i d = E l e c t r i c V e h i c l e . c a r i d
6 s e l f . c h a r g i n g d u r a t i o n = c h a r g i n g
7 s e l f . c h a r g i n g s t a t i o n = s t a t i o n
8 s e l f . a c t i o n =env . p r o c e s s ( s e l f . run ( ) )
9 s e l f . d u r a t i o n t r i p = d t r i p

10 E l e c t r i c V e h i c l e . c a r i d += 1
11 d e f run ( s e l f ) :
12 w h i l e True :
13 y i e l d s e l f . env . p r o c e s s ( s e l f . c h a r g i n g ( s e l f . c h a r g i n g d u r a t i o n ) )
14 p r i n t ( f ’ c a r { s e l f . c a r i d } s t a r t s t r i p a t { s e l f . env . now} ’ )
15 y i e l d s e l f . env . t i m e o u t ( s e l f . d u r a t i o n t r i p )
16 d e f c h a r g i n g ( s e l f , d u r a t i o n ) :
17 wi th s e l f . c h a r g i n g s t a t i o n . r e q u e s t ( ) a s r e q :
18 y i e l d r e q
19 p r i n t ( f ’ c a r { s e l f . c a r i d } i s go ing t o c h a r g e a t { s e l f . env . now} d u r a t i o n { s e l f . c h a r g i n g d u r a t i o n} ’ )
20 y i e l d s e l f . env . t i m e o u t ( d u r a t i o n )
21 p r i n t ( f ’ c a r { s e l f . c a r i d } i s c h a r g e d a t { s e l f . env . now} ’ )
22 i m p o r t simpy
23 n b s t a t i o n s = 2
24 d u r a t i o n t r i p = 5
25 n b c a r s t y p e s = 3
26 c h a r g i n g t i m e s = [ 1 2 , 2 4 , 3 6 ]
27 t i m e h o r i z o n = 3*24
28 env=simpy . Envi ronment ( )
29 c h a r g i n g s t a t i o n s = simpy . Resource ( env , c a p a c i t y = n b s t a t i o n s )
30 f o r i i n r a n g e ( n b c a r s t y p e s ) :
31 E l e c t r i c V e h i c l e ( env , c h a r g i n g t i m e s [ i ] , c h a r g i n g s t a t i o n s , d u r a t i o n t r i p )
32 env . run ( u n t i l = t i m e h o r i z o n ) #3 days

Figure 1: Simpy model.

the ElectricVehicle constructor to create an instance of a car. In this example, 3 cars are created. Each car
starts its trip for 5 hours and stops at the charging station for recharging. There are only 2 charging stations,
so one car needs to wait until another car gets charged. The waiting time defined in three different hours
(charging times = 12, 24, 36). In addition, simpy.Resource() is used to limit the number of simultaneously
used processes. As there is a limitation in the number of charging stations, these can be modeled as a
resource. Hence, EV arrive at the station and place a request to get a full charge. After recharging, cars
start their trips. Figure 2 shows the experimental results with driving and parking starting times. This
model can be extended by including additional cars, charging stations, and key performance indicators,
such as waiting times.

Figure 2: SimPy result.
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3 CALLING PYTHON FROM ANYLOGIC

The AnyLogic (AL) simulation platform is a modern simulation software based on the object-oriented
paradigm. Borshchev (2013) introduced AL as an efficient software that can support different modeling
methods, such as system dynamics, discrete-event, and agent-based. AL supports multiple types of
simulation experiments. For instance, optimization and parameter variation. Besides, different application
problems, such as transportation systems, supply chain management, industrial development, and business
process evaluation can be modeled in AL (Merkuryeva and Bolshakovs 2010; Muravev et al. 2021). A
simulation model in AL includes a set of active objects that work simultaneously and interact with each
other. The active object is the main structure of the model, which enables users to develop their customized
modification. For more details about features and tutorials refer to this website How to learn AnyLogic.

