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ABSTRACT

Nowadays, customer behavior changes rapidly, resulting in high demand volatility throughout immensely
globalized supply chains, especially from key-account customers. Hence, requiring not only excellent
products produced in the shortest time but also abiding to defined due dates. In this paper, we propose
a multi-objective large neighborhood search (MO-LNS) algorithm with a frozen period focusing solely
on minimizing the total weighted tardiness of a two-stage production with random rush orders. The total
weighted tardiness is set as the primary objective function and the robustness as the secondary one. The
algorithm is implemented in a discrete event simulation (DES) model to observe the effects of varying
objective function weights at different levels of order dynamism. The results suggest that there is not a
single dominant weight pair, but rather a range, which dominates others. Thus, using a pair from the
dominant range increases the likelihood of reducing the tardiness over a period.

1 INTRODUCTION

Coping with highly volatile demand, especially from key-account customers, has become an increasing
challenge in many industries, in particular for make-to-order (MTO) production. At the same time, these
challenges, which are influenced greatly by the globalization of supply chains, offer many opportunities for
those, who are able to take advantage of simulations and analytics. This case study deals with a rescheduling
problem at a label printing company, with the aim of minimizing tardiness, while accommodating both
rush and regular orders as well as considering their relative importance, i.e., job weights.

The industrial partner targeted in this work produces labels with a technology called flexography, which
is a continuous rotary printing method, using rubber or photo-polymer relief image plates and UV lights,
which promote a faster ink curing process (FFTA 1999). This technology’s main advantages are its speed
and consistency of quality, making it suitable for medium to high-volume productions. In contrast, one of
its major drawbacks is its extensive setup process, which makes it less favorable for small production lots
because the setup can potentially take longer than the manufacturing. At the same time, the setup time
of consecutive jobs can be reduced notably if they utilize the same inks, varnishes, or cutting die. Also,
flexography requires a post processing production process, in which the printed labels are cut into ribbons
and re-rolled into smaller rolls. The setup process of consecutive jobs on the second stage can be reduced
also, if smaller rolls of the same diameter are used. This results in a two-stage manufacturing process.
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A plethora of environmental factors impact consumer behavior, which consequently results in high
demand volatility of labels, which are necessary to market and sell products in stores, leading to a range
of order lead times. The majority of customers place their orders in advance, enabling the company to
procure materials and tools as well as plan the production accordingly - to meet the required due dates. At
the same time, some customers regularly place rush orders, i.e., require products with a lead time of only
a few days or less. This requires frequent rescheduling upon the arrival of such orders.

For a rescheduling strategy to be successful it must consider a range of constraints to yield not only
feasible production plans but efficient ones. First of all, the updated plans must aim to prevent tardiness,
i.e., if a job would be completed after its due date. In case this is not possible the relative importance of all
current orders and customers needs to be considered and the “least violating” solution is chosen. Moreover,
the reduced setup effort on a machine for consecutive jobs, which are similar, must be considered. Therefore,
scheduling exclusively by due dates might not be the most efficient method. Another important constraint
is maintaining a level of schedule stability while rescheduling to ensure smooth operations throughout the
company - shop floor, sales office, and warehouse. Lastly, the planning personnel must expect that the next
rush order may occur any moment, requiring a re-optimization of the current schedule.

Summing up, this raises the question of how to create schedules, which consistently keep the total
weighted tardiness at a minimum. In particular, determining the right balance between optimizing this
objective for the present as well as planning for the future, i.e., exploiting the flexibility of schedules to
deal with random rush orders at later periods, while keeping the schedules as stable as necessary. From
the practitioner’s point of view this translates to the question of which objective weight pairing, i.e., which
solution on the Pareto-Frontier, should be chosen whenever (re-)scheduling, given a specific degree of
order dynamism. Hence, this paper attempts to answer the question of whether dominant objective weight
pairings for order situations with distinct degrees of dynamism can be identified.

