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ABSTRACT 

With the world facing a public health emergency due to the Coronavirus disease (COVID-19) in a global 
pandemic, this paper provides insight about how a simulation model was used to determine the impact of 
headcount variability during lockdown on fab performance. To create a robust simulation model, operator 
loading time was introduced as one of the input parameters. An existing and well validated Discrete Event 
Fab simulation model was extended with operator modelling, and was used to conduct case studies, 
evaluating the impact of different operator availability scenarios including work disruptions for several 
shifts within a week. The studies provide implications for operation to derive mitigation strategies, 
weighing the trade-off between cost demand and speed loss due to operator resources. 

1 INTRODUCTION 

Infineon’s wafer fabrication facility in Kulim High Tech Park, Kulim Kedah, Malaysia is an 8 inch high 
volume wafer fab in Southeast Asia which presently employs more than 3,000 staff. Infineon Kulim is 
positioned as a manufacturing competence center focusing on megatrend technologies for the efficient use 
of electric energy and the electrification of automobile for improved performance and safety as well as 
reduced carbon emission. The wafer fab facility started to use discrete event fab simulation in 2016. A first 
simulation model was introduced to forecast operation KPIs with a 7 days horizon only (Seidel et. al. 2017). 
This model runs automatically every day, normally without any user interference, and it is called the short-
term simulation model (STS). Since 2019 a second simulation model has been available as well, which can 
be used for scenario runs, for any chosen time period. The second model is highly interactive, and provides 
the user options to manipulate input data, to generate different scenarios. This model is called the long-term 
simulation model (LTS). The important considerations for building a good simulation model can be found 
in Fowler, Mönch, and Ponsignon (2015). 

Both models share common basic data e.g. routes, products, equipment, dedications, etc. The model 
structures are very similar. But of course the LTS needs some kind of future change list, to model e.g. 
adding of new equipment and dedications changes over time. 
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Due to the Covid-19 pandemic, governments around the world including Malaysia declared lockdowns 
to fight the spread of the pandemic. Semiconductor manufacturing for the essential product were allowed 
to continue operating though with only certain percentage of its normal workforce. This sudden declaration 
of  lockdown imposed a significant challenge for daily plans of production activities. With the unplanned 
lockdown, implementation of precautionary steps to ensure stability of machines, materials and human 
resources became an ad-hoc discussion and decision making for operation. The focus was to minimize risks 
and production losses in the wafer fab.  

Operating a fab production with such resource limitations created major challenges for production. 
There was a new requirement to judge impact of every operational decision made because there was no past 
data to study from. This lack of visibility through experience led to requests to the simulation team to 
evaluate several alternative scenarios and provide insight into the implication of decisions made. The 
simulation studies were conducted in collaboration with different departments, defining the input 
parameters to the simulation model such as  choice and schedule of equipment warm down, human resource 
scheduling, start mix profile, etc. 

In Section 2 we describe important simulation model features and the way how input data was 
calculated to model operator behavior. Section 3 presents scenario results and Section 4 provides 
conclusions and outlook. 

2 SIMULATION MODEL 

2.1 Modelling Elements 

Discrete event simulation is commonly used in the wafer fab for the purpose of WIP flow forecasting, 
dynamic capacity planning, and scheduling (Mönch, Fowler, and Mason 2013). The essential modelling 
elements for both LTS and STS for high accuracy model forecasts are summarized in Table 1 and Table 2 
below. It is the same model that has already been described in Seidel et. al. (2020). The simulation model 
is built on a commercial off-the-shelf simulation engine, the D-SIMCON Forecaster (D-SIMLAB 
Technologies 2021). The simulation model was validated by choosing a historical time period as a basis of 
comparison between simulation and real performance. The detailed methodology and results can be found 
in Seidel et. al. 2017. 

As discussed in Section 1, the standard LTS and STS models do not model operators as it is not a 
critical limiting resource. But with the lockdown declared, with possibly less than 50% of operators 
returning to work, operators became the one key resource that limited the capacity moves in the fab. 
Operator resource constraint can be modelled as a standard feature of the D-SIMCON simulator.  

