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ABSTRACT

Engineering a self-adaptive software system is challenging. During design- as well as run-time, assurance
cases are central for ensuring reliable operation of the software. Simulation, in addition to software
verification and testing, is a viable means to provide evidence for assurance cases. So far, little attention
has been given to the development of underlying simulation models. Here, we argue that a systematic
approach to develop simulation models will enhance the overall engineering process and will contribute
to seamless integration of simulation and engineering processes. In our approach, we relate an explicit
representation of the conceptual model and simulation experiments to artifacts of the engineering process.
We will show first steps of applying our approach in a concrete ongoing software project for medical
diagnosis, and discuss the role of components of the conceptual model in designing the software as a
self-adaptive software system.

1 INTRODUCTION

Self-adaptive systems are “systems that are able to adjust their behavior in response to their perception of
the environment and the system itself” (Cheng 2009). Central to self-adaptive systems is the adaptation
controller, which changes the configuration or structure of the software system, i.e., the adaptation target,
according to some goals and based on specific requirements. Thereby, the state of the software and its
environment needs to be taken into account.

Designing self-adaptive software systems (SAS) is challenging. Not only is it difficult to build a
reliable change mechanism, triggering exactly when a change should occur, but the resulting system also
has to behave as expected as well. Especially in safety-critical areas, e.g., in Cyber-Physical Systems or in
medicine where patient health and lives are at risk the engineering process needs to ensure that adaptations
work reliably according to the defined requirements (Bolbot et al. 2019). Therefore, assurance cases can be
used during the life cycle of SASs. They allow a continuous assurance referring to monitoring, analyzing,
guaranteeing, and predicting system properties throughout the entire software life cycle (Calinescu et al.
2017).

For assurance evidence, they rely on formal models which are an essential ingredient in engineering
SASs during design- and run-time (Blair et al. 2009; Cheng et al. 2014). All models that are used during
design- and run-time should be valid representations of the system and the environment, as their validity
and faithfulness are considered critical for the successful use and operation of the self-adaptive system
(Aßmann et al. 2014). This also applies to simulation models which are not only applied during design-time
but also form an efficient means for selecting adaptation options during run-time (Weyns and Iftikhar 2016)
a method that is similar to symbiotic simulation (Fujimoto et al. 2002). While frameworks and approaches
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emphasize the role of models, including simulation models, and their faithfulness in engineering SASs,
little attention is given toward how these models are developed.

In the following, we will explore how a systematic development of simulation models, where different
artifacts of the modeling and simulation life cycle are made explicit, not only contributes to the validity (or
faithfulness) of simulation models but also unlocks synergistic effects in the overall engineering process
of self-adaptive systems.

2 IDENTIFYING SYNERGIES BETWEEN ENGINEERING AND SIMULATION LIFE CYCLES

To identify possible synergies between a SAS engineering life cycle and the modeling and simulation life
cycle, we will first shortly discuss both cycles separately, to identify shared concepts and interdependencies
that can be exploited for more effective engineering of SAS.

2.1 Life Cycle of Modeling and Simulation

Simulation studies are intricate processes interweaving activities such as system analysis, conceptual
modeling, simulation model development, and simulation experiment execution (Balci 1998; Sargent
2013). Often, the authors of these processes look at simulation studies from a certain perspective to
highlight the importance of specific activities, such as model validation (Balci 1998), products, such as the
conceptual model (Sargent 2013; Robinson 2008), or their relations (Ruscheinski et al. 2019b).

Various definitions of the conceptual model exist (Bock et al. 2017), here we adopt the interpretation of
the conceptual model as a collection of various early-stage products of a simulation study, e.g., the research
objective, requirements, qualitative model, (specification of) data and information sources, or assumptions
(Wilsdorf et al. 2020b).

