
electronics

Article

Measuring the Realtime Capability of
Parallel-Discrete-Event-Simulations

Christina Obermaier 1,* , Raphael Riebl 1 , Ali H. Al-Bayatti 2 , Sarmadullah Khan 2 and Christian Facchi 1

����������
�������

Citation: Obermaier, C.; Riebl, R.;

Al-Bayatti, A.H.; Khan, S.; Facchi, C.

Measuring the Realtime Capability of

Parallel-Discrete-Event-Simulations.

Electronics 2021, 10, 636. https://

doi.org/10.3390/electronics10060636

Academic Editors: Ignacio Soto and

Maria Calderon

Received: 30 December 2020

Accepted: 3 March 2021

Published: 10 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CARISSMA, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany; raphael.riebl@thi.de (R.R.);
christian.facchi@thi.de (C.F.)

2 School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK;
alihmohd@dmu.ac.uk (A.H.A.-B.); sarmadullah.khan@dmu.ac.uk (S.K.)

* Correspondence: christina.obermaier@thi.de; Tel.: +49-841-9348-6483

Abstract: Speeding up Discrete Event Simulations (DESs) is a broad research field. Promising Parallel
Discrete Event Simulation (PDES) approaches with optimistic and conservative synchronisation
schemes have emerged throughout the years. However, in the area of real-time simulation, PDESs are
rarely considered. This is caused by the complex problem of fitting parallel executed DES models to
a real-time clock. Hence, this paper gives an extensive review of existing conservative and optimistic
synchronisation schemes for PDESs. It introduces a metric to compare their real-time capabilities to
determine whether they can be used for soft or firm real-time simulation. Examples are given on
how to apply this metric to evaluate PDESs using synthetic and real-world examples. The results
of the investigation reveal that no final answer can be given if PDESs can be used for soft or firm
real-time simulation as they are. However, boundary conditions were defined, which allow a use-case
specific evaluation of the real-time capabilities of a certain parallel executed DES. Using this in-depth
knowledge and can lead to predictability of the real-time behaviour of a simulation run.

Keywords: real-time simulation; Vehicular Ad Hoc Networks; Discrete Event Simulation; network
simulation

1. Introduction

Discrete Event Simulations (DESs) are used to model systems that cannot be described
with continuous simulation [1]. In contrast to continuous models, DES change their internal
simulation states only in response to events bound to specific timestamps. Simulation
frameworks like OMNeT++ (https://omnetpp.org/ (accessed on 15 December 2020)) can be
used to model any event discrete system without being restricted to a certain domain. Other
simulators are bound to specific domains like NS-3 (https://www.nsnam.org/ (accessed on
15 December 2020)), which is dedicated to computer networks. DESs frameworks provide
an environment that is used for the development of simulation models which cover the
domain-specific properties of a certain system to simulate.

When speaking of DES, traditionally, their simulation models are executed in a single-
threaded fashion. According to Fujimoto [2], this simplifies the event scheduling, as a
single-threaded simulation is a closed system without stimuli from other execution contexts.
However, the growing complexity of simulation models is consuming the calculation
capacity of one computing core to the fullest. This results in very limited execution speed
for certain models. Especially, in the area modelling large wireless networks with high
node mobility, the scenario complexity is restricted due to the vast time consumption of a
simulation run.

At first glance, this might not be a severe problem. Waiting for a week until a simula-
tion of two or three simulated real-world seconds has finished might just be tiring, but it is
not affecting simulation results. However, certain use cases require simulations to interact
with real hardware. In this case, slow-paced execution speed of a simulation is affecting

Electronics 2021, 10, 636. https://doi.org/10.3390/electronics10060636 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8532-2823
https://orcid.org/0000-0001-8443-1411
https://orcid.org/0000-0002-8062-1258
https://orcid.org/0000-0002-6284-9267
https://orcid.org/0000-0002-7762-9419
https://doi.org/10.3390/electronics10060636
https://doi.org/10.3390/electronics10060636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://omnetpp.org/
https://www.nsnam.org/
https://doi.org/10.3390/electronics10060636
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10060636?type=check_update&version=2

Electronics 2021, 10, 636 2 of 23

their results. Closed-loop Hardware in the Loop (HIL) testbeds are a perfect example for
simulation systems, demanding real-time execution speed. Even though more capable
hardware could be used, many existing models still exceed the power of a single core to be
real-time capable.

Vehicular Ad Hoc Network (VANET) simulators like presented by Hegde and
Festag [3] are such a calculation-intensive domain when complex scenarios are computed.
VANETs are networks which are established between several participants in road traf-
fic [4]. These can be, among others, cars, motorcycles, trucks or roadside units. Realistic
vehicle mobility is required to evaluate the network behaviour properly. Thus, coupling
the network simulation with a vehicle traffic simulator is advisable, as as described by
Sommer et al. [5]. Research on VANET performance, that is, channel congestion and packet
routing, demands for a high number of communicating vehicles. For this reason, city-scale
scenarios like the Luxembourg scenario presented by Codeca et al. [6] are required. This
leads to a significant lack of simulation speed, like shown by Obermaier et al. [7]. Hence,
several research groups already tackled the problem of speeding up DES in general by de-
veloping strategies for executing them on several cores. However, none of these approaches
consider real-time simulation.

As Parallel Discrete Event Simulations (PDESs) aim for increasing the overall simu-
lation speed, use cases that require simulations to be carried out in real time might also
benefit from these ideas. However, according to literature, PDES were not designed with
real-time execution in mind. Thus, this paper proposes a metric that allows for ranking
parallel executed DES with respect to their real-time behaviour regardless of the employed
synchronisation strategy. This metric can be used to further investigate the question if
PDESs are possible in general for simulations running in real-time. However, rankings
discovered using the metric cannot be transferred easily between modelling frameworks
and synchronisation strategies. This is caused by the fact that modelling paradigms have a
significant impact on the results of a simulation model.

Evaluation of the timing behaviour of a HIL system is mandatory when it comes to
execution of realistic test cases. However, this is often neglected in current literature. For
example the Vehicle-to-Everything (V2X) communication simulator developed by Zhang
and Masoud [8] states to have an adapter to integrate real-world hardware to facilitate HIL
tests. However, they do not evaluate their system with respect to actual timing. Similarly,
Menarini et al. [9] present a dedicated V2X HIL framework without further insights of the
timing behaviour. Thus, this paper presents a solution how such a real-time analysis can
performed without being bound to any specific simulation system or simulator. To do so, a
metric is presented, allowing to compare different simulators with respect to their real-time
behaviour. Moreover, the metric is designed to be suitable for any kind of DES simulator,
independent if they are executed on one or several cores.

This paper is organized as follows: Section 2 revisits the definition of a DES. Also,
principles of real-time simulation are presented. In Section 3, a vast overview of PDES
architectures found in literature is shown. Section 4 introduces the metric to analyse the real-
time capabilities of a simulation run. A demonstration, how this metric can be applied, is
detailed in Section 5. Section 6 shows which requirements must be fullfilled by a simulation
framework for the metric to be applicable. It is also presents boundary conditions and how
they correlate to the outcome of the metric. Section 7 concludes the paper and outlines
future work.

2. Time in Discrete Event Simulations

DESs are often used to model systems that cannot be depicted using continuous
simulation systems. Common use case are simulations of computer networks or other
complex connected systems [10]. Thus, DES frameworks share a common aim—providing
a framework that abstracts from a particular simulation model as much as possible to untie
a simulator from specific domains.

Electronics 2021, 10, 636 3 of 23

2.1. Real-Time Systems

Before discussing how time affects a DES, the overall concept of real-time systems
must be revisited. The main feature of a real-time system are deadlines which the system
has to meet reliably when executing tasks [11]. Meeting deadlines means that the real-time
system must be able to observe when tasks finish. Moreover, the system has to report if the
required deadline was violated or avoid violating them completely. According to Laplante
and Ovaska [12] and Erciyes [11], real-time systems can be divided into three categories,
each of them with their own features and requirements:

1. Soft real time is the weakest category of systems executed in a real-time manner. In
this category, missing a soft deadline is allowed and not critical at all. However, the
overall system’s gain degrades depending on the amount of missed deadlines [11,12].
An example of such a system would be a multimedia stream, whose quality lowers
when certain frames do not arrive in time.

2. Firm real-time systems describe systems which are not allowed to miss a single dead-
line. Their gain immediately degrades to zero, when one deadline is missed. However,
no fatal injuries or high costs are caused by such a missed deadline [11,12]. VANET
HIL testbeds are examples for firm real-time systems: No injuries are caused when
the testbed misses its deadlines but the test run looses all its significance.

3. Hard real time is the strongest category of real time. Missing a hard deadline can
cause catastrophic results, which means special hardware and software is required
to ensure that each and every is met [11,12]. Examples for such systems can be
found in many disciplines, like airbag Electronic Control Units (ECUs) or aircraft
manoeuvring systems.

Soft and firm real-time systems can be implemented without the need of special
hard- or software. It is sufficient for the system to watch the set deadlines and report
violations or apply recovery strategies upon violation. For hard real-time systems, however,
guaranteeing deadlines is mandatory. Thus, hard- and software need to be able to enforce
execution of tasks within a certain time span. For example, real-time operating systems
like Linux systems with real-time extensions or dedicated microcontrollers can guarantee
this strict timing.

Commonly, DESs are running on commodity hardware without real-time features
in place. This means that it is not possible for them to meet hard real-time requirements.
Thus, this paper focuses on soft and firm real time, as this is achievable with off-the-shelf
DESs like OMNeT++. In the following, this paper refers to soft and firm real time, except
where hard real time is explicitly mentioned.