A key advantage of AL is its capability to integrate with Python packages. This enables the simulation
model to interact with external codes written in Python. This connection is supported by a Pypeline library
written in Java. Using this library, AL users can link the simulation model with any customized functions
and algorithms developed in Python environment to support experimentation. Pypeline (pypeline.jar) can
be downloaded from github.com and added to the AL palette. After installation, the Pypeline library will
be added to the AL environment (Figure 3a). At this point, the AL model is ready to connect with Python
by adding an object called pyCommunicator to the main model. As shown in (Figure 3b), Pypeline is
compatible with any Python installation, and it uses the same version as it is installed on the user’s machine.
Therefore, to complete the pyCommunicator settings, a user needs to select an appropriate Python version
and add the Python path (the directory in which the Python is installed.)

C
li
ck

Drag

(a) Pypeline icon (pyCommunicator) on AL palette. (b) Linking Pypeline to Python local installation path.

Figure 3: AL Pypeline library

Pypeline provides two methods of communication. The first function is run, which is the one-
directional statement to send commands to Python. This function can be used in many instances such
as import statements, variable assignments, and function calls. The second function is runResult, which
is two-directional. This function not only sends statements to Python, but it also can receive returns
based on Python calculations. This functionality allows users to change the model configuration, conduct
experiments, and even perform optimization from a Python environment. Both of these functions take a
string as an input to represent execution codes. runResults returns a custom object, Attempt, which includes
two outputs: (i) isSuccessful, a Boolean indicating whether the Python command is successful or not; and
(ii) getFeedback, which shows the model error if it exists.

To illustrate how AL calls Python, a simple simulation model is created based on the the flowchart
depicted in Figure 4. This model contains a source that is the main agent, a queue (a placeholder for agent
to wait for the next process), and a delay that calls the Pypeline file. The delay time directly depends on
the Python file execution time or could vary based on the computation size and complexity. There are two
text elements in the model, calls and result, which represent the number of Python calls and the returned
value, correspondingly. After finishing the process (e.g., the Python computation in this case), the agent
leaves the system from the sink.

https://www.anylogic.com
https://www.anylogic.com/getting-started/
https://github.com/t-wolfeadam/AnyLogic-Pypeline
https://github.com/t-wolfeadam/AnyLogic-Pypeline/releases
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Figure 4: AL simple model.

The Python script that AL calls in this example is a continuous optimization problem to minimize the
basinfunction function defined as follows: f (x) = ∑

n
i=1 a(xi−h)2 +k, where x ∈ [−0.5,0.5] is the decision

variable, with constant parameters n= 2, a= 0.5, h= 2, and k =−5. To solve this problem, a randomSearch
algorithm is coded in Python (Figure 5).

1 i m p o r t math , random , t ime
2 ## Bas in f u n c t i o n code
3 d e f b a s i n f u n c t i o n ( v e c t o r ) :
4 a , h , k = 0 . 5 , 2 , −5
5 # based on f o r m u l a t e we have some c o n s t a n t v a l u e a =0 .5 , k= −5 , h=2
6 sum = 0
7 f o r i t em i n v e c t o r :
8 sum = sum + a * pow ( ( i t em − h ) , 2 ) + k
9 r e t u r n sum

10

11 d e f randomSearch ( s e a r c h S p a c e , p r o b l e m S i z e ) :
12 # s e a r c h s p a c e i s min and max r a n g e of c o r d i n a t e
13 min = s e a r c h S p a c e [ 0 ] #min v a l u e i n s e a r c h s p a c e
14 max = s e a r c h S p a c e [ 1 ] #max v a l u e i n s e a r c h s p a c e
15 i n p u t V a l u e s = [ ] # l i s t o f v a l u e s
16 f o r i i n r a n g e ( 0 , p r o b l e m S i z e ) :
17 i n p u t V a l u e s . append ( min + ( max − min ) * random . random ( ) )
18 r e t u r n i n p u t V a l u e s
19

