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ABSTRACT

Runway configuration change is one of the major factors effecting runway capacity. The transition-
time required to change from one runway configuration to another is a key concern in optimising runway
configuration. This study formulates prediction of runway transition timings as machine learning regression
problem by using an ensemble of regressors which provides continuous estimates using flight trajectories,
meteorological data, current and past runway configurations and active STAR routes. The data consolidation
and feature engineering convert heterogeneous sources of data and includes a clustering-based prediction
of arrival runways on with an 89.9% validity rate. The proposed model is applied on PHL airport with
4 runways and 23 possible configurations. The 6 major runways configuration changes modelled using
Random Forest Regressor achieved R2 scores of at least 0.8 and median RMSE of 18.8 minutes, highlighting
the predictive power of Machine Learning approach, for informed decision-making in runway configuration
change management.

1 INTRODUCTION

The runway system at an airport is one of the most important resource at an airport and is often deemed
as the bottleneck in airport capacity (Idris et al. 1998). To maximise the capacity of the runway system,
proper management of the runways is required. One important field of interest in runway management
is the selection of the optimal runway configuration. Runway configuration refers to the combination of
runways used for arrivals and departures at an airport. The active runway configuration is updated based on
dynamic conditions such as prevailing traffic and weather conditions. The optimal runway configuration
is the combination which maximises the capacity of the runway system while not violating any safety
requirements or any other policies (for e.g. environmental). These conditions increases the complexity of
the decision-making process of the air traffic control officer (ATCO), where the ATCO has to decide the
most appropriate runway configuration to use under the given operational conditions (Yin et al. 2020).

The decision-making process in a runway configuration change is associated with many factors such
as international regulations, prevailing wind and traffic conditions, degree of delays imposed as well as
subjective and administrative factors such as workload and manpower allocation respectively. One central
factor which is correlated with such factors is the transition-time required for a change between two runway
configurations. This transition-time is the time required to fully complete the runway configuration change
and resume operations at expected capacity, measured by the difference between the time of initiation
and time of completion of the runway configuration change. For every runway configuration change with
unique conditions, the transition-time is a key variable that needs to be weighed in the decision-making
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process as it has a potential ripple effect given the complexity of the terminal airspace. Therefore, it is
imperative that this information be quantified as part of the decision support system for the ATCO before
initiation of runway configuration change, rather than just relying on experience.

This study aims to formulate a machine learning model to predict the transition-time required for the
runway configuration change process, considering environmental and operational factors, based on historical
data. Innovative feature engineering methods are employed to transform the raw data from heterogeneous
sources into useful features that are utilized by the model to predict the runway configuration transition
times. The model is then trained and validated on Philadelphia International Airport (PHL), which includes
flight information, meteorological and runway configuration data for the months of December 2019 and
January 2020. These predicted transition-times represent the expected and average time period for the
runway configuration change to be completed based upon historical data patterns and dynamic conditions
experienced at the airport. However, this transition time should not always be considered as the most
efficient or minimum timings for a runway configuration change to be accomplished. Regardless, this
information aids the PHL ATCO in making better decisions in the runway configuration change by gauging
the average efficiency in terms of transition-time required. This will allow the runway and airport system
to operate with optimal capacity with the least disruptions, regardless of the configuration decision.

2 BACKGROUND

Recent research have formulated various models to predict the runway configurations based on common
dynamic conditions.

Descriptive models instead used data-heavy scenarios in order to determine the optimal runway con-
figuration, using historical data and case studies. Examples include a discrete-choice model (Ramanujam
and Balakrishnan 2011). The discrete choice model utilize factors that include wind speed, wind direction,
demand, current meteorological conditions, noise abatement procedures and switch proximity to determine
the runway configuration. Another example is a Multi-layer Artificial Neural Network (Ahmed et al. 2018)
that predicts the runway configurations using traffic demand, wind conditions and other weather conditions.
These descriptive models predict the runway configurations based on past decisions made by ATCOs and
the decisions made by them might not be the most optimal. However, these descriptive models are useful
to understand the factors that influence runway configuration selection.

Prescriptive models place focus on optimization, using constraints and demand-capacity balancing to
select the ideal runway configuration. These models include a Dynamic Control Model (Jacquillat et al.
2017), Mixed Integer Programming (Bertsimas et al. 2011), Min-Max Regret approach (Ng et al. 2017)
which utilizes most of the factors mentioned in the descriptive models above and recommend a runway
configuration based upon the operational constraints.