A recent review of the approaches used for scheduling in dynamic job shops was presented by Mohan
et al. (2019), whereas Xie et al. (2019) examined flexible job shop problems. Also, González-Neira et al.
(2017) reviewed comprehensively the literature on flow shop scheduling problems under uncertainties. What
is more, the research dealing with lateness or tardiness as objectives in job shops is vastly outnumbered by
the works focusing on makespan optimization, according to Chaudhry and Khan (2016). At the same time,
the majority of the analyzed literature which is associated with industry include some form of tardiness,
lateness, or earliness in the objective function, while only a part of the observed purely academic research
considers these objectives (Chaudhry and Khan 2016). These findings further emphasize the notion that,
from a practitioner’s point of view, meeting the customer’s expected due dates precisely is of the utmost
importance, often more than theoretical efficiency.

Moreover, a large part of the scheduling literature, which targets the minimization of the total weighted
tardiness, used a heuristic optimization approach since Du and Leung (1990) have proven that optimizing
this objective on even a single machine is NP-hard in the ordinary sense. In general, most researchers
have used the total weighted tardiness as the sole objective function in their heuristic approaches. E.g.,
Komaki et al. (2014) and Nishi et al. (2010) have done so for a flow shop environment. Whereas, Kirlik
and Oguz (2012) and Lee et al. (1997), amongst others, have done so in the context of single machine
experiments. At the same time, a few works propose using methods in addition to an objective function in
an attempt to improve the total weighted tardiness. One method is the insertion of idle time blocks, where
their duration and position in the schedule are based on a distribution of historic events, i.e., disturbances
(Mehta and Uzsoy 1998). Another experiment was conducted by Jensen (2001), who attempted to improve
the robustness and flexibility of a tardiness scheduling problem with breakdowns in two ways: 1) through
reformulation of the neighborhood-based robustness measure technique from Jensen (2003) and 2) by
minimizing the lateness, i.e., increasing slack, instead of focusing on the tardiness.

In this paper, we propose a multi-objective meta-heuristic scheduling algorithm to minimize the overall
total weighted tardiness. It is based on two objective functions, where the primary objective is the total
weighted tardiness of the current job set and the secondary one is accounting for robustness, as defined by
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Pinedo (2009), which implicitly attempts to prevent tardiness in the future. Several weighted combinations
of these two objectives are evaluated in this study. Additionally, the required level of schedule stability is
achieved by implementing a variation of the frozen period principle.

To evaluate the effectiveness of the scheduling algorithm in a real-world setting, a discrete event
simulation (DES) model of the industrial partner’s shop floor was created, which replicates production
processes. It allows to analyze how the chosen solution approach deals with different order situations and
varying objective function weights. Notably, it enables to determine the right balance between flexibility,
i.e., robustness, to accommodate high-weighted rush orders and schedule quality with respect to overall
tardiness over a period, which stretches over multiple planning horizons.

The rest of this paper is structured as follows. Section 2 describes in detail the shop floor, the main
scheduling challenges and their evaluation, and constraints. Section 3 outlines the basic principles of the
selected algorithm, elaborates on how the DES model is built, and describes in detail the experiments and
the sampling of the data. In Section 4 the results of the experiments are presented and interpreted. Lastly,
Section 5 summarizes the paper and outlines promising research directions.

2 PROBLEM DESCRIPTION

2.1 Shop Floor Layout and Use-Case Specific Constraints

Currently, the industrial partner’s shop floor consists of 11 machines, three parallel ones on the first stage,
i.e., printing and cutting, and eight parallel ones on the second, i.e., ribboning and rerolling. The shop
floor layout, including the flow of materials, consumables, and tools for an illustrative product are depicted
in Figure 1. Furthermore, such a two-stage production layout with multiple machines on each stage is
considered to be an industry standard for high-volume label printing.
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Figure 1: Layout of the industrial partner’s shop floor and the flow of materials, consumables, and tools
for an illustrative product.

This specific production process is subject to the following constraints. At any time, a machine can
produce only one product, which applies to all machines on both stages. All products must be processed
on both stages; at the same time, a product must be processed on the first stage entirely before it can start
processing on the second. Also, the setup times are sequence dependent.

Additionally, a variation of the frozen period principle is considered when scheduling. It is used to
bring stability to the schedule and prevents confusion of the personnel. The frozen period is set for the
duration of an entire workday from the time a new schedule is being created or an existing one is being
updated. This way only the products, which are not affected by the frozen period can be rescheduled
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together with new arriving non-rush orders. However, the frozen period could be considered semi-frozen
because rush orders are inserted into the frozen part of the schedule via basic greedy insertion to utilize
the current schedule’s flexibility. The impact of this principle is shown in detail in Figure 2.