2.2. Discrete Event Simulations

In contrast to continuous simulation, DESs do not assume a uniform flow of time.
Whereas a continuous simulation is in a permanent state of flux, state changes in discrete
event models happen only at specific points in time [13]. These time points are bound to
certain events, as shown in Figure 1. The simulated time jumps from event to event as the
time between events can be skipped entirely [14]. Between events, the simulation state
is fixed.

Events are stored in a so-called Future Event Set (FES). The FES can be seen as a list
of all already known future events. At the very beginning of a simulation, at least one
event has to be scheduled in the FES, as an empty FES indicates a finished simulation
run. This initial event usually generates subsequent events which are scheduled at future
time points. However, events do not need to be generated in a timely ordered manner.
For example, the events shown in Figure 1 could occur this way: The initial event is the
green event scheduled at time point 0. This event is subsequently creating the blue and
the yellow event bound to the time points 5 and 20, respectively. At time point 5, the blue
event is creating the orange event, which is tied to time point 9, and therefore, has to be
executed before the yellow event is executed. Thus, the internal event scheduler has to
take care of establishing a correct timeline by executing the events in chronological order.

Electronics 2021, 10, 636 4 of 23

This is required to ensure that no causal dependencies of events are violated. Hence, to
ensure deterministic event processing, the scheduler takes care of maintaining an ascending
simulation time. During event execution, it is also possible to cancel already scheduled
events. However, this event’s timestamp has to be in the simulated future [10].

0 5 9 20

Figure 1. Discrete events at certain time points.

As already mentioned, the time in a DES is not bound to any continuous wall-clock or
Central Processing Unit (CPU) time. Hence, the current simulation time has to be stored in
a variable. During the main simulation loop, which is processing event after event, this
variable will be updated at the beginning of each event. Thus, when requesting the current
simulation time during the execution of a single event, the simulated time will not change,
independent of the CPU time needed to execute the event. Even more, it is common that an
FES might contain events which are scheduled at the exact same timestamp. Even though
the sequential execution of these events might take quite a high amount of CPU time, the
simulation time remains the same for all events scheduled at the same time [10].

2.2.1. Formal Description of DES

A detailed formal description of a basic DES system M can be found in [15]:

M = 〈X, S, Y, δint, δext, λ, ta〉, (1)

where X is the set of input values, S the set of states and Y is the set of output values.

δint is the internal state transition function δint : S→ S.
δext is the external transition function δext : Q × X → S where Q = {(s, e)|s ∈ S,
0 ≤ e ≤ ta(s)} is the total state set and e the elapsed time since the last event.
λ describes the output function λ : S→ Y.
ta is the time a system stays in a state s with the mapping ta : S→ R+

0,inf.

At the beginning of a simulation run, the whole system with all its components is in
a specific state s. This state is defined by, among others, the given input values x. As no
state changes occur without events, the next state change can be predicted by ta(s) when
looking at the next scheduled event in the FES. Zeigler et al. [15] divide events into internal
and external events. Whilst the next internal event is always known by a simulated system
(as it schedules this internal event for itself), external events maybe not always known.
Hence, when an external event changes the state s to a state s′, internal events might be
cancelled or changed.

2.2.2. DES with Several Connected Components

Usually, a DES does not only consist of one component, like specified in Equation (1).
Modelling a whole system as one component is more complex than breaking the system
down into several sub-components. Thus, Zeigler et al. [1] extend the specification defined
by Equation (1) to cover a system with an arbitrary amount of components connected
trough their input and output interfaces:

multiDEVS = 〈X, Y, D, {Md}, Select.〉 (2)

Electronics 2021, 10, 636 5 of 23

A multiDEVS is a Multi-Component (MC) System, with X as a set of input events, Y as
a set of output events and D a set of references to the components in the system.

The select function 2D → D is employed when simultaneous events are occurring.
For each d ∈ D the following definition exists:

Md = (Sd, Id, Ed, δext,d, δint,d, λd, tad) (3)

Sd is the set of sequential states of d.
Qd defined as Qd = (s, ed)|s ∈ Sd, ed ∈ R is the set of all states of component d.
Id ⊆ D are all components influencing d.
Ed ⊆ D are all components which are influenced by d.
δext,d : ×i∈Id Qi ×j∈Ed X → ×Qj is the external state transition function of d.
δint,d : ×i∈Id Qe → ×j∈Ed Qj is the internal state transition function of d.
λ : ×i∈ Id Qi ×Ω→ Y is the output event function of d.
tad : ×i∈ Id Qi → R+

0,inf.

This formal definition comprises the attributes a DES framework must imply. Basically,
it shows that a MC DESs contains independent components with a finite amount of states
Qd. State transitions can be initiated by events causing internal state transitions δint,d or
external state transitions δext,d. Each event is bound to a specific timestamp. In the case
of two events happening on the exact same timestamp, the Select function, as defined by
Zeigler et al. [1], is used to determine which event is executed first. As DESs are required
to be homomorph [1], and therefore deterministic, the time each component stays in a
particular state tad can be calculated. This time is used to calculate the order of events.

In the case of a VANET simulation, the component’s granularity of a multiDEVS can
vary significantly. A coarse variant may represent each vehicle by a single component, finer
models can break down the vehicle component in further sub-components, for example,
drivetrain, V2X radio, ADAS and so forth. Independent of the system’s granularity, the
set of influencers Id and the set of influenced components Ed are quite large. As a result of
frequent, wireless message exchange between the simulated vehicles, every vehicle can
influence every other vehicle causing many external state transitions. In conventional,
single-threaded DES systems, all components are executed on one Logical Process (LP).
Thus, no further effort is needed to synchronise those components, even in case of external
state transitions. In parallel executed DES systems, however, those external state transitions
must be synchronised if the components are split among several LPs.

Even though such a DES framework is deterministic by default, it can be used to
simulate non-deterministic systems. Pseudorandom generators can be applied to cover
the non-deterministic behaviour of such systems. This means that randomisation is based
on a pre-defined seed, which acts as an input value of the simulation. This allows a test
designer to generate reproducible and deterministic scenarios as long as the seed is not
changed. However, varying these seeds allows to capture the outcome of non-deterministic
systems statistically.

2.2.3. Time in DES

The simulation time in a DES is represented by a value containing the abstracted time
as a real number. Equation (4) defines time as a structure based on a set of time points T
and their ordering by the relation ≤.

time = 〈T,≤〉. (4)

Partial ordering of the set is chosen with good reason, as Zeigler et al. argue. The
partial ordering of time represents the system model of a complex DES more precisely than
a total ordering. This is caused by uncertain trajectories of events and their corresponding
state changes. In Equation (2), the Select function helps to resolve issues with events
occurring at the same time point.

Electronics 2021, 10, 636 6 of 23

2.3. Real-Time Simulation

DESs executed in real-time constitute a small subset of wall-clock time-independent
DESs. They aim to align their advance in discretised simulation time with the continuous
wall-clock time. This simulation paradigm is often employed if the simulated system
has to interact with a certain non-simulated system. A well-known example of real-time
simulations are flight simulators for training aircraft pilots. The simulation framework
must be able to cope with inputs from the pilot in real-time to allow for a realistic training
experience. However, aligning the simulated time to the wall-clock time is twofold: It can
mean to slow down or speed up the simulation. Compared to speeding up simulations,
slowing down is a trivial task. In DESs, the time at which an event is meant to be executed
is known in advance. Thus, if this event is in the distant future, slowing down means to
wait for the event’s starting time before executing the simulated event. For speeding up
simulations, however, things become more complicated. Two options exist to speed up a
simulation whose execution is too slow for being real-time capable. On the one hand, the
simulation models can be simplified; on the other hand, the simulation framework itself
can be improved to execute the models faster. Former is often not viable as aggressively
simplifying a simulation model also reduces its quality. Latter is well-studied in literature
through speeding up existing simulation models by employing PDES frameworks.

In conventional, none real-time DESs, the correctness of the simulation result does
only depend on the deterministic execution of the generated events. Hence, the simulation
itself is a closed system, not interacting with any external influencing system. However, in
real-time simulations, the wall-clock time becomes an entity which is able to significantly
affect the simulation’s outcome [16]. To avoid confusion between the different concepts of
time which are present in real-time simulation, the following definitions by Fujimoto [2]
are revisited:

• Physical time is the time flow that is experienced by a system. Counterintuitively, such
a system must not be present as a physical device. A simulated system is also experi-
encing the physical time as the time which is currently real for this system. Hence,
the physical time is the time a component notices, be it simulated or a real-world one.
Even inside the DES, the current physical time is not equal to all components. This
results from the non-continuous time advance when events are executed. When time
advances for one component, time might not advance for other components at the
same moment.

• Simulation time is the abstraction of time inside the simulation. Its absolute start value
and epoch can be adjusted. Commonly, these values are input variables of a DES
simulation. The simulation time is also used to derive the physical time for a certain
simulated system.

• Wall-clock time is the real atomic time that is elapsing during the simulation, regardless
of the simulation time.

Fujimoto [2] explains the relation between wall-clock time and simulation or physical
time as follows: If the simulation time advances at a different speed than the wall-clock
time, the simulated environment becomes unrealistic. Depending on who is interacting
with the simulated environment, this can have distinct impacts: If a human is interacting
with the simulated system and the simulation time advances too slow, the system feels
unresponsive and delayed. If other hardware components interact with the simulated
environment in a HIL setup, Bacic [17] argues that real-time principles are violated. This
inhibits a Device Under Test (DUT) from being able to operate accurately in its required
real-time context.