A prescriptive model by Duarte et al. (2010) introduced the idea of a transition penalty matrix to
indicate the relative cost to throughput capacity during a switch in runway configurations, presenting a
more realistic scenario where different configuration changes results in different effects. The transition
penalty is formulated based on factors such as repositioning of taxiing and inbound aircraft and movement
of equipment and persons through an approximate effective percentage of inactivity. The varying transition-
time for each runway configuration change is an important distinction to make as airports frequently cycle
through multiple configurations depending on demand and other factors.

These prescriptive models provide robust predictors in many dynamic conditions. However, the heavy
focus on the optimisation and predictions of the runway configurations also highlight a research gap into
transition-time. The prescriptive optimisation models often present a simplifying assumption or baseline
levels regarding configuration change timings, such as a constant time, in the stochastic model (Li and
Clarke 2010) and Mixed Integer Programming (Bertsimas et al. 2011).

The determination of transition timings is also dependent on the workload of the ATCO. In dynamic
situations, ATCOs commonly rely on their past experiences for runway configuration change decisions
which might not be always optimal. Runway configuration change planning can happen strategically and
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can be hours in advance of the actual cause of change like poor wind conditions. These cannot be accurately
decided without an understanding of transition timings, which can potentially limit the runway capacity.

This research thus proposes a machine learning model that could predict the transition-time required
for an airport, with multiple runways, to make specific runway configuration changes while considering
environmental and operational factors. The predictions of transition times between runway configurations
are never predicted in any of the literature and never used in the prediction of runway configurations. Hence,
the contributions of this work can further improve on future runway configuration prediction models.

3 PROBLEM FORMULATION

The problem is formulated as a machine learning regression problem, where the prediction model provides
an estimate of transition times between two runway configurations for 6 unique runway configuration
changes. Figure 1 shows a concept diagram of the proposed framework which illustrates the flow of data,
learning model and prediction.

Figure 1: Proposed framework illustrating the flow of data, learning model, prediction of runway configuration
transition-time.

As illustrated in figure 1, there are two aspects required for the machine learning model, input features
and the target variable of transition-time. The input features refer to the positional factors like flight
direction and location during transition and landing, and meteorological factors, including wind and cloud
information. The target variable, transition-time, is the time difference between initiation and completion
of a runway configuration change. The time when a runway configuration change is realized is provided in
the airport data. Since the time of initiation of runway configuration change is not available, arrival timings
of flights which have a change of arrival runway is used as a proxy. When such flights are landing on
these changed runway, it signifies that the transition has begun. Hence the arrival timings for these flights
are used as approximations to the time of initiation. The arrival runway used by each flight, which is not
provided in the airport data, is first determined in order to identify flights landed on the changed runway.
After which, the complete set of input features and target variable data is used to develop the model to
predict transition timings for the 6 major runway configuration changes at PHL airport.

4 METHODOLOGY

The methodology of the study is shown in Figure 2. The specific data processing steps are sequentially
explained in this chapter.
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Figure 2: Proposed Methodology Determining Input Features and Target Variable for Predictive Modelling.

4.1 Data Preparation

The data set used in this paper is for a period of 62 days, during the months of December 2019 and January
2020 for Philadelphia International Airport (PHL), provided by Saab AB. The data set consists of flight
trajectories, meteorological data, current and past runway configurations and active STAR routes. The data
is pre-processed for input into the machine learning model.

4.1.1 Consolidation of Flight Positions into Trajectories

The first step in data preparation is to consolidate the individual flight position into trajectories. These
trajectories are critical in deciding which runway the flight lands on as the flight positions and course in
the trajectory provides information about the flight approach towards the runway.

The bulk of the data within the data set is the flight track data, consisting of positional information of
each flight. These positional information are Cartesian coordinates with respect to the center of the airport.
Each data point corresponds to a particular position of an aircraft at a fixed time and is reported every 1-5
seconds. Each flight has around 200 or more of such positional information. The positional information
are grouped according to unique flights to produce a unique ‘trajectory’ class for each flight, consisting of
the start and end times, unique call sign and positions of the flight. The final trajectory data set consists
of 32,197 unique trajectories with a total of 36,587,053 flight positions over the two months period.

4.1.2 Associating Trajectories with Meteorological Data

The data preparation for input features included the consolidation of weather information for each of the
flights. The raw data source provides METAR and TAF data. The relevant weather data is matched with
each flight based on the time of the meteorological reports and the time of the flights. Table 1 shows the
weather data extracted from the reports.