Lastly, the industrial partner uses a special planning technique for the stage one machines. In essence,
it splits the three printing machines into two groups: 1) two main machines and 2) one buffer machine.
The main task of the worker on the buffer machine is to help with the setup processes on the two main
machines, which reduces the required setup time by one third, according to our industrial partner. The
buffer machine can produce if and only if the entire production process, setup and processing, can be
performed fully in a time window where both main machines are producing and the worker on the buffer
machine is not helping with the setup on either of the main ones.

2.2 Schedules and their Evaluation

A schedule is a sequence of jobs, which are planned to be processed on a machine. Figure 2a shows
an example of two machines and their schedules at the time t0 for two stages, where five jobs need to
be processed ( j1, j2, j3, j4, and j5.) The darker squares represent the setup time and the lighter ones the
processing, whereas the white squares show unplanned time. The frozen period on the first stage machine
encompasses j1, j2, and j5; and on the second stage machine j1 and j2. Additionally, the due dates for
each job are noted on the second stage schedules. Moreover, Figure 2b depicts how the initial schedule
from the time t0 is adapted when a rush order ( j6, with a due date on day two) arrives at time t1. The
new job is inserted into the frozen period on both stages, i.e., between j1 and j2 on the first and second
stage. Furthermore, to prevent j4 from being late it is switched with j3. However, this causes the loss of
the setup benefit from processing j3 before j4.

Days

time = t0
day 1 day 2 day 3

Stage 1
machine schedule

Frozen period: j1, j2, and j5

j1 j2 j5 j3 j4

Jobs Due dates
day 3
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(a) Example schedule at time t0, with due dates.
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(b) Adapted schedule at time t1 - after the rush order j6 is inserted into the frozen period, with due dates.

Figure 2: Example schedules of a two-stage two-machine production before and after a rush order arrival.

To evaluate the schedules, two objective functions are used: 1) the total weighted tardiness
wT = ∑

n
i=1 wiTi, and 2) the robustness R = ∑

n
i=1 wi(di−Ci)/∑

n
i=1 widi (Pinedo 2009).
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Where the wi is the individual importance weight of an order, Ti stands for its tardiness (or positive
lateness Ti = max(Ci−di,0)), Ci is the completion time, and di represents the due date. It is important to
note that both the completion times and due dates are measured in whole workdays.

wT is a weighted measure of the tardiness of products; and R is a weighted measure of how much
in advance these are scheduled. A high robustness means that the products are produced sufficiently in
advance and a rush order can be squeezed in without deteriorating the schedule’s performance. These two
formulations are used because, as stated in the introduction, the main challenge, which the industrial partner
faces when scheduling, is utilizing the highest amount of flexibility to accommodate highly important rush
orders, while preventing tardiness and thereby not punishing customers, who ordered ahead of time.

2.3 General Assumptions

The following simplifications were assumed. All materials and tools are always on stock and available
in the right quantities. There are no work-in-progress and finished product area limitations, i.e., there is
always enough space for waiting products. There are no machine breakdowns or employees on sick leave,
i.e., the machines are available each workday for both shifts. Moreover, in the observed period there are
no vacation days. The manufactured products are of perfect quality, i.e., there are no rejects or scrap.
Additionally, there are no preemptions, which means once a production starts it must be fully processed.

3 SOLUTION APPROACH

3.1 Multi-Objective Large Neighbourhood Search

To generate feasible and potentially better solutions than with manual planning, a Multi-Objective Large
Neighborhood Search (MO-LNS) algorithm, which is based on an LNS algorithm, was chosen, as it can
be easily adapted to a complex environment due to its flexible meta-heuristic nature. Also, the utilized
MO framework enables the usage of unconnected objectives with different value ranges and/or units.

Implementing an LNS algorithm into an MO framework was recently done by Oddi et al. (2015) and
Schaus and Hartert (2013). Both started by first changing the definition from one best solution to a set of
best solutions, i.e., a set of Pareto-efficient solutions.