An operator group is used to model an additional resource required to handle lots processing at an 
equipment or for any equipment maintenance events. Other activities such as searching and transportation 
of lots are captured as part of the time an operator resource is required to process a lot or batch. Several 
operator groups can be created based on the equipment characteristics or the fab layout. To model operator’s 
shift behavior dynamically, start and end shift time can be defined for each operator group with a total 
number of operators available. An unique operator group name is created for each operator group and shift 
period in order to differentiate the behavior of each operator group at different shift period. Break times can 
also be defined for each operator group with a certain break time behavior. Each equipment in the simulation 
model is assigned to one operator group with the calculated load time. When the equipment is ready for a 
lot or batch processing, it will consume one operator count of the assigned operator group for the duration 
of the defined load time. After loading, the operator will be added back to the corresponding operator group 
pool. Take note that it is possible that an operator resource is still involved in a task of processing a lot at 
the end of shift. In this case we assume that the operator will stay until the task is done beyond the shift. If 
there are not enough operators to perform the task, the equipment will incur efficiency loss or idle time, 
and the lot or batch will be waiting for the operator. When the cycle time of lots is very high at a particular 
equipment with idle time, then it is likely that operator capacity is insufficient. See Figure 1 for the 
illustration of time elements with operator modelling. The loading time for the operator to load the lot into 
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the equipment will reduce the throughput of an equipment. This means that the longer the load time is, the 
more tool efficiency will be lost. Combining high load time and low operator quantity, the throughput of 
an equipment will be significantly reduced. 

 

Figure 1: Operator model time element overview. 

Table 1: Modelling elements and considerations for high accuracy forecast A. 

Modelling 
Element Description 

Work-In-
Progress 
(WIP) 

The model is initialized with WIP in the production line, with all the lots and their 
associated information being captured. The essential lot information is its current 
step, current state: in queue, in process (current equipment and remaining processing 
time is required), in rework, or on-hold (estimated hold release time is required), 
priority, start and due date. 

Initial 
Equipment 
Down 

All equipment that are in down or non-productive state are initialized as down before 
simulation starts. An estimation of when the equipment is coming back online is 
required. This information is obtained from either historical data (average duration 
for the corresponding down type) or provided by the maintenance department.  

Wafer Start 
Plan 

A wafer start plan up to the lot level is required. Typically wafer fabs do not have lot 
level wafer start plan beyond a week. To address this constraint, a product level 
weekly volume start is obtained from the planning department, and a lot level wafer 
start plan is created. An algorithm of batching lots of the same product to start to 
enhance batching efficiency at furnaces is used for realistic wafer start plan 
generation.  

Process Flows 
All process flows required by the WIP and wafer start production lots are considered 
in the model. We do not choose representative process flows as we need to ensure 
lots are following the exact path that they will run in the reality. 

Rework Rework is modelled as a random event, where rework rate is derived from historical 
data for all production steps that could trigger a rework process. 

Hold Hold is modelled as a random event, where hold rate and hold duration distribution 
are derived from historical data for all production steps that could trigger lot hold. 

Split-Merge 
Some equipment type such as Chemical-Mechanical-Polishing (CMP) and 
Lithography require pilot runs from time to time. This is modelled with the split-
merge function, where the split rate is calculated from historical data. 

Dispatch Rules 
Only global dispatch rules are considered in the model, such as lot priority, queue time 
priority, operation due date, maximum wait time and same setup. Some local dispatch 
rules such as prefer fast equipment were also considered. 

Queue Time 
Constraint 

Typically queue time constraints are controlled with KANBAN based dispatch rules. 
It is thus essential to construct a simulation model with such consideration as lots could 
be held back and not moving to the next step due to unavailability of KANBAN even 
though equipment capacity is available. 
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Table 2: Modelling elements and considerations for high accuracy forecast B. 

Modelling 
Element Description 

Equipment All equipment in the production line are considered. Each equipment is mapped 
based on its specific behavior such as: single lot, single wafer, batch, or cluster. 

Dedication 
Dedication is modeled at recipe and product-recipe combinations, depending on 
equipment type. Long term inhibits are also considered in the model to ensure 
constraints in production line are portrayed accurately in the simulation model. 