20 ## S o l v e r Framework ##
21 d e f S o l v e r ( m a x I t e r a t i o n s =1000 , p r o b l e m S i z e =2) :
22 b e s t S o l = None
23 s e a r c h S p a c e = [ −5 , 5 ]
24 b e s t C o s t = f l o a t ( ’ i n f ’ )
25 w h i l e m a x I t e r a t i o n s > 0 :
26 newsol = r a n d o m S o l u t i o n ( s e a r c h S p a c e , p r o b l e m S i z e )
27 newCost = b a s i n f u n c t i o n ( newsol )
28 i f newCost < b e s t C o s t :
29 b e s t S o l = newsol
30 b e s t C o s t = newCost
31 m a x I t e r a t i o n s −= 1
32 r e t u r n ( b e s t C o s t )

Figure 5: Random search algorithm.

This code includes a function called Solver. This function runs the randomSearch to minimize the
basinfunction objective function. This algorithm creates a new solution (newsol) by randomly selecting a
value for x in each iteration. Once the search is complete, the best ever found solution (bestSol) and its
corresponding cost (bestCost) are returned.

To run the Python code from the AL model, the model properties need to be edited properly. This
change can be done as follows:

1. From the main tab, select the main-agent type.
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2. Modify the Agent action by changing the on startup settings (Figure 6):
•Syntax 1: pyCommunicator.run(“import filename”), which imports the Python file.
•Syntax 2: pyCommunicator.run(“result, calls=0,0”), which calls the Python function and
receives its results.

Figure 6: Call Python file.

3. From the delay object, modify the on exit event setting to enable the AL model to trigger the Python
code (Figure 7). These changes are as follows:

•Syntax 1: pyCommunicator.run(“calls += 1”) to increment the number of times the Python
files are called.

•Syntax 2: pyCommunicator.run(“results = round(Model.Solver(), 4)”) deploys the random
search algorithm written in the Solver function. The number 4 determines how many decimal
points of accuracy have to be included in the results.

•Syntax 3: Attempt attempt1 = pyCommunicator.runResults(“calls”) to enable the AL model
to trigger Python.

•Syntax 4: Attempt attempt2 = pyCommunicator.runResults(“results”) to enable the AL model
to receive Python results.

Figure 7: On exit properties of ”delay”.

•Syntax 5 to 8: The rest of the codes are for matching the datatype between Python and AL,
as well as for displaying the results on the AL screen (Figure 8).

4 CALLING ANYLOGIC FROM PYTHON

AL provides a cloud API for Python, which gives the capability of running simulation models in the
cloud. Performing models in the cloud have the advantage that it may release computational and hardware
requirements. To learn how to use this API, interested users can refer to AL cloud website. This section,
shows how to take advantage of this API based on an existing Service System Demo model. This model
contains a single source, a service module, a checkpoint, and one sink, as it is shown in Figure 9.

https://cloud.anylogic.com/files/api-8.5.0/docs/index.html#1-overview
https://www.anylogic.com/blog/python-api-for-simulations-in-anylogic-cloud/
https://cloud.anylogic.com/model/1ba2f2f6-7c7f-4067-885a-441bb0bd5d03?mode=SETTINGS
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Figure 8: The structure of AL model integrated with Python.

source tsStart service check tsEnd sink

Figure 9: Service System Demo Model.

The model simulates a service process and allows a user to perform experiments by changing the model
configuration (e.g., the server capacity). The model outputs are the average size of the service queue and
the resource utilization. The following steps provide guidelines to develop AL models from cloud client
in Python (Figure 10):

1. Install the AL cloud client library by using the pip package manager from the command line (line
2).

2. Import the AL cloud client library, and set the client object API key: e05a6efa-ea5f-4adf-b090-
ae0ca7d16c20 (lines 4 to 8).

3. Create a model object using the client.get latest model version() function. This makes the interaction
between Python and AL to be seamless for inputs, outputs, and dashboard configurations (line 11).