Real-time simulation using DESs is frequently used in the area of VANET HIL testing,
as shown by [9,18,19]. However, due to their restrictive simulation to wall-clock-time
deviation, the scenario complexity of these frameworks is limited. Cheung and Loper [20]
present design principles for Distributed Interactive Simulation (DIS). They state that
synchronisation is a very important factor for real-time distributed simulation and, for
their analysed studies, fall into conservative synchronisation. Cheung and Loper stated

Electronics 2021, 10, 636 7 of 23

that they designed their system with human interaction in mind. This results in timing
constraints between 100–300 ms. However, their definition of real-time cannot be compared
with real-time requirements in current HIL systems. Those systems tend to limit their
simulation time to wall-clock-time deviation to a maximum of ten milliseconds.

Earle et al. [21] present a new methodology that allows formalising the development
process of embedded systems. They developed a real-time extension for the DES Cad-
mium. For this purpose, an asynchronous event handler was developed, which allows
for processing of events that are not known by the simulation scheduler in advance. They
employ a real-time clock that delays events equivalent to the time advance, compared to
instant time advance in non-real-time DESs. They also state that it is important to watch
the deviation between the simulation clock and the real-time clock. A quite similar concept
was developed for the OMNeT++ by Obermaier et al. [7].

3. State of the Art: Parallel Discrete Event Simulation

PDESs are an approach for speeding up common single-threaded DESs. They tackle
the problem that the model’s complexity is rising faster than hardware evolves. In conse-
quence, it is not sufficient to just use new computing clusters to simulate current problems
in a reasonable time, as the evolution of pure single-core computing power nearly came to
a standstill. A lack of simulation speed was already experienced back in 1986, as Misra
shows in [22]. He explains that executing complex models often requires an utterly high
amount of time to be executed. Even though hardware evolved throughout the last 30 years,
the solution for the lack of simulation speed still remains similar: Executing a model in a
parallel simulation environment while maintaining all features of a deterministic, single-
threaded DES. However, Zeigler et al. [1] state that simulating complex models in parallel
is not a straightforward task as there are strong causal relations between the simulated
components. However, most requirements of PDESs can be traced back to the Causality
constraint defined by Fujimoto et al. [14]: When components in a simulation model are only
able to communicate through defined inputs and outputs, they obey that constraint only if
each component processes its events in non-decreasing timestamp order.

Two different groups of approaches have emerged during the last 30 years to satisfy
this constraint for PDESs—conservative and optimistic synchronisation strategies [14]. The
basic principle in optimistic PDES is to employ an independent timeline for each LP, which
are also called workers [14]. Compared to a single-threaded DES, each worker executes
its own FES, without having knowledge about other FESs executed by other workers.
However, this causes a significant dilemma—when an event executed on worker1 involves
an entity that is simulated on worker2, the current physical times of the involved simulated
entities on worker1 and worker2 might not be equal. This is caused by an unavoidable
irregular distribution of events in the independent FES of each worker. Thus, if the entity
on worker2 receives an event from worker1, and this event belongs to the past with respect
to the physical time of the entity on worker2, all events executed from the current physical
time until the time of the outdated event have to be rolled back. After this rollback, the
remote event from worker1 can be executed, and all the rolled back events can be re-applied.
If the remote’s event time point is later than the physical time, the event is scheduled like a
normal worker-internal event.

According to Fujimoto et al. [14], conservative, also named as known future, is the
second major synchronisation approach of PDES. This approach does not require any
rollback functionality. A new event will only be executed if all other events will happen in
the future. Various approaches exist to make the future known for all workers. For example,
the Null Message approach [2] is one of the earliest conservative approaches which created
heavy overhead caused by, among others, its deadlock detection and resolution. Especially
if the lookahead window is short, many Null Messages have to be created. However,
conservative algorithms are easier to understand and implement compared to optimistic
approaches. Nonetheless, they require the model writer to provide sufficient lookahead

Electronics 2021, 10, 636 8 of 23

information. The better the lookahead information, the longer each worker can look into
the future, and the overall overhead is lowered.

Additionally, these approaches can be combined with strategies to lower the model
complexity, such as problem division, as Panchal et al. [23] explain. Problem dividing is
commonly used when it is possible to split a simulation model into several independent
tasks. In consequence, those independent tasks are easier to synchronise between worker
threads due to well-defined interfaces. Hence, the overall problem must be split according
to the different features of the simulation model. For example, when simulating VANETs, a
network simulation as well as a traffic simulation is needed. Often these two simulations
are executed by different tools, as shown in [5] and can be seen as independent features
of the simulation. Hence, it would be possible to split the complex problem of simulating
network traffic and road traffic simultaneously. Thus, both simulators could be run on two
different cores. If this is still not enough, a second division feature could be the current
location of a vehicle or the channel on which the vehicle is communicating.

3.1. Optimistic PDEs

Carothers et al. [24] designed their Rensselaer’s Optimistic Simulation System (ROSS)
framework in 2002. According to them, it is a highly modular kernel which is able to
simulate over a million events per second on a quad-core processor. From the beginning,
they focused on utilisation of many cores with as little as possible memory consumption
while developing their framework [25,26]. Barnes et al. [25] show that they are able to
execute a time warp simulation on nearly two million cores using the ROSS framework.
They run the ROSS framework on a Sequiia Blue Gene supercomputer for this purpose.
They systematically evaluated the framework using the PHOLD benchmark with up
to 7.89 million Message Passing Interface (MPI) tasks. Barnes et al. assessed different
distributions of local and remote events and evaluated their impact on the simulation
speed. In their work, they describe the difference between local events and remote events
as follows: Local events have only causal dependencies to other events on the same worker.
Remote events, however, are influencing other events on other worker threads. Their results
show that, even on lower numbers of local events, and therefore higher numbers of remote
events, the ROSS framework shows a significant performance increase compared to earlier
implementations. Mubarak et al. [26] simulated large-scale HPC network systems using
the ROSS simulation framework. They generated different synthetic workloads to evaluate
performance implications for the HPC network. The network topologies have been torus
and dragonfly networks. A torus network is an n cube network with each node connected
to 2 × n other nodes. Dragonfly networks are characterised by groups of network nodes
which are then fully meshed between each other. Also, they used publicly available trace
data from HPC networks to evaluate the performance with realistic data. Overall, the ROSS
framework introduced by Carothers et al. achieved a significant speedup compared to
single cor DES, independent of the distribution of local and remote events. However, their
performance studies have not focused on real-time execution of the simulation.

Panchal et al. [23] designed a parallel simulator for wireless networks. In their ap-
proach, they used problem dividing and time warp for synchronisation. They tried to
create a parallel executing simulator that allows for the investigation of many parameters
in wireless networks. Panchal et al. also introduced mobility models and map structures
on which the nodes can move in more or less realistic patterns. They show the capability to
introduce various models for simulating the physical properties of wave propagation. The
distribution of nodes over different threads was modelled either by clustering nodes based
on their positions or by their assigned channel. To mitigate inter-process communication,
basic transmission probabilities between certain clusters are pre-calculated, for example,
far distant clusters cannot reach each other. They investigated the achieved speedup and
showed that the model might likely scale up to 6 to 8 processor cores. Considering the fact
that the work was conducted in 1998, scaling up to 8 processor cores is a significant success.
However, no attempt was made to investigate the real-time behaviour of this framework.

Electronics 2021, 10, 636 9 of 23

Tay et al. [27] described an analytical approach for determining the performance of
time warp PDESs. They implemented a conventional and throttled time warp synchronisa-
tion algorithm. The throttled algorithm lowers the number of rollbacks through limiting
the time gap between the fastest and the slowest logical process. The analysis showed
that the efficiency drops if the number of shared states of the logical processes increases.
Their introduced analytical model provides the opportunity to analyse whether existing
single-core simulation models profit from a time warp implementation. However, the
paper does not analyse how well the throttled and conventional time warp algorithm
executes in a real-time context.

Pellegrini and Quaglia [28] present an impressive time warp algorithm that allows a
faster preemption of a LP during its execution to avoid high rollback costs. Besides this,
an earlier preemption of a LP also reduces the cascading rollback effects. They are using
a so-called top-half/bottom-half approach where each LP manages a bottom half queue
for each simulation object running on the LP. This bottom half queue is used by other
LPs to notify the local simulation object of the presence of new data which has to be in
cooperated in the top half queue in a timely ordered fashion. The paper shows a clear
advantage of the presented synchronisation algorithm compared to well known rollback
based synchronisation. Certainly, this could affect the real-time capabilities of a simulation
run when trying to match the simulation clock to a wall clock. However, the original paper
does not investigate these capabilities.

3.2. Conservative Approaches

Zeng et al. [29] developed GloMoSim, which is a library for parallel simulation of
large-scale wireless networks. Their simulator is designed to match the demands of wireless
networks and therefore provides several network layers, which resemble the Open Systems
Interconnection (OSI) model. GloMoSim is written in PARSEC [30]. Using PARSEC’s entity
system, Zeng et al. capsulated each network layer to be executed in one partition. Thus,
as each layer is self-contained in a PARSEC entity, high modularity is introduced. They
benchmarked their implementation using three conservative synchronisation algorithms—
Null Messages, Conditional Event Protocol, and Accelerated Null Message Protocol. To
balance the load of each processor, they partitioned their problem. As they suppose a static
network topology, they introduced geographic regions as a partitioning scheme. After
conducting several tests, Zeng et al. concluded that the speedup is highly dependant on
the implemented model. For example, using Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) as channel access scheme, the speedup is much lower compared
to Multiple Access Collision Avoidance (MACA).