For the characterization of the best solution sets the principles outlined by Oddi et al. (2015) were
followed. They used two separate sets of best solutions: 1) an elite-set (PS∗) and 2) a next-best set (PS);
both abiding to the non-inferiority principle. The former contains overall dominant solutions, while the
latter contains solutions dominated only by the solutions of the elite-set to a certain degree, which is set
by a threshold parameter T ; this parameter controls the level of diversification. In contrast, not just a
single threshold but two were implemented, i.e., a minimum threshold Tmin and a maximum threshold
Tmax, respectively. Such an approach fits the use case because the diversification of marginally improving
solutions can be controlled effectively by setting appropriate threshold parameters.

Moreover, the selection of the starting solution for each run is not just random but follows the approach
of Schaus and Hartert (2013), i.e., the nearest neighbor, which is much more sophisticated. With it the
voids between Pareto-efficient solutions are filled more efficiently. Here, a random point, with a uniform
distribution, on the hyper-plane spanning between the extreme solutions is selected. Then the solution with
the smallest Euclidean distance to the random point is picked as the initial solution. It is important to add
that the search for a starting solution considers both solution sets.

For the destroy-heuristic an adapted version of the Shaw Removal Heuristic (SHR), which was first
introduced by Shaw (1997), was implemented. It is based on the idea that it is easier to rearrange similar
products than different ones, as changing the positions of products with comparable production times is
less disturbing for the schedule. Furthermore, this heuristic uses two control parameters: 1) the removal
limiter γ and 2) the relatedness weight δ . The former denotes the percentage of the solution to be destroyed,
while the latter how strongly similar jobs should be favored.
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For rebuilding a destroyed solution, the Basic Greedy Insertion (BGI) heuristic, which attempts to find
the best place to reinsert a product into the schedule following the sequence in which they were removed,
was implemented. This heuristic offers very good results with acceptable calculation times.

The pseudo-code of the used LNS algorithm is shown in Algorithm 1 and the adapted MO-framework
is shown in Algorithm 2.

Algorithm 1 Used LNS Algorithm.

1: input: k f ail,ob jective,xstart ;
2: xb← xstart ;
3: k← 0;
4: while (k < k f ail) do
5: xtemporary← r(d(x,ob jective));
6: if (c(xtemporary,ob jective)< c(xb,ob jective)) then
7: xb← xtemporary;
8: k← 0;
9: else

10: k++;
11: return (xb);

Algorithm 2 Used MO-LNS Framework.

1: Let PS∗ and PS be two sets of solutions;
2: Generate initial solution using some heuristic and add it to PS∗;
3: Set kmax,k f ail and T ;
4: while (k < kmax) do
5: xstart ← nearestNeighbour(PS,PS∗);
6: strategy← selectRandomOptimizationObjective(ob j1,ob j2);
7: xtemporary← LNS(k f ail,strategy,xstart);
8: updateEliteSet(xtemporary,T,PS∗,PS);
9: k++;

10: return (PS∗);

3.2 Simulation Model

The industrial partner’s production facility was replicated using a DES model. It was used because events
and states, which are cornerstones of DES, according to Cassandras and Lafortune (2008), are detailed
enough to describe the relevant processes in such a manufacturing environment. These events include new
orders entering the systems, shift starts and finishes, setup starts and finishes, production starts and finishes,
waiting period starts and finishes, and products being shipped out. Relevant states for machines are: idle
(or waiting for scheduled products), shut-off, and processing; and for the products consist of: unprocessed,
processed on the first stage, and processed on both stages, i.e., finished.

The first step of designing the shop floor model was the definition of a software independent conceptual
model. For this the Hierarchical Control Conceptual Modelling (HCCM) framework, which was first
introduced by Furian et al. (2015), was used. This framework replaces conventional queues and conditional
activities with a hierarchical control tree with embedded general rules, thus offering the practitioner a
higher degree of flexibility even before programming the actual model. In addition to these control trees,
which consist of multiple control units, the framework uses entities, events, requests, and activities. We
refer the interested reader to Furian et al. (2015) for a more in-depth elaboration of the framework.



Letonja, Furian, Pan, Vössner and Reuter-Oppermann

In this use-case the model’s hierarchical control tree consists of two levels, the shop floor control unit
controlling two underlying stage control units - a stage 1 control unit and a stage 2 control unit. In addition
to the two stage control units, the main control unit oversees the shift starts and finishes. Furthermore, each
of the two stage control units control the processing and waiting activities of all products and machines.