4. Establish the experimental settings input using client.create inputs from experiment(). The input
value can be user-defined (e.g., Server capacity is set to 10) (lines 14 to 17).

5. Develop the remote AL simulation model using the client.create simulation() function and embedding
the experimental inputs. (line 20).

6. Retrieve the simulation results by triggering the simulation experiments with
simulation.get outputs and run if absent() (line 23).

Figure 11 shows the experiment results of the aforementioned model with a server capacity of 10
units. These results show the mean service queue size of approximately 1 person, and the average Server
utilization of 0.25.

5 CALL SIMUL8 FROM PYTHON

Simul8 is a simulation software that is used for simulating the discrete-entities processing at the discrete
time. It is useful not only in industry, but also in academia. Simul8 visualizes the processes by using 2D
animation, and it is suitable for DES. Also, it operates with 6 main parts, such as work item, entry point,
storage bin, work center, work exit point, and resource (Elder 2014). This section elaborates on how to
interface Simul8 with Python based on the example provided in Simul8.com. It needs to be noted that,

https://www.simul8.com/support/help/doku.php?id=features:com:python
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1 # i n s t a l l t h e AnyLogic c l o u d c l i e n t l i b r a r y
2 p i p i n s t a l l h t t p s : / / c l o u d . a n y l o g i c . com / f i l e s / ap i − 8 . 5 . 0 / c l i e n t s / a n y l o g i c c l o u d c l i e n t −8 .5 .0 − py3 −none −any . whl
3

4 # Load a n y l o g i c c l o u d c l i e n t l i b r a r y
5 from a n y l o g i c c l o u d c l i e n t . c l i e n t . c l o u d c l i e n t i m p o r t C l o u d C l i e n t
6

7 # C r e a t e a C l o u d C l i e n t o b j e c t , g i v e n t h e API key
8 c l i e n t = C l o u d C l i e n t ( ” e05a6efa − ea5f −4 adf −b090 − ae0ca7d16c20 ” )
9

10 # O bt a i n l a t e s t model v e r s i o n o f ” S e r v i c e System Demo” model
11 model = c l i e n t . g e t l a t e s t m o d e l v e r s i o n ( ” S e r v i c e System Demo” )
12

13 # C r e a t e an I n p u t s o b j e c t w i th t h e d e f a u l t i n p u t v a l u e s
14 i n p u t s = c l i e n t . c r e a t e i n p u t s f r o m e x p e r i m e n t ( model , ” B a s e l i n e ” )
15

16 # Change t h e ” S e r v e r C a p a c i t y ” p a r a m e t e r v a l u e
17 i n p u t s . s e t i n p u t ( ” S e r v e r c a p a c i t y ” , 10)
18

19 # C r e a t e a s i m u l a t i o n o b j e c t w i th t h e i n p u t s
20 s i m u l a t i o n = c l i e n t . c r e a t e s i m u l a t i o n ( i n p u t s )
21

22 # O bt a i n t h e s i m u l a t i o n o u t p u t s
23 o u t p u t s = s i m u l a t i o n . g e t o u t p u t s a n d r u n i f a b s e n t ( )
24

25 p r i n t ( ” For S e r v e r C a p a c i t y = ” + s t r ( i n p u t s . g e t i n p u t ( ” S e r v e r c a p a c i t y ” ) ) )
26 p r i n t ( ”Mean queue s i z e = ” + s t r ( o u t p u t s . v a l u e ( ”Mean queue s i z e |Mean queue s i z e ” ) ) )
27 p r i n t ( ” S e r v e r u t i l i z a t i o n = ” + s t r ( o u t p u t s . v a l u e ( ” U t i l i z a t i o n | S e r v e r u t i l i z a t i o n ” ) ) )

Figure 10: An example of calling AL model from Python using AL cloud client.