Other products of the modeling and simulation life cycle are the simulation model itself and simulation
experiments, which are closely related to the conceptual model during the modeling and verification,
experimentation, and result interpretation phases (see Figure 1). General modeling formalisms such as
DEVS (Zeigler et al. 2018) or domain-specific languages allow specifying the simulation model (Helms
et al. 2017; Loreti and Hillston 2016) unambiguously and in an executable manner. The semantics of
languages and formalisms also guides the development of efficient execution algorithms (Helms et al. 2017).
To enhance the reproducibility and reuse of simulation experiments, various approaches exist that support
their specification, generation, and execution. To those belong, e.g., formats (Wilsdorf et al. 2019), and
domain-specific languages (Ewald and Uhrmacher 2014). Making products of the simulation study explicit
and specifying relations and constraints declaratively, e.g., based on an artifact-based workflow, supports
guidance and documentation of simulation studies (Ruscheinski et al. 2019b; Ruscheinski et al. 2019a).
For example, to validate a simulation model, all simulation experiments with the role validation, that are
specified for the simulation model and its associated requirements are automatically executed (Ruscheinski
et al. 2019b). Explicit requirements (or behavioral properties (Batt et al. 2006) or hypotheses (Lorig et al.
2017)) and explicitly specified simulation experiments make this automatic generation and execution of
simulation experiments possible.

2.2 Life Cycle for Engineering Self-Adaptive Software Systems

The engineering of SASs is a similarly complex process. Although the implementation of the adaptation
controller can be implicit inside a SAS, an architecture that clearly distinguishes between the adaptation
target and adaptation controller facilitates the design and testing of a SAS (Weyns 2019). Whereas the
adaptation target implements the basic functionality, the controller is responsible for triggering at the right
time, the right changes within the adaptation target. A classic approach for designing the controller involves:
monitoring operation and environment, continuous re-evaluation of the situation, identification of suitable
adaptations, and the execution of the adaptation. This approach of Monitor, Analyze, Plan, and Execute is
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Figure 1: Overview of the modeling and simulation life cycle including central artifacts, such as conceptual
model, simulation model, and simulation experiments, adapted from (Sargent 2013) and (Robinson 2008).

known as MAPE pattern, or MAPE-K pattern (in which a knowledge-base with adaptation requirements
is shared among MAPE’s components) (Kephart and Chess 2003).

An essential part of the software design process is the definition of requirements. They are defined
based on the goals of the SAS, which capture the objectives that the SAS should achieve, despite or due
to its adaptations. In general, goals form a core concept of requirement engineering (Yu and Mylopoulos
1998), as they are useful for specifying, analyzing, and maintaining requirements. Some requirements might
specifically address individual components of the SAS. For example, they might refer to the adaptation
controller, demanding the adaptation-loop to be deadlock-free (Khakpour et al. 2016), or they will define
expectations and constraints to the MAPE stages. Requirements that refer to the adaptation target need to
consider the possible effects of adaptations. Also, the dynamic environment might introduce uncertainties,
which further influences requirement specification and adaptation (Cheng et al. 2009).

Similarly, like requirements, component models are significant in engineering SAS (Blair et al. 2009;
Cheng et al. 2014). During run-time, the SAS can leverage such declarative specified knowledge about
itself and its environment, to reason and plan adaptations (Bennaceur et al. 2014). Models “provide
up-to-date and exact information about the system to drive subsequent adaptation decisions; and if the
model is causally connected, then adaptations can be made at the model level rather than at the system
level” (Blair et al. 2009). E.g. during run-time, simulation models can improve the analysis of adaptation
options (Weyns and Iftikhar 2016). Thereby, different target-system and environment models may have
to be maintained for different concerns, such as performance, reliability, and functional requirements, and
purposes like verification and simulation. Consequently, there is plenty of research in modeling SASs both
for adaptation process and target-systems (Villegas et al. 2013; Weyns et al. 2012; Zhang and Cheng
2006).

To reduce the likelihood that system requirements exist only on paper, assurance cases (Bishop et al.
2004) have been introduced (De Lemos et al. 2014). Assurance cases document the assurance evidence
for assurance claims (e.g., our system requirements) with a connecting assurance argument, which should
clarify why the evidence supports the claims. However, SASs present a special case for assurance cases.
Since typically not all reachable configurations and states generated by the adaptation process are known,
collecting assurance evidence is not limited to design and test phases. Instead, assurance evidence needs
to be gathered during the entire life cycle of adaptive software, including its run time (Weyns et al. 2017).
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Figure 2 shows a life cycle for SAS Development based on Calinescu et al. (2017) and Andersson et al.
(2013): we can divide the life cycle in online and offline adaptation phases (Andersson et al. 2013). In the
online phase, the system can autonomously adapt to changes in the environment, whereas the adaptations
that go beyond the modeled adaptation capabilities, have to be done offline by the system maintainers.