Equipment 
Down 

Equipment down is modelled as a random event, where the mean time to failure and 
mean time to repair distribution are derived from historical data. 

Process Time 
and 
Throughput 

Data for recipe or recipe-product based process times and throughput for each 
equipment are gathered. Process time is defined as the time duration that lots/batches 
are spending in the equipment, while throughput is defined as the rate at which 
lots/batches are processed by the tools. Cascading of lots/batches are thus modelled 
when the throughput is higher than the process time. Limping effects (losing process 
speed) of chamber down are also modelled. 

Setup 
Switching 

Setup switching is modelled at some of the relevant equipment such as implantation. 
We consider the time required to switch from one recipe class to another. This overhead 
is important to be modelled as it reduces the tool capacity.  

Reticle 

Reticles are modelled as an additional resource required before lots can start processing 
at lithography equipment. This is essential because lithography equipment are typically 
the key bottleneck of the production line, and reticle availability could alter the 
selection of lots for processing. discussed above 

2.2 Wait for Load Estimation 

There are a few papers that deal with detailed operator modeling for wafer fabs (Mosley, Teyner, and Uzsoy, 
1998) (Crist, and Uzsoy 2011). However as human resources were normally not a critical limiting factor in 
Kulim’s production line, they were not incorporated in the simulation model before the Covid-19 pandemic. 
As human resources limitations became the most critical bottleneck during this challenging time, it was 
thus essential to extend the model to include the human resources (operators) constraints. The most 
appropriate approach for us was to model the constraints as machine load time, which is defined as time 
needed for operator to find a suitable lot and load it into an equipment whenever the equipment is in idle 
mode. Before Covid-19 it was seldom the case that idling equipment waited a long time for loading when 
a suitable lot was available, because operator availability was high. The challenge now was, how to 
determine the average machine load time, and its relationship with the operator resources availability. 

Time studies are done regularly in Kulim, where relevant data is collected. Some of this data can be 
used for our purpose, for example, data in how long it takes on average for an operator to search for a lot, 
load and unload equipment, and prepare lots for processing will be gathered in such time studies. This data 
will be gathered on work center level or sometimes even on equipment level and is generally used to 
calculate how many operator are needed to guarantee a good fab performance. We used this data to derive 
a load time static LTstatic which can be interpreted as minimal loading time needed for a certain work 
center/equipment if operator are fully available. LTstatic normally does not change over time.  

 Apart from that, timestamp data will be collected daily for the fab, for example the timestamp when a 
lot n is loaded to a certain equipment (Lot movein timen) and the timestamp when equipment starts idling 
or is idling before processing lot n and a lot is available for processing or arrives for processing (Equipment 
standby lot availablen) will be stored in a database. A weekly average load time dynamic (LTdynamic) on work 
center level can be calculated by using a formula (see Equation 1).  LTdynamic  can be interpreted as average 
load time performance for a certain work center/equipment and week. In Kulim LTdynamic should normally 
not be much higher than LTstatic, assuming high operator availability. LTdynamic usually changes over time.  
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Figure 2: Methodology flow chart. 

Historical LTdynamic  data from one year and LTstatic  data were used to generate different machine load 
times scenarios. Simulation runs in Figure 2 were conducted for a six-week time horizon for selected 
historical time periods. From the simulation results and by comparing them to historical fab performance, 
we were able to come up with a formula that shows a correlation between load time (LTt),  LTdynamic, LTstatic, 
and operator availability (OPt), all for the same time period t (see equation (2)). This was mainly possible 
because historical data was available for time periods where operator availability was limited, e.g. for a 
typical holiday week in a seasonal holiday period and for the beginning of the lockdown period  (see Figure 
2). With this data it was possible to derive weights wi and wj accordingly. The weights can be different for 
different work center. Therefore equation 2 is work center specific. 

With the help of the formula, average load times for different scenarios (see Section 3) were estimated 
on work center level, and were used as input for simulation runs. 
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𝐿𝑇(=
𝑤𝑖 ∗ OPt*LTstatic+	𝑤𝑗 ∗ (1 − OPt)*LTdynamic	

2 														(2) 

  
Figure 3: Correlation dynamic load time and operator availability on fab level during start of MCO period. 