In the next step the DES model was developed. Here the HCDESLib, which is an open-source C#
library for DES from the same developers as the used framework, was used. Also, this step included the
definition of appropriate interfaces in the main control unit, through which various scheduling algorithms
can be implemented and changed easily.

Lastly, the model was verified and validated; the former by checking and comparing the process flow
of the model with the real production; and the latter by using a real data-set of a period and comparing the
achieved utilization rates of the machines. What is more, in the validation runs some of the solutions on
the Pareto-Frontier, which was generated by our algorithm, were slightly better than the real production,
with respect to total weighted tardiness. However, the real production plan follows negotiated due dates as
well as a handful of make-to-stock products, which we did not have. Everything considered, the developed
algorithm is able to generate schedules, which perform nearly on the same level as the industrial partner’s
production planner with decades of experience.

3.3 Design of Experiments

The goal of the experiments is to assess whether locally optimizing (or rescheduling) with less focus on the
tardiness at the current time, i.e., the objective function weight of total weighted tardiness, and more focus
on preventing future tardiness, i.e., the objective function weight of robustness (or flexibility), over a period
yields an improved global optimum with regard to total weighted tardiness. The findings serve as support
for setting the best objective function weights when rescheduling an order situation with a particular level
of dynamism. Also, the design of experiments (DoE) nomenclature is based on Giunta et al. (2003).

3.3.1 Design Constants

The following parameters remain constant for all samples and experiments. The number of machines
on both stages, production shift start and end times, the planners’ shift start and end times, the periodic
scheduling times, the definition of rush orders, normal orders, and omitted orders, frozen period duration,
and the simulation and evaluation periods.

As previously mentioned, the first stage consists of two main machines and one buffer machine, each
with different capabilities, while the second stage consists of eight machines, also with different capabilities.
The production starts at 6.00 AM and finishes at 8.30 PM each weekday (except national holidays), where
breaks and shift exchanges do not interfere with production; also, the production pauses when the shift
ends and resumes uninterrupted when the next one starts. The planners start their shift at 8.00 AM and
end it at 4.30 PM, during which schedules can be adapted. Further, if a rush order arrives outside of that
time-window, it must wait until the planners’ next shift starts. What is more, the schedules are updated
twice per day, no matter how many and which new orders arrived; this happens at 8.15 AM and 4.15 PM.
A rush order has a due date of less than or equal to two workdays from the time of arrival, normal orders
a due date of more than two workdays, and omitted orders a due date of more than 15 workdays; the latter
ones are scheduled only after their due date gets down to 15 workdays. The frozen period lasts for two
shifts, i.e., 14.5 hours, starting from each scheduling. The production is simulated from Monday, 3.6.2019,
to Thursday, 1.8.2019. To avoid transient machine behavior at the start the evaluation period starts one
week later, i.e., 10.6.2019.

3.3.2 Design Variables

The design variables are divided into two groups: 1) the objective function weights and 2) the job sets,
where the former control the focus of the optimization, whereas the latter sets the level of dynamism.
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The objective function weights are part of a design space with a lower bound of 0 and an upper bound
of +1 and their sum always equals one. Furthermore, the weight pairs are observed in increments of .1,
which results in 11 distinct combinations. This number of steps provides a good trade-off between the
level of gained insight and computational requirements.

Each sample of jobs consists of base jobs and additional rush orders. The analysis of the list of the
provided annual orders showed that the industrial partner received an average of 52 orders each week in
2019. This is taken as the constant number of base jobs per week. Contrarily, the number of rush orders
per week is part of a design space with a lower bound of 0 and an upper bound of +15 and is observed in
increments of five, which results in four distinct levels of dynamism.

Moreover, the used data-sets were generated from the industrial partner’s annual orders list for the
year 2019. First, the orders of sequential months were combined into two-month sets; then, the sets were
further subdivided into weeks. Lastly, the orders were re-grouped by weeks one through ten across the
two-month sets. This way seasonal effects, unusually dynamic periods, as well as exceptionally stale ones
are smoothed out. The resulting weekly order sets serve as the sampling pool. This was done to create
generic job sets with a constant degree of dynamism throughout the observed period.