The life cycle begins in an initial offline phase, where the first system iteration is developed. In this
phase, the models for adaptation controller, target system, and environment are created according to system
and adaptation requirements. For the controller models, existing reference models (Weyns et al. 2012;
Iftikhar and Weyns 2014; Calinescu et al. 2017) can be adapted and verified formally to produce strong
assurance evidence. The resulting evidence should then be connected properly to the required assurance
claims.

If the models changed and require an adaptation in the SAS implementation, the new implementation
can be deployed to an online phase. The online phase perpetually produces assurance evidence which may
be required to develop complete assurance arguments.

Figure 2: Development process for self-adaptive software based on (Calinescu et al. 2017; Andersson et al.
2013)

3 SIMULATION-SUPPORTED ENGINEERING OF SAS

Both modeling and simulation life cycle, as well as SAS engineering life cycle, provide important information
for each other (see Figure 3). The goals and requirements of the SAS engineering life cycle can be translated
into research questions and requirements of the simulation study. The conceptual model of the simulation
study reveals valuable information for assessing the reliability of the SAS. For example, those parts that
refer to the environmental model, indicate the degree and range of scenarios, for which the SAS is likely
to work as intended (via assumptions, data used for calibration, etc.). Simulation experiments, particularly
if made explicit, provide evidence and at the same time arguments for assurance cases. The qualitative
model, which is part of the conceptual model of the simulation study, should be consistent with models in
engineering SAS.

The requirements that are used as assurance claims are very similar to the requirements for the conceptual
model of the simulation study. However, the requirements in engineering SAS refer only to the SAS, whereas
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Figure 3: Relation between artifacts from simulation and engineering life cycle

requirements as for the conceptual model refer to all models: controller models, target-system models,
environment models, as well as compositions from all of these. Also, the conceptual model might constrain
how the models should behave. This is particularly relevant for the environment model, where the data
used for validation and calibration allow to evaluate the range of environmental behavior in which the SAS
has been analyzed. Assumptions and simplifications that refer to the environment model, the adaptation
controller, and the target system, provide further valuable information. This information has so far no
counterpart in the SAS engineering frameworks we have seen; nonetheless, it appears important to evaluate
the models and the conclusions derived based on these models.

In engineering SAS, models are also used to know what and how to monitor, how to analyze, and
how to plan the adaptations (Bennaceur et al. 2014). The qualitative model as part of the conceptual
model of a simulation study, however, can be used to generate specific experiments (Wilsdorf et al. 2020a)
which in turn can provide evidence for assurance cases. To ensure the consistency of the qualitative model,
typically a list of variables and some causal relations, with other models, approaches from engineering
such as mega models or provenance can be used. Mega models capture the different development models
and their dependencies to address consistency (and traceability) in the development process (Bézivin et al.
2004). Recently the concept of provenance has also been introduced into the field of simulation studies.
Exploiting provenance standards the different artifacts of simulation studies and their relations can be
defined, conveniently stored, and accessed e.g., by querying a graph database, beyond individual simulation
studies (Ruscheinski and Uhrmacher 2017; Budde et al. 2021). The approach has successfully been used
to define families of simulation models consisting of more than 19 simulation studies, each with its own
research questions, requirements, assumptions, and data and information sources (Budde et al. 2021).

Thus, we find multiple interdependencies between the processes of conducting simulation studies
and the SAS engineering process as well as between artifacts produced on the way. However, a crucial
precondition for exploiting these interdependencies for a more effective (simulation-supported) engineering
of SAS, is to make these various artifacts and their relation explicit. As a first step, we will look at how a
conceptual model within simulation-based engineering of SAS can look like.

4 ENGINEERING AN ADAPTIVE SOFTWARE SYSTEM FOR PRIORITIZING GENETIC
VARIANTS

We will put our methods to test in an ongoing software project and document our first steps. In this project,
a SAS shall be developed that helps clinicians diagnosing rare diseases from genetic variants (mutations
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in the DNA). First, we give a short overview of how these variants are identified and highlight the need
for a SAS.

4.1 Identifying Disease-Causing Genetic Variants

Identifying disease-causing/pathogenic genetic variants plays a crucial role in diagnosing rare diseases as it
is assumed that ≈ 80% of such diseases have a genetic origin (Gülbakan et al. 2016). However, diagnosing
rare disease cases is challenging. After sequencing and comparing the patient’s DNA with the human
reference genome, 25,000 to 75,000 genetic variants are found and have to be narrowed down to a handful
of relevant variants (Cooper and Shendure 2011).