3 EXPERIMENTAL RESULTS 

Before we can use the model for any meaningful study, we need to ensure that the operator model input 
data is a good representation of the reality. We fine-tuned the parameters with the first week forecast of the 
lockdown with the methodology illustrated in Figure 2 in the second week of lockdown. Based on this 
methodology of model calibration, we derived equation (2) as an approach to establish the relationship 
between load time and operator availability. The simulation runs were conducted with six weeks of forecast, 
and at least 10 replications for each simulation study. Figure 4 shows the overall fab performance key 
figures from fab simulation for the six weeks after lockdown came into effect. The values in Figure 4 were 
all shown relative to a baseline due to the confidentiality of the data. The baseline was a simulation with 
the originally planned fab loading and 100% operator availability, a situation we expected highly likely 
without Covid-19 pandemic. 

Having established the relationship between load time and operator availability, we conducted more 
studies to predict the fab performance for 3 different scenarios that were likely to happen. These scenarios 
are summarized in Table 3. The simulation results helped the management to understand possible 
consequences of manpower shortage to the loss in fab level performance. One critical KPI that is of great 
interest for Infineon is the fab flow factor. The fab flow factor provides an indication of the production 
speed. The lower the fab flow factor, the better the fab performance is. It is measured as a ratio of the fab 
cycle time (of a product or lot) and total raw process time. The total raw process time of a product is defined 
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as best possible cycle time of a product, assuming no waiting times in front of equipment, optimal transport 
times between processes and no other disturbances. 

Figure 4: Simulation results for fab key figures during start of MCO period. 

Table 3: Scenario study overview. 

Scenario Impacted 
Area 

Impact on 
Operator 

Availability 
Estimated Impact 

Worst Case Whole Fab 

 
> 15% 

(Major impact 
by 2 shift 

operator absent) 
 

 
Flow factor spike of 700% compared to baseline, 

recovery takes more than 15 weeks 

Most Likely Whole Fab 

5% - 10% 
(Major impact 
by 2 shift of 

operator absent) 
 

 
Flow factor spike of 300% compared to baseline, 

recovery takes approximately 10 weeks. 

Best Case Only specific 
areas of Fab 

< 5% 
(Minor impact 

to operator 
attendances) 

 

 
Flow factor spike of 140% compared to baseline, 

recover after 5 weeks. 
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For the worst case scenario, it was assumed that more than 15% of the operators working in the fab 
would be required to be quarantined for at least 2 weeks due to exposure to infected colleague, the fab 
would have to be closed for 2 shifts (24 hours) and a disinfection of the whole fab would be done. For the 
most likely scenario a similar fab shutdown like the worst case scenario was assumed but fewer operators 
(5% - 10%) required to quarantine. For the best case scenario we assumed that no fab shutdown would be 
necessary, and less than 5% of the operator would be required to be quarantined with the impact being 
limited to some fab areas only. 

In Figure 5 the fab flow factor (FF) is shown for the three different scenarios. FF is shown relative to a 
baseline scenario where no operator limitations were assumed. For the best case scenario, simulation 
showed a recovery to baseline behaviour within 5 weeks. For the most likely scenario and the worst case 
scenario, FF was back to normal after approximately 10 and 15 weeks, respectively. 

Figure 5: Flow factor forecast for scenarios. 

The management at that point in time was looking for trustable forecasts to mitigate the risk of the loss 
to the company. The simulation results helped the management to understand possible consequences of 
manpower shortage to the loss in fab level performance. Different action plans were devised to reduce the 
impact of the operators resources constraints, such as operator cross training from different modules, 
increase of overtime incentives and investment in anti-microbial coating at common areas such as restaurant 
and cafeteria, handrails, lift areas, operator hostels, toilets and etc. 

4 CONCLUSION 

The Covid-19 pandemic created a totally new, unknown situation for the semiconductor industry. An 
existing well validated fab simulation model was adapted to determine possible impacts out of Covid-19 
restrictions and to predict key fab performance indicators for different scenarios. This helped operation to 
quantify risks and to prepare mitigation strategies and the support was well received in these challenging 
times. The simulation model changes will be kept because simulation accuracy generally increased.  
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