Figure 11: Output produced by the example presented using the AL cloud API for Python.

the 32-bit version of Python is recognizable by Simul8 as a COM application (you should use pip install
pywin32). The following steps explain the syntax codes provided in Figure 12:

1 i m p o r t win32com
2 from win32com i m p o r t c l i e n t
3 from win32com . c l i e n t i m p o r t makepy
4 makepy . main ( )
5 c l a s s E v e n t H a n d l e r :
6 d e f OnS8Simulat ionEndRun ( s e l f ) :
7 n=1
8 w h i l e ( n <= S8 . R e s u l t s C o u n t ) :
9 p r i n t ( S8 . R e s u l t s ( n ) )

10 n +=1
11 S8 = win32com . c l i e n t . D i s p a t c h ( ” Simul8 . S 8 S i m u l a t i o n ” )
12 S8 . Open ( r ”C:\ Program F i l e s ( x86 )\SIMUL8 P T\Examples\OptQuest\C a l l C e n t e r 1 . s8 ” )
13 e v e n t s = win32com . c l i e n t . Wi thEven t s ( S8 , E v e n t H a n d l e r )
14 S8 . RunSim ( 3 0 0 )
15 S8 . Qu i t ( )

Figure 12: Python code to run a model.

1. Import the required packages (lines 1 and 2).
2. Import makepy, which is a specific file for win32com – it is required to create COM modules out

of COM-enabled applications (line 3).
3. Enter into the Makepy file by running the Python code (line 4), and then select the Simul8 Library

from the list (Figure 13).
4. Create a class called EventHandler, which counts the number of times tha Simul8 is called, and

prints the simulation results (lines 5 to 10).
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Figure 13: Simul8 library.

5. Use the dispatch method to open the Simul8 software (line 11).
6. Open the developed simulation model (Figure 14a) (line 12).
7. Connect the EventHolder class with Simul8 (line 13).
8. Run the simulation experiment for 300 minutes (line 14) and then terminate the the execution (line

15). Finally, Figure 14b demonstrate the result.

(a) Simul8 example model. (b) Result in Python.

Figure 14: Simul8 model and result

6 CONCLUSIONS AND FUTURE WORK

This paper offers a tutorial on how to integrate several DES platforms with Python. Some examples are
introduced to illustrate the potential applicability of combining Python with SimPy, AnyLogic, and Simul8.
Each of these models require different settings and offer their own pros and cons. To draw some insights,
Figure 15 depicts a comparison of the tested DES platforms, which have been evaluated according to the
following metrics:

• Easy to integrate with Python: the API capability of each application to be integrated with Python.
• Documentation: the availability of documentation provided by vendors or users.
• Remote access: ability to be accessed remotely without opening the software application.
• Simulation capability: simulation modeling features and complexity.

Notice that SimPy is an effective package with complete documentation that can help users to build
a simulation model. However, Simul8 and AL have more capabilities for building complex DES models.
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Figure 15: A comparison of different integration schemes.

Between these two simulation platforms, AL is easier to integrate with Python when designing simulation-
optimization approaches.

As many real-life systems work under uncertainty conditions and might need to be optimized, simheuristic
algorithms have become an excellent option. They combine scalable metaheuristic components with
simulation. Therefore this work helps users to develop rich simheuristic algorithms that combine sophisticated
metaheuristic frameworks with complex DES models. Of course, these rich simheuristics might contribute
to generate insights in many real-life stochastic optimization problems, ranging from transportation and
logistics to manufacturing and production or smart cities.

In future work, we plan to extend this tutorial to other simulation platforms. However, this has
not been possible so far due to the lack of documentation and Python-specific APIs. Since Python
has become the standard programming language in data science, we encourage the firms offering state-
of-the-art simulation software included in (Simio, Arena, WITNESS, FlexSim, ProModel, ExtendSim,
PlantSimulation, SimProcess, AutoMod, Micro Saint, QUEST, Enterprise Dynamics, Process Model, etc.)
to increase their connectivity options with the Python programming language, which is being employed
by a vast number of data scientists worldwide.
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