Titzer et al. present their conservative PDES for wireless networks in [31]. They
employed two different conservative synchronisation schemes: “Waiting for neighbours”
and “synchronisation intervals.” “Synchronisation intervals” act like lookahead windows.
Each thread calculates by when it is safe to execute events in parallel. The minimal safe
time is then used as a barrier, which has to be reached by every thread until the scheduler
can advance further. The “waiting for neighbours” algorithm uses a global data structure
in which the progress of each logical worker unit is stored. Therefore, if one logical unit
wants to wait until another unit reaches its time point, the waiting system periodically
checks this data structure. However, it must be ensured that no deadlocks, for example,
n waits for m and m waits for n, are possible during event execution. Their experimental
results show that this approach scales up to up to five workers. When employing more
workers, no speed gain is accomplished as increasing synchronisation overhead is slowing
down the execution. Even more, no real-time capabilities of these algorithms are evaluated.

Nicol et al. [32] developed the S3F framework, which is a parallel simulation frame-
work, being based on their former developed SSF simulation framework. They enhanced
the single-core framework SSF by adding a multi-thread execution using barrier synchroni-
sation. S3F supports parallel execution and tries to make synchronisation as transparent as
possible. The employed barrier synchronisation algorithm scales properly using one to four

Electronics 2021, 10, 636 10 of 23

threads. However, the overall performance is comparable with the SSF simulator. In conclu-
sion, the group did not achieve a significant performance enhancement, compared to their
former SSF simulator, however, the usability of the framework was extended drastically.

Liu [33] presents an approach of simulating large-scale networks in real time. For this
purpose, they employed their PRIME simulator, which uses a hybrid approach utilising
distributed discrete-event simulations and multi-resolution models to higher the abstrac-
tion level and therefore lower the computational demand. Combining those approaches
allows the author to significantly speed up the simulation. The author also states that
their emulation infrastructure does not require special hardware. The distributed approach
allows to divide the virtual networks in clusters, each potentially simulated at different
geographic locations. However, they restrict the interaction between the real-time network
simulator and the applications to local machines. In a more recent publication, Obaida
and Liu [34] state that they eliminate parallel synchronisation overhead by allowing each
simulation instance to advance their simulation clocks by looking onto the local wall-clock
time. Thus, it is questionable if an entirely deterministic behaviour can be enforced us-
ing this strategy. Even more, the group does not provide any insights of their real-time
threshold. As simulated systems are never able to hit the atomic time exactly (there will
always be a slight deviation caused by signal runtimes on a cable), thresholds must be
given when real-time can be called real-time. This highly depends on the domain in which
the real-time system is required. For example, a slight delay when having a common TCP
or UDP based application under test is not as problematic as a deviation in case an Airbag
ECU is evaluated.

3.3. Combined Approaches

Jefferson and Barnes [35] present an approach that allows for the combination of
optimistic and conservative approaches. The main difference between their approach and
other PDESs is that they can switch between both modes during the execution of the simu-
lation. Hence, they use time-warping if no suitable lookahead for the conservative mode
is available. They can switch between conservative and optimistic on an event-by-event
basis, without any model logic required directly. In case of an optimistic execution of an
event, the simulator calls the reversible event handler. This handler saves the current state
of the simulation before the event is executed. The saved state allows the reconstruction of
the model state in case of a required rollback. If an event is executed conservatively, the
irreversible event handler is called, and no information is saved. Jefferson and Barnes do
not provide a performance analysis as their paper mainly focus on the collaboration of
conservative and optimistic PDES.

In 1998, Bagrodia et al. [30] presented PARSEC. PARSEC is not a simulation environ-
ment; it is rather a language easing the development of parallel simulators. For parallel
simulations, they allow optimistic and conservative as well as mixed synchronisation
algorithms. However, unlike Jefferson and Barnes [35], they do not allow switching the
synchronisation algorithm during a simulation. In PARSEC the model writer has to choose
the algorithm when designing the simulation model. To simulate wireless models, they
developed the parallel simulation library GloMoSim using PARSEC [29]. Overall, the gen-
eral speedup of simulations in PARSEC cannot be estimated, as it is unique to a specific
implemented model.

3.4. Problem Dividing

Problem dividing is often used in addition to other parallelism strategies. For example,
Panchal et al. [23] clustered their nodes based on their position or the assigned channel.
They show clearly that some scenarios achieve a significant speedup, whereas others are
not executed faster. This is caused by additionally needed events and stated variables
when entities try to communicate over cluster borders.

In Reference [36], Hoque et al. propose a parallel closed-loop connected vehicle
simulator. The closed-loop system they propose implies a closed loop between the vehicle

Electronics 2021, 10, 636 11 of 23

simulation and the network simulation like also detailed by Sommer et al. [5]. Also, they
introduce-live gathered data from junction scenarios to change the traffic generated by the
traffic simulation. Moreover, they explain different algorithms used for problem dividing to
share the work of network and traffic simulation between different cores or threads. They
found that the network simulation needs other problem dividing algorithms compared to
the traffic simulation, as the network simulation produces a higher workload.

4. Are Real-Time PDEs Possible?

Real-time execution of simulation models is a frequent use case in several domains.
For example, testing vehicle’s ECUs is a common application area for real-time simulations
where they provide a well-defined environment during test execution. Buse et al. [18] show
such an interactive real-time simulation for VANET systems. The simulated environment
of communicating vehicles must cope with incoming messages form a non-simulated
hardware component at any time in the simulation. Thus, the simulation model has to
react on input that is not directly related to the simulation system and cannot be pre-
dicted at all. Even if the simulation could run faster than real-time, the external hardware
forces the simulation to slow down to real-time execution speed at most, as explained
by Earle et al. [21], Buse et al. [18] and Obermaier et al. [7]. However, these approaches
only apply to single-core DES frameworks. Previous studies of PDESs do mostly not deal
with real-time behaviour as their need for synchronisation between LPs makes real-time
simulation more complex. Moreover, a literature review revealed no metric to evalu-
ate the real-time behaviour of a PDES model. Thus, such a metric is introduced in the
following sections.

4.1. Calculation of tgap

The expected simulation time ts from a given wall-clock time tw must be calculated
to verify the real-time behaviour of a simulation run. For this purpose, [2] defines the
following equation:

ts = W2S(tw) = tsStart + (tw − twStart), (5)

where tw is the current wall-clock time, and tsStart is the simulation time at which the
simulation is starting. This value can be set independently from any real-world clock and
therefore defines the physical time of a simulated system. twStart is the wall-clock time at
which the simulation run was started. In consequence, if a simulation is launched several
times in a row, tsStart will be equal for each simulation run. However, twStart will be set to
the current wall-clock time at the simulation’s start.

With this knowledge, the real-time gap tgap between a certain wall-clock-time point
tw and the corresponding simulation time ts can be defined as follows:

tgap = W2S(tw)− ts. (6)

Figure 2 explains tgap with the aid of two timelines: The simulation time in red and
the wall-clock time in blue. For ease of explanation, both, tsStart and twStart are set to zero.
This setting results in exactly aligned timelines for wall-clock time and simulation time,
assuming an ideal real-time simulation. In this case, the simplified version of Equation (5),
given by Equation (7), can be employed then.

W2S(tw) = tsStart + (tw − twStart)

W2S(tw) = 0 + (tw − 0)

W2S(tw) = tw.

(7)

Thus, wall-clock time and the corresponding simulation time are expected to be equal.
Figure 2 shows the natural and uniform time advance of the wall-clock time during the
whole shown simulation snippet. The simulated time, however, advances erratically and

Electronics 2021, 10, 636 12 of 23

significantly slower than the wall-clock time between ts = 1 ms and ts = 2 ms. After
ts = 2 ms, the simulation advanced faster than real time.

Discrete simulation time in ms = t

Wall-clock timeline in ms = t

0

0

1

1 2

3

4

3

4

tgap

w

 1.6

s

1.5 1.1

1.6

gapt

time
jump

Figure 2. Visualisation of tgap between the ts1 = 1.6 ms and W2S(tw1) = 2 ms.

The tgap calculation allows determining how far the simulation diverges from a
given wall-clock time using the simplified calculation of W2S(tw) from Equation (7).
Equations (8) and (9) show the calculation of tgap at tw = 1 ms, tw = 2 ms and tw = 2.8 ms,
respectively. Values for ts at those time points can be obtained from Figure 2.

tgap1ms = W2S(tw1ms)− ts1ms

tgap1ms = tw1ms − ts1ms

tgap1ms = 1 ms− 1 ms

tgap1ms = 0 ms

(8)

tgap2ms = W2S(tw2ms)− ts2ms

tgap2ms = tw2ms − ts2ms

tgap2ms = 2 ms− 1.6 ms

tgap2ms = 0.4 ms

(9)

tgap2.8ms = W2S(tw2.8ms)− ts3ms

tgap2.8ms = tw2.8ms − ts3ms

tgap2.8ms = 2.8 ms− 3 ms

tgap2.8ms = −0.2 ms.

(10)

At tw = 1 ms, tgap = 0, which means the simulation is aligned with the real-time.
Hence, the simulated system’s physical time would be aligned with the physical time of
non-simulated, external physical components. At tw = 2 ms, however, tgap = 0.4 ms,
which means that the physical time of simulated components is 0.4 ms behind the physical
time of external components. Hereafter, the simulation is advancing faster than real time,
resulting in a tgap = −0.2 ms at tw = 2 ms.