Variant prioritization methods (VPM) aim to support this process by calculating numerical scores
predicting the functional impact of the variants (Bosio et al. 2019) and allow to rank the variants according
to their relevance for the given case. Based on this ranking the clinical geneticist can focus their diagnosis
first on the few highest-ranking variants for a given case. The methods rely on assumptions about how
the pathogenicity of a variant can be recognized (Eilbeck et al. 2017), e.g., variants in highly conserved
regions of the DNA are likely to be more damaging than variants in less conserved regions or common
variants in a large population are likely to be benign. The variant prioritization methods are typically
based on machine-learning algorithms. Curated gene-phenotype and gene-disease associations from public
databases, e.g., ClinVar (Landrum et al. 2014) or HPO (Köhler et al. 2021) are used to train decision
trees (do Nascimento et al. 2020) or Hidden Markov models (Shihab et al. 2013).

However, from the perspective of the clinician, the current approach to develop prioritization methods
has several shortcomings. First, the resulting rankings of the methods do not encompass recent updates
of curated databases since the prioritization methods are typically trained once or are at least updated
irregularly (Rentzsch et al. 2019; Shihab et al. 2013) while other databases are updated regularly with
new data, e.g., ClinVAR is updated every month. Second, the method does not reuse the knowledge from
already diagnosed cases as this data is typically not available and thus can not be taken into account.

Therefore, a SAS shall be developed, which exploits changes in databases and already diagnosed cases
to improve the variant prioritization over time.

4.2 A Conceptual Model for Supporting Engineering a SAS

In the following, we outline a conceptual model for the self-adaptive medical software following the
definition of the conceptual model as proposed in (Wilsdorf et al. 2020b), i.e., as a collection of early-phase
products of the modeling and simulation cycle. In particular comprising research questions, requirements,
assumptions, data and information sources, and a qualitative description of the simulation model(s).

Research Question: The first step in each simulation study is the definition of questions that shall be
answered by applying simulation techniques. We discovered three main areas of questions in our project:

1. How does the interaction with the system influences the system itself?
2. How does the input data influence the learning process and the resulting rankings?
3. How do the rankings influence the laboratory process and their future input?

These questions map roughly on three possible abstraction levels for the environment model; The most
abstract view would suffice for scalability questions, i.e., questions asking how the system acts under high
load: handling a lot of requests, saving a lot of diagnoses, or handling a lot of learning runs.

The second set of questions focuses on the system results (the computed rankings for a request). System
results implicitly influence all diagnoses and consequently patient treatment and health. Here, the simulation
results are vital as assurance evidence, before the final product can be used productively. Examples would
be the influence of diagnoses on learned rankings (and the learning process), the correctness of rankings,
and how they improve with accumulating knowledge. In this case, the input data cannot be random and
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has to satisfy some constraints. Simultaneously, we have to monitor and evaluate the resulting outputs.
Nonetheless, the model of the laboratories could be relatively simple, since the diagnosis creation process
is independent of learning and ranking creation.

The last set of research questions has the most potential to improve the development process of the adaptive
system using simulation. These questions are concerned with the system’s impact on the environment, e.g.:
how rankings can be integrated best in the laboratory workflow (for consensus negotiation), what is the
potential to accelerate diagnoses, or how well are they trusted (and thus affect patient treatment). While
the previous questions do not need a very sophisticated model of the environment, these questions concern
entities and details in the environment, which therefore have to be modeled. As a result, our laboratory
model has to be relatively complex.

One big benefit a simulation can introduce here is the explicit modeling of properties that in reality
are implicit or hard to observe. For example, the diagnoses of laboratories can have errors, which are hard
to spot, or simply are not known to be errors at the time of diagnosis. We can make such errors explicit
in a simulation model and track the propagation through our system into other laboratories. As this aspect
is interesting we select the following research question to focus on and base further steps on it: How do
erroneous rankings propagate through laboratories and back into the system?

However, to specify concrete requirements we need to know a bit more about the variables to monitor
and analyze in the simulation models. Therefore, our next step is to define the qualitative model which
will present a bird’s eye view of the simulation model, its components, and their interactions.