3.3.3 Experiments and Samples

For this use-case we designed four experiments, one at each level of dynamism, i.e., job sets with zero, five,
ten, and 15 rush orders per week. Further, the base orders of a job set are used in each of the experiments,
with the rush orders being added according to the experiment’s observed dynamism, thereby improving the
comparability despite a smaller sample size. Lastly, each of the samples in an experiment is subdivided
into 11 sub-samples, one for each distinct objective weight pair. The use of a sample across the four
experiments (or dynamism levels) is depicted in Figure 3.

Dynamism
level 0

Dynamism
level 1

Dynamism
level 2

Dynamism
level 3

Obj. weight pair 1

Obj. weight pair 2

Obj. weight pair 11

Job set
sample

...
52 base jobs

p. week
52 base jobs

p. week
52 base jobs

p. week

0 rush orders
p. week

5 rush orders
p. week

10 rush orders
p. week

15 rush orders
p. week

52 base jobs
p. week

Additional 5 rush
orders p. week

Additional 5 rush
orders p. week

Additional 5 rush
orders p. week

Figure 3: Overview of the use of a job set sample across the four observed levels of dynamism.

In summary, each job set is simulated 44 times, 11 distinct objective weight pairs at each of the
four levels of dynamism. To achieve a level of statistical relevance 198 job sets were generated from the
sampling pool, resulting in 8.712 simulation runs. Furthermore, combining the number of simulations with
the model’s complexity leads to expensive computations; the number of re-optimizations, i.e., the number
of rush orders and their inter-arrival time, being the detrimental factor. Thus, the experiments were carried
out on two simulation servers with two Intel(R) Xeon(R) processors with eight cores running at 2.00 GHz
using 262.144 GB RAM, each; also, both running on Microsoft Windows 10.

4 RESULTS

As the first step, the average total weighted tardiness of each experiment across all samples for each sub-
sample is observed. The data for this analysis is presented in Table 1. From these results no clear conclusion
can be made as to which objective weight scenario produces schedules of the highest quality, regarding
weighted tardiness at a certain level of dynamism. Therefore, a more detailed approach is necessary.

For the initial step of the comprehensive analysis the results were aggregated into four 11x11 matrices,
each representing an experiment by combining the results across all samples. The resulting heat maps are
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Table 1: Average total weighted tardiness across all samples for each experiment.

Objective
weight

pair

wT
objective
function
weight

R
objective
function
weight

Average total weighted tardiness of each experiment
Experiment 1

(dynamism
level 0)

Experiment 2
(dynamism

level 1)

Experiment 3
(dynamism

level 2)

Experiment 4
(dynamism

level 3)
0 1.0 0.0 0.449 7.672 19.929 39.727
1 0.9 0.1 0.434 7.606 20.581 39.879
2 0.8 0.2 0.434 7.692 20.434 39.449
3 0.7 0.3 0.419 7.737 20.131 39.732
4 0.6 0.4 0.409 7.429 19.455 40.667
5 0.5 0.5 0.449 7.439 20.439 40.040
6 0.4 0.6 0.444 7.515 20.409 41.439
7 0.3 0.7 0.434 7.975 20.177 40.525
8 0.2 0.8 0.455 7.843 20.177 41.318
9 0.1 0.9 0.460 7.636 20.066 41.308
10 0.0 1.0 0.465 7.732 20.591 42.646

shown in Figure 4. The values in the diagonals count the number of times an objective weight pair was
able to create a schedule with the lowest total weighted tardiness among all 11 objective weight pairs of an
experiment. The rest is filled after the following rule. Assume that the rows are represented by an index
i and the columns by j. Thus, the non-diagonal values count the number of times where the objective
weight pair i was able to create a schedule with a lower than or equal total weighted tardiness than pair j.
Moreover, the higher the value of a cell the darker the color, for both the diagonal and non-diagonal.

The heat map of the first experiment (Figure 4a) shows no clear patterns, which is expected as there
are no rush orders. Nevertheless, a slightly darker path forms in the rows of the objective pair numbers
three and four. In particular, pair number four’s row being the darkest, i.e., beating the other pairs the most,
and its column being clearly the lightest, i.e., getting beaten by the others the least, which means that it
is marginally dominant. Further, comparing the segment under pair number four, row-wise, and left of it,
column-wise, with its counter part, which is mirrored across the diagonal, it is evident that the objective
pairs up to and including number four dominate the remaining ones somewhat.