4.2. The Metric of Real-Time Capability: tgapsim and tdi fsim

Equation (6) defines tgap to be the difference between simulation time and wall-clock
time. tgap, however, was introduced with single-threaded DESs in focus. Thus, for the
calculation of tgap in parallel simulations at a specific timestamp ts, this equation has to
be extended:

tgappar (ts) = max(tgap1(ts), tgap2(ts), . . . , tgapn(ts)). (11)

Equation (11) defines tgappar(ts) as the maximum value of all tgapn(ts) measured among
all n threads. tgapn(ts) is the tgap(ts) of a particular thread, with n being the maximum
number of available working threads. Hence, tgappar (ts) indicates if the real-time capability

Electronics 2021, 10, 636 13 of 23

of a simulation run at the timestamp ts; ts can be any timestamp in the simulation at which
an event is executed.

To get an overview of the overall real-time capabilities of a simulation run, the maxi-
mum overall tgappar (ts) has to be determined.

tgapsim = max(tgappar (t1), . . . , tgappar (tn)). (12)

Hence, tgapsim contains the highest value of tgappar measured during the whole simula-
tion run. It corresponds to the moment in the simulation where the simulated time differs
the most from the wall-clock time. Counter-intuitively, low tgapsim values give no hint
about the remaining idle capacities of a simulator. Thus, tgapsim cannot be used to classify
a simulation runs real-time capability absolutely. However, it can be used to compare
simulation runs relatively to each other.

• tgapsim < 0 implies a simulation run which was always faster than real-time for
all timestamps.

• tgapsim = 0 implies a simulation run which was faster or at least as fast as real-time for
all timestamps in the simulation.

• tgapsim > 0 implies a simulation run which was slower than real-time at least at
one timestamp.

Besides tgapsim , a second value has to be taken into account when assessing the real-
time behaviour of PDESs: The internal synchronisation among all cores tdi f .

tdi f (ts) = tgappar(ts) −min(tgap1(ts), . . . , tgapn(ts)). (13)

Equation (13) defines tdi f to be the highest difference between all tgap1(ts), tgap2(ts), . . . ,
tgapn(ts) of a current timestamp. Thus, tdi f (ts) describes the gap between the physical times
for all cores at a certain simulation timestamp. When this gap grows, logic issues might
arise when external stimuli are used to trigger events inside the simulated system. Thus, to
evaluate the overall real-time capability, a low tdi f is as crucial as a low tgap.

Likewise to the definition of tgapsim , the maximum of all tdi f (ts) named tdi fsim
reveals

the cores’ overall synchronisation during the simulation run.

tdi fsim
= max(tdi f (t1), tdi f (t2), . . . , tdi f (tn)). (14)

By definition, tdi fsim
can never become smaller than zero. Hence, the following thresh-

olds apply:

• tdi fsim
= 0 implies that the simulation time among all cores is always synchronised.

• tdi fsim
> 0 implies that the cores are not synchronised during the simulation run at

least at one timestamp.

To rate the real-time capabilities on a high abstraction level, Table 1 formulates the
relationship between tgapsim and tdi fsim

. This table gives a general overview of all possible
combinations of tgapsim and tdi fsim

. However, this overview cannot be used to absolutely
deduce the impact of tgapsim or tdi fsim

on a specific simulation scenario. For example, some
domains may allow tgapsim to grow up to 100 ms without causing invalid simulation
results. However, in other domains, simulation results may be already invalid when tgapsim

reaches 10ms. Equally, tdi fsim
thresholds are utterly dependent on the simulation domain.

Hence, before a simulation system can be finally rated regarding its real-time capabilities,
requirements must be defined for that specific domain. These requirements are detailed in
Section 6.

Electronics 2021, 10, 636 14 of 23

Table 1. Relationship between tgapsim , tdi fsim
and the impact on the real-time capabilities of a simu-

lated system.

tgapsim tdi fsim Real-Time Capabilities

<0 =0 Simulation is always faster than real-time.
The cores are entirely synchronised.

<0 >0 Simulation is always faster than real-time.
The cores are at least at one timestamp out of synchronisation.

=0 =0 Simulation is never behind real-time.
The cores are entirely synchronised.

=0 >0 Simulation is never behind real-time.
The cores are at least at one timestamp out of synchronisation.

>0 =0 Simulation is at least at one timestamp behind real-time.
The cores are entirely synchronised.

>0 >0 Simulation is at least at one timestamp behind real-time.
The cores are at least at one timestamp out of synchronisation.

5. Example Application

This section introduces a showcase scenario, which enables the demonstration the
proposed metric on optimistic and conservative synchronisation schemes for PDESs with
respect to their real-time capability. In the interest of clarity, the designed showcase scenario
is not derived from an actual system. Instead, it is designed to illustrate how the metric
can be applied on sequentially, optimistically and conservatively executed DES and PDES
systems. The example system can be defined as a deterministic MC system with

multiDEVS = 〈X, Y, D, {Md}, Select〉 (15)

and D = {comp1, comp2, comp3, comp4} and

Md = (Sd, Id, Ed, δext,d, δint,d, λd, tad) (16)

with Ed = {e|e ∈ D /∈ {d}} and Id = {i|i ∈ D /∈ {d}}. Hence, the system has four
components, with each component being able to influence all others and getting influenced
by all others. Component comp1 has three states. Components {comp2, comp3, comp4}
have two possible states each. For brevity and because this scenario is purely illustrative,
the definition of time advance and state transition functions are omitted.

Figure 3 shows the example scenario simulated in a common, non-parallel DES
environment. For eased comparisons, each event takes 2 ms to be calculated. No time
skip between the events is possible. Events with their states belonging to comp1, comp2,
comp3, and comp4 are coloured orange, blue, yellow, and green, respectively. The numbers
in parenthesis imply a tuple of (component, state). Grey arrows show causal dependencies
between states. The blue timeline indicates the wall-clock time Tw. The red timeline depicts
the simulation time Ts. In this figure’s scenario, tgap is increasing during the simulation.
The scenario is executed using one LP, and therefore, no parallel calculation of events is
possible. When comparing ts and tw in this non-parallel scenario, it can easily be seen that
tgap will rise during the simulation.

s(1,1) s(1,2)s(2,1)s(3,1) s(3,2) s(1,3) s(2,2)s(4,1) s(4,2)

101 ms 103 ms 104 ms 105 ms 106 ms

100 ms 104 ms 108 ms 112 ms 116 ms
wall clock

100 ms 107 ms 108 ms103 ms
simulation clock

Figure 3. Artificial non-real-time-capable scenario in a standard DES simulator.

Electronics 2021, 10, 636 15 of 23

The calculated tgap for each timestamp of the scenario is shown in Figure 4. In a fully
real-time capable scenario, tgap would exactly match the blue line. Whereas in this scenario,
tgap rises higher at each timestamp. This indicates a simulation run, which is not able to
execute events as fast as needed for real-time execution.

102 104 106 108 110 112 114 116
−2

0

2

4

6

8

10

Tw in [ms]

t g
ap

in
[m

s]
real-time

tgap single core

Figure 4. tgap calculated for every timestamp in the scenario depicted in Figure 3.

5.1. Conservative PDEs with Lookup Window

Figure 5 shows a possible execution path of the previously defined scenario in a
conservatively synchronised environment with two workers. worker1 is calculating the
states of comp3 and comp4. worker2 computes the states of comp1 and comp2. The colouring
of components in Figure 5 matches the scheme in Figure 3; comp1 is shown in orange,
comp2 is shown in blue, comp3 is shown in yellow and comp4 is shown in green. Grey
arrows show dependencies between events executed on the same core. Additionally, dark
green arrows show causal dependencies between states executed on different workers.
Compared to single-core execution, the first set of states s(3, 1) and s(3, 2) can be executed
in parallel to s(1, 1) and s(2, 1). To allow worker1 to process further, it has to wait until
s(1, 2) was executed as this is a prerequisite for s(4, 1). The causal relation between s(1, 2)
and s(4, 1) and therefore the knowledge about the required delaying of s(4, 1) is available
throughout the lookahead information used in a conservative PDES.

Figure 6 shows the progression of tdi f and tgappar during this conservatively simulated
scenario. As explained for Equation (6), a negative tgap, and consequently also a negative
tgappar , describes a system which is currently faster than real-time. Due to the parallel
execution of events at the beginning of the scenario, the run is able to keep up with real-
time until tw = 104 ms. After tw = 104 ms, the simulation stays one millisecond behind
real-time. tdi f shows the current synchronisation between the workers themselves. It can
be seen that there is always a certain gap between the current simulation time of each
worker, except for tw = 104 ms.

Electronics 2021, 10, 636 16 of 23

s(1,1) s(1,2)s(2,1)

s(3,1) s(3,2)

s(1,3) s(2,2)

s(4,1) s(4,2)

100 ms 103 ms

101 ms 103 ms 104 ms 106 ms 108 ms

105 ms 107 ms

100 ms 102 ms 104 ms 106 ms 108 ms

worker1

worker2

wall clock

Figure 5. Typical scenario of a conservative synchronisation scheme using lookup window.

102 104 106 108
−2

−1

0

1

2

Tw in [ms]

t g
ap

pa
r

in
[m

s]

real-time
tdi f

tgappar conservative

Figure 6. tgappar for conservative simulation example.

5.2. Optimistic PDEs

Figure 7 shows the introduced scenario executed using an optimistic synchronisation
approach. The colour code is still remaining, similar to Figures 3 and 5. Orange, blue,
yellow and green boxes are events corresponding to their components. Grey and green
arrows show intra- and inter-worker dependencies. Additionally, dashed dark green
arrows show causal dependencies, which could not be satisfied. States with a red dashed
border have to be rolled back because of a causal dependency violation. States without
borders are not involved in a dependency violation.