4.1.3 Matching Trajectories with Arrival Times and Runway Configuration

With the flights grouped into unique trajectories, the next step is to match each flight with their arrival
times from the flight information dataset, the current active runway configuration and the upcoming runway
configuration. The upcoming runway configuration is important for subsequent feature engineering to
determine if each unique flight landed on a runway that is in the current and/or in the changed runway
configurations. Each runway configuration is associated with its time of activation. The flight information
and the runway configurations comes in separate data tables from the trajectories and they have to be
matched accordingly. The matching that is done to combine the datasets is described below.
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Table 1: Weather Information Extracted from METAR and TAF.

Weather Data Description
Altimeter in Hg Atmospheric pressure based on reference in inch of Mercury
Flight Category Regime of flight rule (Visual/Marginal/Instrument) based

on certain meteorological conditions
METAR Type Type of report (METAR/SPECI) indicating a standard ob-

servation or an unscheduled report
Visibility in Statute Miles Prevailing visibility in Statute Miles
Wind Direction in Degrees Direction of wind measured
Wind Speed in Knots Speed of wind measured
Sky Cover Cloud coverage based on fraction of sky obscured by clouds
Cloud Base Above Ground Level (ft) Height of the base of specified cloud cover

For arrival times, the flights are matched according to the date of flight and the call sign. From the
32,197 unique flights, 30,380 had successful matches to arrival times and runway configurations, with
1817 flights having no landing times determined, an overall matching rate of 94% . An example of Flight
AAL655 with data consolidation can be observed in Figure 3.

Figure 3: AAL655 2 Runway Configuration.

For the flight illustrated in Figure 3, the active arrival runways are 27R and 17 (‘Current RC’). The
changed runway configuration is expected to be 27L and 17 (‘Upcoming RC’), and the time of completion
of the runway configuration change is at 13:28 local time(‘Upcoming RC Active Time’). If this flight are to
land on runway 27L (a runway used only in the future runway configuration) at 13:04 local time(‘landing
time’), it would be hypothesised that the transition had already begun and hence the difference in landing
time (13:04) and time of completion (13:28) would result in a total transition time of 24 minutes.

4.1.4 Modal Flight Course Feature Engineering

With knowledge of the active and future runway configuration and the time of landing, the omission of the
actual runway the flight landed on meant necessary feature engineering and imputation have to be carried
out to predict the actual arrival runway.

The aircraft flight course is defined as the direction of the aircraft’s track representing the actual
movement of the aircraft. During landings with little crosswind, the pilot aligns the aircraft as close to
the centre line of the runway. Hence, determining the flight course will provide a good indicator of the
heading of the runway in which the flight landed on. With the positional data at multiple instances of time,
given as x and y coordinates, the authors defined each aircraft’s course at every instance.

In chronological order, the differences in x and y coordinates are evaluated and processed using
trigonometric functions to determine the angle clockwise from True North (360◦). This engineered value is
saved as a new feature termed flight course (‘Course Deg’) in the data set. An example for flight PDT4997
is seen in Figure 4. Using the difference in x and y coordinates (-93 and +254 respectively), the appropriate
arctangent function is applied to determine a flight course of 339.89◦clockwise from True North, under the
‘Course Deg’ column. For each flight, there is a specific flight course computed for each instance based
on consecutive flight positions.

The next feature engineered would be the modal flight course(‘Course Mode’). The modal flight course
defined in this paper is flight course with the highest occurrence during the landing phase in the airport
proximity. This proximity is set as (-7000, -1500) to (4500, 5000) on the x-y coordinate plane using the
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Figure 4: PDT4997 Flight Course.

density of flight paths. The arithmetic mode of the flight course(‘Course Deg’) for each flight is processed
as the modal flight course(‘Course Mode’). This reduced the tracking errors at particular instances of time.

One such tracking deviation faced by Flight BAW69V is shown to be corrected in Figure 5. Flight
BAW69V have a flight path that is observed to follow a general Southwestern track. However, from
the figure, the flight course based on the two positions are 159.7◦, which indicate the flight flies in the
Southeastern direction during these 2 instances. This could be due to a suspected tracking error in the
flight positions. However, the flight course based on the other positions are 260◦. Hence, by taking the
arithmetic mode of the flight course, a modal flight course of 260◦is assigned for the entire flight.

Figure 5: BAW69V Flight Course.