The next heat map, i.e., experiment two (Figure 4b), shows a slight peak on the diagonal for the
objective weight pair numbers four, five, and six. Notably, the rows of the weight pair numbers four and
six form the darkest path, on average beating the other scenarios in over 70% of the experiments. Again,
objective weight pair number four’s column is the lightest, i.e., getting beaten by the other pairs the least,
indicating a slight dominance. What is more, analyzing the segment under objective weight pair number
six and its mirrored counterpart, analogue to the previous experiment, it appears that the pairs up to and
including number six dominate the rest slightly.

In the penultimate heat map, i.e., experiment three (Figure 4c), the diagonal appears distinctly low, with
a minor peak at the objective weight pair numbers three and four. Especially, pair number four producing
the darkest path, i.e., beating the others the most, specifically in slightly more than 60% of the samples.
At the same time, the pair is the lightest column-wise. Unexpectedly, the next most dominant pair appears
to be number nine, which might be caused by a handful of outstandingly dynamic samples. Another point
supporting this claim is the rise of diagonal values from objective weight pair number six on, peaking at the
last one. Moreover, inspecting the segment under the objective weight pair number four and its mirrored
segment, same as in the first experiment, suggests that the pair numbers three and four dominate the pair
numbers five and six marginally, after that the dominance fades again.

In the last heat map, i.e., experiment four (Figure 4d), the diagonal values are clearly lower than the
rest, as with the previous experiment, with a slim peak forming at objective weight pair number two. Also,
the row of this pair is a shade darker, i.e., is beating the others somewhat more, with the pair number
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(a) Heat map of experiment 1. (b) Heat map of experiment 2.

(c) Heat map of experiment 3. (d) Heat map of experiment 4.

Figure 4: Heat maps of the experiments, with the darker colors representing better values.
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three achieving similar numbers. Further, considering the matrix segment under pair number three and its
mirrored opposite, as in experiment one, it is evident that the initial four pairs dominate the rest slightly.

Everything considered, the results do not highlight an objective weight pair, which dominates the rest by
a significant margin, in any experiment. At the same time, the outcome suggests that by using an objective
weight pair from a certain range of pairs is highly likely going to result in schedules, which prevent more
tardiness than the others by utilizing an appropriate amount of focus on the objective of robustness.

5 CONCLUSION

In this paper we present the initial results of our attempt at assessing the dominance objective function
weight pairs at various degrees of order dynamism in an attempt to optimize the total weighted tardiness
of a scheduling problem over multiple planning horizons using two objective functions with numerous
objective weight pairs. The primary objective being the total weighted tardiness - improving the target
objective for the current planning horizon. The secondary objective being the robustness - preparing the
schedule for random rush orders in a way to potentially prevent tardiness in future planning horizons. These
two objectives were utilized in an MO-LNS algorithm, which was implemented in a DES, following the
HCCM framework. With it we replicated a two-stage printing production facility and thereby observed the
effect of varying objective function weights at different levels of order dynamism.

Overall, the obtained results do not point at an outstandingly dominant objective function weight pair at
any observed level of dynamism. Nonetheless, the outcome of the simulations implies that specific ranges
of objective weight pairs slightly dominate others. Thus, when rescheduling and choosing a solution on
the Pareto-frontier, which corresponds to a weight pair from the dominant range for the current degree of
order dynamism, the total weighted tardiness is highly likely going to be reduced over a period. In the first
experiment the initial five pairs dominate the rest, in the second one the first seven weight pairs dominate
the remaining ones, in the third experiment only the pair numbers three and four dominate the pairs five
and six, and in the last experiment the initial four weight pairs dominate the rest.

The validity of this study would benefit through additional simulation runs. What is more, to further
improve the understanding of the influence of the robustness as a secondary objective function the levels
of dynamism should be controlled with more parameters than just the number of rush orders. Another
interesting research topic would be to formalize and study the effectiveness of different definitions of
robustness as a means of hedging schedules against future tardiness caused by random rush orders.
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