Figure 8 reveals the behaviour of tdi f and tgappar in this particular optimistic execution.
Until tw = 102 ms, everything is equal to the conservatively synchronised scenario. How-
ever, at tw = 104 ms worker1 does not wait until s(1, 2) was processed to continue with
s(4, 1), which is initially the big advantage in optimistic simulations. Hence, also s(4, 2)
will be processed at tw = 106 ms. This results in a real-time capable run until tw = 108 ms
compared to tw = 104 ms for the conservative scenario. However, after processing of
s(4, 1), the remote event scheduled by s(1, 2) arrives at worker1. Thus, states s(4, 1) and
s(4, 2) have to be rolled back and have to be re-executed with the knowledge about the
prerequisite of s(1, 2) for s(4, 1). This executed rollback causes tgappar (108 ms) to incline
to 3 ms. Also, tdi f is rising steeply at this time point, caused by worker2 sticking to its
simulation time and worker1 losing time caused by the rollback.

Electronics 2021, 10, 636 17 of 23

s(1,1) s(1,2)s(2,1)

s(3,1) s(3,2)

s(1,2) s(2,1)

s(4,1) s(4,2) s(4,1) s(4,2)

100 ms 103 ms

101 ms 103 ms 104 ms 106 ms 108 ms

105 ms

100 ms 102 ms 104 ms 106 ms 108 ms

worker1

worker2

wall clock 110 ms

105 ms 107 ms107 ms

Figure 7. Typical scenario of an optimistic synchronised simulator.

102 104 106 108 110
−2

−1

0

1

2

3

Tw in [ms]

t d
if

in
[m

s]

real-time
tdi f

tgappar optimistic

Figure 8. tgappar for optimistic simulation example.

6. Significance and Applicability

Section 4 introduced a novel metric to evaluate the real-time behaviour of parallel
executed DESs. It was shown, by means of example, that the metric can be applied for
single-threaded simulations as well as for optimistic and conservative parallel simulations.
However, the metric is not applicable for answering the question if real-time PDESs are
possible without further knowledge of the system to simulate. Such a generalised statement
is practically impossible as it highly depends on the used tools and the model’s domain.
Thus, which preconditions have to be met by a simulation framework before the metric
can be applied and which assertions the metric allows must be discussed.

6.1. Where Is the Metric Applicable?

The metric is designed to be used with any simulation model, which can be described
using the Discrete Event System Specification [1] as long as the following rules apply:

1. Model changes only apply at discrete time points
According to Zeigler et al. [1], DES require state changes to happen only at specific
points in time, at which an event is executed or applied. Between those time points,
the model’s states are not allowed to alter. However, for the metric to be applicable,
it is not required to have all events sorted into the FES before they occur. This is
especially relevant when external hard- or software is connected to the simulation.
Events generated asynchronously from such an external entity can be handled, as long
as it is known at which time point these events should be executed in the simulation.
If no time point is explicitly given for an external event, immediate processing of this
event is implicitly requested. Consequently, tgappar must be calculated against the
point in time where the request was received and the actual execution of the event.

Electronics 2021, 10, 636 18 of 23

2. A real-time time base is available
A prerequisite for the calculation of tgap is the availability of a real-time time base.
This does not imply that any kind of real-time operating system must be involved in
the model execution. However, the quality of the calculated real-time gap depends
on the implementation of the used software clock. For example, C++ offers a steady
clock (https://en.cppreference.com/w/cpp/chrono/steady_clock (accessed on 15
December 2020)), which guarantees the monotonic and uniform growth of its tick
counter. However, the granularity is operating system specific.

3. The simulation time can be mapped to the wall-clock time
A mapping between wall-clock time and real time is required to calculate tgap as
defined in Equation (5). Thus, the simulation tool must be capable of storing its
exact start time twStart. Ideally, twStart corresponds to the point in time where the
simulation framework has finished the initial setup of the simulation model. This
avoids erroneous results at the beginning of the simulation. If this is not possible, it
is advisable to skip the first few seconds before performing further calculations as
tgapsim or tdi fsim

.
4. The current simulation time can be measured for all logical processes

To calculate tdi f , it is mandatory that each logical process is aware of its current
simulation time. This is not complicated for optimistic simulations, as they are usually
not waiting for other logical processes to complete a certain task. In conservative
simulations, however, a logical process may currently idle and wait for another
logical process to finish. This behaviour is shown at ts = 104 ms in Figure 5. Thus,
the waiting logical process has to store the simulation time of the last executed event
for calculation of tdi f , and therefore tdi f tends to grow in such situations.

6.2. Which Statements Can Be Made Using the Metric?

As mentioned before, the metric alone is not capable of providing a generalised answer
if a certain synchronisation scheme is well suited for real-time execution. Various factors,
like the boundary conditions and the used operating system influence the significance of
the metric. However, when all boundary conditions are known and taken into account the
metric’s explanatory power remains unvaried.

6.2.1. Boundary Conditions

Many factors, further called boundary conditions, must be taken into account to make
sure if a synchronisation scheme is well suited for real-time execution. Altering just one of
these conditions can influence measurements significantly, so that a new validation process
must be started. However, with exact knowledge of a certain use-case and its boundary
conditions, the real-time capability of a simulation in this specific setup can be evaluated.
Even more, if boundary conditions are only slightly changed, one may consult earlier
findings to predict the real-time behaviour before starting a test run.

Table 2 shows a minimal set of boundary conditions that apply to almost every use
case. However, this table is by no means complete, and several other conditions might
apply in other use cases. Its first two columns describe the type of boundary condition.
Column three gives how often these conditions usually change. For example, the used
system and framework, as well as the real-time requirements, do not frequently change
during test execution. However, model complexity will change frequently. The last column
gives an example of each identified boundary condition.

Frequently changing all of the boundary conditions would lead to unpredictable
real-time behaviour. However, if a model designer decides against altering the boundary
conditions except the model description, which includes the exact definition of the simu-
lated scenario, it can be assumed that proper predictions can be achieved. For example,
if several measurements with a certain scenario complexity were carried out and these
measurements indicated real-time capabilities, it can be assumed that other runs with
similar or less complex scenarios will be real-time capable.

https://en.cppreference.com/w/cpp/chrono/steady_clock

Electronics 2021, 10, 636 19 of 23

Table 2. Minimum set of boundary conditions to make the metric applicable.

Boundary Description Changes Frequently? Example

System What computing
resources are available?

Does not change
regularly.

Intel Xeon E7-8867 v4 @2.40GHz, 4 × 18
cores, 3TB RAM, 450GB SAS SSD RAID1

Real-time type Is the threshold hard, soft
or firm real-time? [11]

Does not change regularly.
Highly dependent on the
domain.

Hard real time is required. Exceeding a
threshold is never allowed.

tgapsim threshold How high is tgapsim
allowed to be?

Does not change regularly.
Highly dependent on the
domain.

Set to 300 ms for real-time human
interaction [20].

tdi fsim
threshold How high is tdi fsim

allowed to be?
Does not change regularly.
Highly dependent on the
domain.

Set to 100 ms to meet tgapsim threshold.

Framework Which simulation
framework is used to
simulate the model?

Decided once. OMNeT++ 5.6.2 using command-line
environment (Cmdenv)

Configuration How is the simulation
framework configured?

Can change during the
life cycle.

Framework and model is configured to
use Null Message for synchronisation.

Model Exact definition of the
simulated scenario

Changes frequently VANET scenario with 50 active vehicles
is employed. Nakagami fading is used as
channel model.

6.2.2. Influences of the Operating System

The operating system used to execute the simulation has a major impact on the
metric’s significance. The results provided by the metric can only be as accurate as the
time stamping provided by the underlying operating system. Non-real-time operating
systems like off-the-shelf Linux distributions offer a monotonic clock with an accuracy of
at least one microsecond. This implies that the metric can expose the real-time capabilities
of a simulation within these accuracy thresholds [37]. Real-time operating systems can
provide finer-grained timing information. However, executing software under hard real-
time restrictions implies that certain deadlines are never violated in the first place [11,12]:
A real-time capable operating system guarantees that tasks are executed within a given
time span. This implies that the proposed metric is not required to measure the real-time
gap on a real-time operating system, as the system itself provides suitable mechanisms to
never violate any given deadline. Hence, the metric’s application area will be soft and firm
real-time DESs, independent if they are executed sequential or in parallel.

6.3. Evaluation of a Sequentially Executed Real-World Simulation

Obermaier et al. [7] present a closed-loop simulation for VANET devices. It is based
on the Artery framework for OMNeT++ [38]. A mandatory requirement for HIL simulation
is the real-time capability of a test run. As shown by Neumeier et al. [39], speeding up a
wireless simulation framework for OMNeT++ is a complicated task. Even more, introduc-
ing parallelism in an already existing model is hard to accomplish. Thus, Obermaier and
Facchi [40] investigated the real-time capabilities of Artery as a single-core DES.

Applying the novel metric to the simulation run explained in [40] prompts the fol-
lowing restrictions: As sequentially executed simulations do not employ several workers,
tdi fsim

is not applicable. Even more, tgappar equals tgap; thus, Equation (6) is employed for
the calculation of tgapsim . Two different scenarios presented in [40] are utilised to evaluate
the real-time capabilities of the simulation runs. Figures 9 and 10 show the real-time be-
haviour during the simulation. These scenarios consist of three and five active vehicles
communicating with each other via IEEE 802.11p using a shared wireless channel. The

Electronics 2021, 10, 636 20 of 23

red line shows tgap(ts), which is rising and declining during the ongoing simulation. The
boundary conditions defined in Table 3 are used to carry out the measurements. Based on
these conditions, Table 4 summarises the outcomes after the metric has been applied.