Qualitative Model: First, we can distinguish between the SAS and the environment as shown in Figure 4.
The SAS comprises the adaptive controller and the target system (the latter are all SAS components that
are not the adaptation controller). The environment consists of laboratories that produce case data.

Figure 4: Qualitative model of the environment and its interactions with the SAS

A typical workflow begins with a patient who visits a physician (in a hospital or medical practice) with
an illness. The detailed circumstances of patients are not of interest for our adaptive system, consequently,
we represent patients as a set of genetic variants which has to be acquired or be generated somehow. Here,
we can distinguish between two possible sources: real data that has been anonymized, or synthesized data
that shares important features with the real data. To increase the credibility of the simulation, it would be
wise to use both acquisition sources and test if they produce similar results.
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The diagnosis process for rare genetic diseases is not done by the physician. It usually involves multiple
medical reporters in a separate laboratory, who will settle on a diagnosis together. Together, physicians and
laboratories form the environment of the SAS. They interact with it, by requesting rankings and providing
their resulting diagnoses. The level of abstraction in this part is highly dynamic and depends on the research
questions we want to answer. As argued earlier, depending on the modeling concern (be it reliability,
scalability, etc.) different abstractions should be defined as part of the qualitative model. In Figure 4 we can
already see two possible levels of abstraction for our laboratories: the most abstract view of a laboratory
just forwards case data and turns the requested rankings into diagnoses—maybe even randomly generated.
This corresponds to the first research question area and its abstraction level.

If we want to evaluate properties like scalability or throughput of the system, this can be sufficient.
However, for an analysis of e.g. data integrity or feedback influence, the simulation model has to be more
sophisticated (as mentioned in the third research question area). In such a scenario, we would model
an actual laboratory workflow in more detail, as shown on the bottom right in Figure 4. This level of
abstraction shows the laboratory process with several reporters who collectively diagnose a case, including
an agreement on a final diagnosis. Both levels of analysis can be valid, depending on the objectives we
want to solve.

The laboratories from the environment interact with our adaptive system. Its center is the adaptation
controller which executes the MAPE-K loop (Kephart and Chess 2003). It monitors two knowledge sources:
the dynamic knowledge, which is the accumulation of case and diagnosis data from the laboratories, and
the static databases, which are the large curated medical databases designed for laboratory use. If the
knowledge base changed sufficiently, the adaptation controller starts a new learning run. Our adaptation
goal is to only use a better VPM than the current. Consequently, the newly learned VPM is analyzed
and if it is better than the previous, the adaptation process can be planned and executed, resulting in the
adaptation of the new VPM. Now, newly requested rankings are based on the improved VPM.

With the requested rankings, the laboratories can complete their diagnosis process and return the
resulting diagnosis data to the requesting physician, who then can choose a treatment. Additionally, the
diagnosis data is used in future learning iterations.

In addition to specifying the different model parts and their levels of abstraction, the qualitative model
also contains information about the model parameters. Parameters are crucial when specifying a (conceptual)
model, as these are the parts that can be tweaked during simulation experiments. In Table 1 we give some
parameters for our simulation model. For example, we might make the number of simulated laboratories
and reporters adjustable, for scalability questions, or introduce artificially simulated errors in diagnoses, to
analyze error propagation.

Table 1: Parameter table comprised in the qualitative model.

Parameter Domain

Reporter Expertise Percentage
Reporter Negotiation Weight Percentage
Laboratory Count Integer
Reporter Count per Laboratory Integer
Diagnosis Error Rate Percentage

Data and Information Sources: To build a valid simulation model, it has to be based on various sources.
These can be data obtained from measurements or questionnaires. For example, we can measure in a
real-life laboratory, which reporter contributed which diagnoses in the consensus negotiation and where
the diagnosis deviated from the consensus. Another source to model the laboratories are official guidelines
(e.g. the ACMG Guidelines (Richards et al. 2015)). We can calibrate and validate our simulation with a
comparison between these measurements and the results of our simulated laboratories. Furthermore, some
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model parameters may be fixed based on other information sources such as scientific publications that
might offer confirmed error rates.

So far, data and information sources are not explicitly reflected in the SAS development life cycle.
However, the data or information sources can provide additional information for the assurance arguments.
If simulation models are used to generate assurance evidence, and these models have been built, calibrated,
and validated based on specific data and information sources, the assurance evidence produced might only
be valid for exactly these sources.