3
ve

hi
cl

es
(c

lu
st

er
)

3
ve

hi
cl

es
(l

ap
to

p)

10.1 10.2 10.3 10.4 10.1 10.2 10.3 10.4

0.00

0.01

0.02

0.03

0.04

Simulation time in [s]

R
ea

l
tim

e
in

[s
]

in
st

an
t

ev
en

t
du

ra
tio

ns

re
al

tim
e

de
la

y

Figure 9. Real-time capabilities of a three vehicle scenario on two different setups. Taken from [40].
5

ve
hi

cl
es

(c
lu

st
er

)

5
ve

hi
cl

es
(l

ap
to

p)

10.1 10.2 10.3 10.4 10.1 10.2 10.3 10.4

0.00

0.02

0.04

0.06

Simulation time in [s]

R
ea

l
tim

e
in

[s
]

in
st

an
t

ev
en

t
du

ra
tio

ns

re
al

tim
e

de
la

y

Figure 10. Real-time capabilities of a five vehicle scenario on two different setups. Taken from [40].

Table 3. Boundary conditions for the real-world example taken from [7].

Boundary Condition Value

System Cluster: Intel Xeon E7-8867 v4 @2.40GHz, 4 × 18 cores, 3TB RAM, 450 GB SAS SSD RAID1
and Laptop: Core i5-6300U @2.40GHz, 1 × 4 cores, 16 GB RAM, 256 GB SSD

Operating system Cluster: openSUSE Leap 15.2 without real-time extensions and Laptop: Ubuntu 18.04 without
real-time extensions

Real-time type Soft real time
tgapsim threshold 0.02 s
tdi fsim

threshold Not applicable as no parallelism was involved.
Framework OMNeT++
Configuration The Artery model for OMNeT++ was used with standard configuration.
Model A three-vehicle scenario and a five vehicle scenario was employed.

Table 4. Evaluation of the real-time capabilities of the simulation runs presented in [40]. Due to the
single-core execution of the scenario, tdi fsim

is never available. Result evaluations are derived from
findings in [7].

Run Description tgapsim tdi fsim Result

3 vehicles (laptop) 0.04 s N/A Exceeds real-time threshold of 0.02 s
3 vehicles (cluster) 0.013 s N/A Does not exceed the real-time threshold of 0.02 s
5 vehicles (laptop) 0.07 s N/A Exceeds real-time threshold of 0.02 s
5 vehicles (cluster) 0.04 N/A Exceeds real-time threshold of 0.02 s

Electronics 2021, 10, 636 21 of 23

7. Conclusions and Further Work

This paper focuses on providing a connection between PDES and DES executed
in soft or firm real-time. An intensive literature review revealed that PDESs aim for
enhancing the execution speed of a certain simulation model typically, but not for real-time
simulation. Established definitions from Zeigler et al. [1] have been revisited to formally
define deterministic DES and create a common understanding. Fujimoto [2] provided a
formula to calculate the expected simulation time at a certain wall-clock time for simulations
executed in real time. Employing theses foundations, an easy to calculate yet expressive
metric for the real-time capabilities of a PDES synchronisation scheme is proposed. The
metric is based on two elementary values: tgappar and tdi f . While tgappar is the current
real-time loss in a parallel simulation, tdi f informs about the internal synchronisation of
the different execution contexts. Depending on the outcomes of tgappar and tdi f calculations,
the real-time capability of a simulation run can be ranked. The metric is applicable to any
DES that meets the following requirements:

• Model changes are bound to discrete time points.
• A real-time time base must be available on the system.
• The simulation time can be mapped to a wall-clock time using Equation (5).
• Each logical process is able to measure its own simulation time.

Whenever a DES fulfils these requirements and in-depth knowledge about the to-
be-simulated system its boundary conditions is available, the real-time capabilities of a
simulation run can be measured and finally predicted. Boundary conditions can be but
are not limited to hardware resources, type of required real-time, real-time threshold, the
used simulation framework and its configuration, as well as the model to be executed. It is
shown that the metric’s significance is influenced by the used operating system and the
employed clock for measuring time. The metric is applicable in soft and firm real-time
situations, where the system guarantees no timing. On systems fulfilling hard real-time
requirements, the metrics add no further information beyond the system’s guarantee to
execute tasks within a defined deadline.

This paper also shows how the metric can be applied to conservative as well as
optimistic synchronisation schemes of PDESs using a synthetic example scenario. However,
a synthetic example does only allow a very vague prediction of the real-time capabilities
of realistic simulation runs. Thus, further investigations and measurements must be
carried out to allow a reliable interpretation. This includes the determination of boundary
conditions for various use cases and measuring their influences on real-time behaviour.

The real-time capability investigations of the OMNeT++ simulation framework by
Obermaier and Facchi [40] were re-evaluated to clarify the usage of the introduced metric
using a real world example. Boundary conditions for this specific use-case are derived and
presented. Even though the simulation is executed on a single core, and therefore tdi f =
N/A, it was shown how the metric enables comparability of simulation runs with respect to
their real-time capabilities and how these results react on altering of boundary conditions.

It can be concluded that the introduced metric benchmarks the real-time capabilities
of a simulation framework or a simulation run. However, definite assertions depend on
the existence of appropriate boundary conditions. As these highly depend on the given
use case, they have to be elaborated for each domain of real-time simulation individually.
In future work, the proposed metric can be used to easily rank new simulation frameworks
with already existing frameworks when proper boundary conditions are defined. This
allows a further investigation and finally an estimation of which synchronisation scheme
might be most appropriate for PDESs executed in a real-time fashion.

Author Contributions: Conceptualization, C.O.; Formal analysis, C.O.; Funding acquisition, C.F.;
Investigation, C.O.; Methodology, C.O. and R.R.; Supervision, S.K., A.H.A.-B. and C.F.; Validation,
C.O.; Visualization, C.O.; Writing—original draft, C.O.; Writing—review and editing, C.O., R.R., S.K.,
A.H.A.-B. and C.F. All authors have read and agreed to the published version of the manuscript.

Electronics 2021, 10, 636 22 of 23

Funding: This work has been conducted in the project SAFIR funded by the German Ministery of
Education and Research based on the funding line FH-Impuls, 13FH71031A.

Data Availability Statement: Data used in Section 6.3 can be obtained from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeigler, B.; Muzy, A.; Kofman, E. Theory of Modeling and Simulation: Discrete Event and Iterative Systems, Computational Foundations,

3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019.
2. Fujimoto, R.M. Parallel and Distributed Simulation Systems; Wiley-Interscience: New York, NY, USA, 2000.
3. Hegde, A.; Festag, A. Artery-C: An OMNeT++ Based Discrete Event Simulation Framework for Cellular V2X. In Proceedings of

the 23rd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Alicante, Spain,
16–20 November 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 47–51.

4. European Telecommunications Standards Institute. Intelligent Transport Systems (ITS); Communications Architecture; European
Telecommunications Standards Institute: Sophia Antipolis, France, 2010.

5. Sommer, C.; German, R.; Dressler, F. Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis.
IEEE Trans. Mob. Comput. 2011, 10, 3–15. [CrossRef]

6. Codeca, L.; Frank, R.; Engel, T. Luxembourg SUMO Traffic (LuST) Scenario: 24 h of mobility for vehicular networking research.
In Proceedings of the 2015 IEEE Vehicular Networking Conference (VNC), Kyoto, Japan, 16–18 December 2015; pp. 1–8.

7. Obermaier, C.; Riebl, R.; Facchi, C. Fully Reactive Hardware-in-the-Loop Simulation for VANET Devices. In Proceedings of the
21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3755–3760.

8. Zhang, E.; Masoud, N. V2XSim: A V2X Simulator for Connected and Automated Vehicle Environment Simulation. In
Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece,
20–23 September 2020; pp. 1–6. [CrossRef]

9. Menarini, M.; Marrancone, P.; Cecchini, G.; Bazzi, A.; Masini, B.M.; Zanella, A. TRUDI: Testing Environment for Vehicular
Applications Running with Devices in the Loop. In Proceedings of the 2019 IEEE International Conference on Connected Vehicles
and Expo (ICCVE), Graz, Austria, 4–8 November 2019; pp. 1–6. [CrossRef]

10. Riebl, R.; Obermaier, C.; Günther, H. Recent Advances in Network Simulation: The OMNeT++ Environment and Its Ecosystem
(EAI/Springer Innovations in Communication and Computing); Springer: Cham, Switzerland, 2019.

11. Erciyes, K. Distributed Real-Time Systems: Theory and Practice; Springer International Publishing: Cham, Switzerland, 2019.
12. Laplante, P.A.; Ovaska, S.J. Real-Time Systems Design and Analysis: Tools for the Practitioner; Wily-IEEE Press: Piscataway, NJ, USA,

2012.
13. Gustafsson, L.; Sternad, M.; Gustafsson, E. The Full Potential of Continuous System imulation Modelling. Open J. Model. Simul.

2017, 5, 253–299. [CrossRef]
14. Fujimoto, R.M.; Bagrodia, R.; Bryant, R.E.; Chandy, K.M.; Jefferson, D.; Misra, J.; Nicol, D.; Unger, B. Parallel discrete event

simulation: The making of a field. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA,
3–6 December 2017; pp. 262–291.

15. Zeigler, B.; Prähofer, H.; Kim, T.G. Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2000.

16. Glinsky, E.; Wainer, G. Definition of Real-Time Simulation in the CD++ Toolkit. In Proceedings of the 2002 Summer Computer
Simulation Conference, San Diego, CA, USA, 14–18 July 2002.

17. Bacic, M. On hardware-in-the-loop simulation. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville,
Spain, 15 December 2005; pp. 3194–3198. [CrossRef]

18. Buse, D.S.; Schettler, M.; Kothe, N.; Reinold, P.; Sommer, C.; Dressler, F. Bridging worlds: Integrating hardware-in-the-loop
testing with large-scale VANET simulation. In Proceedings of the 14th Annual Conference on Wireless On-demand Network
Systems and Services (WONS), Isola 2000, France, 6–8 February 2018; pp. 33–36. [CrossRef]

19. Amoozadeh, M.; Ching, B.; Chuah, C.N.; Ghosal, D.; Zhang, H.M. VENTOS: Vehicular Network Open Simulator with Hardware-
in-the-Loop Support. In Proceedings of the 10th International Conference on Ambient Systems, Networks and Technologies
(ANT 2019)/2nd International Conference on Emerging Data and Industry 4.0 (EDI40 2019)/Affiliated Workshops, Leuven,
Belgium, 29 April–2 May 2019; Shakshuki, E.M., Yasar, A.U.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 151,
pp. 61–68. [CrossRef]

20. Cheung, S.; Loper, M. Synchronizing simulations in distributed interactive simulation. In Proceedings of the Winter Simulation
Conference, Lake Buena Vista, FL, USA, 11–14 December 1994; pp. 1316–1323. [CrossRef]

21. Earle, B.; Bjornson, K.; Ruiz-Martin, C.; Wainer, G. Development of A Real-Time Devs Kernel: RT-Cadmium. In Proceedings of
the 2020 Spring Simulation Conference (SpringSim), Fairfax, VA, USA, 18–21 May 2020; pp. 1–12. [CrossRef]

22. Misra, J. Distributed Discrete-event Simulation. ACM Comput. Surv. 1986, 18, 39–65. [CrossRef]
23. Panchal, J.; Kelly, O.; Lai, J.; Mandayam, N.; Ogielski, A.T.; Yates, R. WIPPET, a virtual testbed for parallel simulations of wireless

networks. In Proceedings of the Twelfth Workshop on Parallel and Distributed Simulation PADS’98 (Cat. No.98TB100233), Banff,
AB, Canada, 29 May 1998; pp. 162–169. [CrossRef]

http://doi.org/10.1109/TMC.2010.133
http://dx.doi.org/10.1109/ITSC45102.2020.9294660
http://dx.doi.org/10.1109/ICCVE45908.2019.8965152
http://dx.doi.org/10.4236/ojmsi.2017.54019
http://dx.doi.org/10.1109/CDC.2005.1582653
http://dx.doi.org/10.23919/WONS.2018.8311659
http://dx.doi.org/10.1016/j.procs.2019.04.012
http://dx.doi.org/10.1109/WSC.1994.717525
http://dx.doi.org/10.22360/SpringSim.2020.CPS.002
http://dx.doi.org/10.1145/6462.6485
http://dx.doi.org/10.1109/PADS.1998.685282

Electronics 2021, 10, 636 23 of 23

24. Carothers, C.D.; Bauer, D.; Pearce, S. ROSS: A high-performance, low-memory, modular Time Warp system. J. Parallel Distrib.
Comput. 2002, 62, 1648–1669. [CrossRef]

25. Barnes, P.D., Jr.; Carothers, C.D.; Jefferson, D.R.; LaPre, J.M. Warp Speed: Executing Time Warp on 1,966,080 Cores. In Proceedings
of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation SIGSIM PADS’13, Montreal, QC, Canada,
19–22 May 2013; ACM: New York, NY, USA, 2013; pp. 327–336. [CrossRef]

26. Mubarak, M.; Carothers, C.D.; Ross, R.B.; Carns, P. Enabling Parallel Simulation of Large-Scale HPC Network Systems. IEEE Trans.
Parallel Distrib. Syst. 2017, 28, 87–100. [CrossRef]

27. Tay, S.C.; Teo, Y.M.; Ayani, R. Performance analysis of Time Warp simulation with cascading rollbacks. In Proceedings of the
Twelfth Workshop on Parallel and Distributed Simulation PADS’98 (Cat. No.98TB100233), Banff, AB, Canada, 26–29 May 1998;
pp. 30–37. [CrossRef]

28. Pellegrini, A.; Quaglia, F. A Fine-Grain Time-Sharing Time Warp System. ACM Trans. Model. Comput. Simul. 2017, 27. [CrossRef]
29. Zeng, X.; Bagrodia, R.; Gerla, M. GloMoSim: A Library for Parallel Simulation of Large-scale Wireless Networks. In Proceedings

of the Twelfth Workshop on Parallel and Distributed Simulation PADS’98, Banff, AB, Canada, 29 May 1998; IEEE Computer
Society: Washington, DC, USA, 1998; pp. 154–161. [CrossRef]

30. Bagrodia, R.; Meyer, R.; Takai, M.; Chen, Y.A.; Zeng, X.; Martin, J.; Song, H.Y. Parsec: A parallel simulation environment for
complex systems. Computer 1998, 31, 77–85. [CrossRef]

31. Titzer, B.L.; Lee, D.K.; Palsberg, J. Avrora: Scalable sensor network simulation with precise timing. In Proceedings of the IPSN
2005. Fourth International Symposium on Information Processing in Sensor Networks, Boise, ID, USA, 15 April 2005; pp. 477–482.
[CrossRef]

32. Nicol, D.M.; Jin, D.; Zheng, Y. S3F: The Scalable Simulation Framework Revisited. In Proceedings of the Winter Simulation
Conference (WSC), Phoenix, AZ, USA, 11–14 December 2011; pp. 3288–3299.

33. Liu, J. A Primer for Real-Time Simulation of Large-Scale Networks. In Proceedings of the 41st Annual Simulation Symposium
(anss-41 2008), Ottawa, ON, Canada, 13–16 April 2008; pp. 85–94. [CrossRef]

34. Obaida, M.A.; Liu, J. On Improving Parallel RealTime Network Simulation for Hybrid Experimentation of Software Defined
Networks. In Proceedings of the 10th EAI International Conference on Simulation Tools and Techniques SIMUTOOLS’17,
Hong Kong, China, 11–13 September 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 63–71. [CrossRef]

35. Jefferson, D.R.; Barnes, P.D. Virtual time III: Unification of conservative and optimistic synchronization in parallel discrete
event simulation. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017;
pp. 786–797. [CrossRef]

36. Hoque, M.A.; Hong, X.; Ahmed, M.S. Parallel Closed-Loop Connected Vehicle Simulator for Large-Scale Transportation Network
Management: Challenges, Issues, and Solution Approaches. IEEE Intell. Transp. Syst. Mag. 2019, 11, 62–77. [CrossRef]

37. Ulmer, D.; Wittel, S.; Hünlich, K.; Rosenstiel, W. Testing Platform for Hardware-in-the-Loop and In-Vehicle Testing Based on a
Common Off-The-Shelf Non-Real-Time PC. Int. J. Adv. Syst. Meas. 2001, 4, 146–221.

38. Riebl, R.; Günther, H.J.; Facchi, C.; Wolf, L. Artery: Extending Veins for VANET applications. In Proceedings of the 2015
International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Budapest, Hungary,
3–5 June 2015; pp. 450–456. [CrossRef]

39. Neumeier, S.; Obermaier, C.; Facchi, C. Speeding up OMNeT++ Simulations by Parallel Output-Vector Implementations. In
Proceedings of the 5th GI/ITG KuVS Fachgespaerch Inter-Vehicle Communication (FG-IVC 2017), Ulm, Germany, 6–7 April 2017;
pp. 22–25.

40. Obermaier, C.; Facchi, C. Observations on OMNeT++ Real-Time Behaviour. arXiv 2017, arXiv:1709.02207.

http://dx.doi.org/10.1016/S0743-7315(02)00004-7
http://dx.doi.org/10.1145/2486092.2486134
http://dx.doi.org/10.1109/TPDS.2016.2543725
http://dx.doi.org/10.1109/PADS.1998.685267
http://dx.doi.org/10.1145/3013528
http://dx.doi.org/10.1145/278008.278027
http://dx.doi.org/10.1109/2.722293
http://dx.doi.org/10.1109/IPSN.2005.1440978
http://dx.doi.org/10.1109/ANSS-41.2008.18
http://dx.doi.org/10.1145/3173519.3173535
http://dx.doi.org/10.1109/WSC.2017.8247832
http://dx.doi.org/10.1109/MITS.2018.2879163
http://dx.doi.org/10.1109/MTITS.2015.7223293

	Introduction
	Time in Discrete Event Simulations
	Real-Time Systems
	Discrete Event Simulations
	Formal Description of DES
	DES with Several Connected Components
	Time in DES

	Real-Time Simulation

	State of the Art: Parallel Discrete Event Simulation
	Optimistic PDEs
	Conservative Approaches
	Combined Approaches
	Problem Dividing

	Are Real-Time PDEs Possible?
	Calculation of tgap
	The Metric of Real-Time Capability: tgapsim and tdifsim

	Example Application
	Conservative PDEs with Lookup Window
	Optimistic PDEs

	Significance and Applicability
	Where Is the Metric Applicable?
	Which Statements Can Be Made Using the Metric?
	Boundary Conditions
	Influences of the Operating System

	Evaluation of a Sequentially Executed Real-World Simulation

	Conclusions and Further Work
	References