Requirements: Having relevant research questions not only determines the abstraction level of the
environment, but they are also helpful to formulate simulation requirements for modeling the system and
its impact on the environment.

An assurance claim for the SAS, which also relates to our example research question is that erroneous
diagnosis do only propagate between laboratories if the SAS was repeatedly trained with sufficient erroneous
data: the SAS should only propagate errors from wrong input instead of errors from bad learning. Of
course, we would like to see no propagation at all, but in reality, we cannot be sure that laboratories always
produce correct diagnoses.

We can test this claim in a simulation experiment and define a concrete requirement that the SAS
should be able to handle. The experiment could look like this: 30% of the simulated laboratories in the
environment generate consistently wrong diagnoses for specific variants. These erroneous variants get
checked into the knowledge base of our SAS and influence our learning runs. During the experiment, we
collect all diagnoses on the same variant from the remaining 70% laboratories, which are the diagnoses
that loop back into the SAS. If the diagnosis is also erroneous, the error has propagated and reinforces
the wrong learning, if not, the error was called by the reporters of this laboratory, and error-correcting
knowledge gets checked into the knowledge base. So, the error propagation rate is:

Rprop =
WrongDiagnoses
RightDiagnoses

which we can measure for each simulation run. Now we can formulate a requirement for this scenario:
Rprop ≤ 0.1. We can evaluate this property with statistical model checking (Agha and Palmskog 2018) for
all simulation runs.

To check this requirement the simulation model needs to be rather detailed referring to learning
components and laboratory workflows. However, it is a good strategy to develop a sophisticated learning
mechanism and tune things like adaptation behavior, credibility levels for laboratories, and other things
that can influence the feedback loop between SAS and the environment.

If our experiment results satisfy the requirements, we still have no proof for the correctness of our SAS,
but certainly, we have additional evidence. Here, we see the connection to assurance cases. Our experiment
results map visibly on assurance evidence, whereas assurance claims are connected to requirements.

With that in mind we can see how a simulation study with an explicit conceptional model can improve
the development process: not only does a structured notation help to analyze and understand the SAS better,
the resulting simulation study can also be used to produce assurance evidence for an assurance claim.

Assumptions: To constrain our simulation model we can define simplifications. These are assumptions that
restrict the level of detail of our processes or the interactions between them. A reasonable simplification in
our model concerns the communication between different laboratories: In reality, members of a laboratory
might interact and interchange knowledge due to personal or professional relations. However, the main
diagnostic operation is done within the workflow of a laboratory. So, an articulated simplification could
be: Laboratories do not interact with each other directly. Such a simplification can keep the model
understandable and efficient. Assumptions indicate limitations of applying the models and influence how
models are interpreted. They therefore should be considered in the assurance arguments of the combined
SAS+Simulation development workflow (as shown in Figure 3). Assurance arguments provide explanations
for the assurance claims based on evidence.
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5 CONCLUSION AND FUTURE WORK

Developing self-adaptive software is a complex engineering task and testing the adaptation cycle requires
runtime assurance of the complete system. One way to gather runtime assurance is by exploiting simulation
models. We showed that the modeling and simulation life cycle (and in particular conceptual modeling) can
be integrated into the adaptive-system life cycle from the start: it allows a more systematic development
of the system and environmental models, and makes valuable context information accessible for SAS
engineering by explicit early-stage products like the conceptual model and simulation experiments. The
systems requirements of the engineering life cycle are mapped to the research objectives of the simulation
studies. Assurance claims and sub-claims are mapped to simulation requirements, simulation experiments
provide evidence for these assurance cases. The arguments of these assurance cases explain how the evidence,
here the simulation experiment, gives substance to the assurance claim. In addition to the specification
of a simulation experiment, which allows its replication, they are able to consider assumptions, data and
information sources as possible constraints that apply to the simulation model.

We discussed these connections based on a self-adaptive medical software system for diagnosing genetic
variants. The software is currently under development and as a medical product, it has to comply with high
standards of quality. Assurance cases are central in its design. The generation of assurance evidence at
runtime, before deploying the system productively, is a highly valuable contribution simulation provides,
and a good reason to integrate this approach in the development process for self-adaptive systems seamlessly.
Particularly, given the complexity of the endeavor, we hope that synergies between both life cycles will
contribute to an effective and reliable design of the self-adaptive software system, and that part of this even
transfers to the production process.
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