4.1.5 Runway Assignment

Since information regarding the arrival runway for each individual flight is unavailable in the data set, a
hybrid circumscribed rectangular assignment method and clustering model is developed to assign the flights
to their respective runways. The arrival runway for each flight is required to determine if the flight has
landed on the changed runway. With the landing time matched with trajectories, the landing position of
each aircraft can be determined. Using the 30,380 matched data points, the flight positions at the closest
time of landing around the airport vicinity are plotted out. Based on the coordinate map of the landing
positions, 4 distinct lines representing the 4 runways in PHL are determined to be the possible runway
positions and plotted out. Figure 6 shows the landing positions of the flights and the possible runway
positions.

The coordinates of the runways are determined iteratively to match the straight sections of the landing
positions. Following which, 4 bounding boxes are created around the runways, representing the 4 runways.
With these circumscribed rectangles in place and the previously engineered modal flight course for each
flight on hand, the two-fold circumscribed rectangular approach assigned eligible flights to the arrival
runways. Only flights with landing coordinates inside the rectangular bounding boxes are considered. The
modal flight course of these flights must lie within the ±40◦of the possible runway heading associated with
that bounding box to be assigned as the runway of which the flight landed on. The result of this assignment
is saved as the runway assigned for the 11,935 flights and plotted in Figure 7 out of the data set of 27,972
flights after removing outliers.

For the remaining unassigned flights, clustering models are applied to assign flights to the runways.
As there is no ground truth label with the actual arrival runways provided, clustering provided the best
alternative in grouping and sorting these flights into the arrival runways. The circumscribed rectangle
assignment will be further used as a validation tool to interpret each of the derived clusters. The features
used for clustering of flights to runways are the x-positions, y-positions and modal flight course of the
flights.
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Figure 6: Plot of Theorised Runway Positions.

Figure 7: Plot of Circumscribed Rectangle Runway Assignments and Flight Landing Positions.

A state-of-the-art Gaussian Mixture Model (GMM) is selected as the clustering algorithm as it is able
to form stretched and elliptical clusters, which are closer to the straight-line runways than all other types of
clustering algorithms tested. The GMM assumes that each cluster is a Gaussian Distribution of the flight
positions and courses, and the cluster should represent a runway. For each flight, the GMM computes the
probabilities of each flight belonging to the hypothesized clusters based on the features. The flight is then
assigned to the cluster with the highest probability. Since the GMM is unable to cluster distinct runways
in one try, an iterative process is done until all flights are assigned a cluster that represents a runway.

The runway assignments are summarised in Table 2 and shown visually in Figure 8. The flights in
each cluster are assigned to a runway and corroborated with the circumscribed rectangle assignment (CR).

The final runway assignments predicted the runways for an additional 12,444 flights for a total of
24,379 flights, dropping 3593 flights that are unassigned due to noise. Within the 11,935 flights assigned
using the CR method, 96.9 %, or 11,566, of the flights had similar runway assignments using the clustering
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Table 2: Cluster Assignment and Circumscribed Rectangle (CR) Evaluation.

Runway Assignment 17 35 27R 27L 9R 26 Total
Number of CR Flights Assigned 524 1950 5178 938 3302 43 11935
Number of CR Flights with Identical
Clustering Assignments

521 1733 5053 937 3295 27 11566

CR Flights Assignment Accuracy 99.4% 91.6% 97.6% 99.9% 99.8% 62.8% 96.9%
Number of Flights Predicted 1050 1695 7672 207 1476 344 12444
Total 1574 3645 12850 1145 4778 387 24379

Figure 8: Runway Assignments for 24,379 Predicted Flights by Clustering.

approach. For the 24,379 predicted flights, 89.9%, or 21,917 flights, had valid assignments, where the
flights landed either in the active runway configuration or changed runway configuration.

4.1.6 Transition-time Computation

Due to the methodology of the study, flights that are landing on the same arrival runway in both active and
changed runway configurations are not relevant in the data set as there is no change in runways they landed
on. The data set is filtered to consider flights that landed only in the changed configuration but not in the
current active configuration. Based on the clustering, the 21,917 flights with valid runways included 1024
flights that landed exclusively in the changed runway configuration, signalling changes due to the runway
configuration transition. For this relevant data set, the transition-time required is obtained by finding the
difference between the time of completion and time of initiation, which is approximated by the time of
landing. Time of completion is provided and processed in Section 4.1.3 during data consolidation.

All flights are also organised into their unique configuration changes, such as grouping all flights that
changed from Arrival Runways 27L,17 to 27R,17 together. The median transition time for each of the
runway configuration changes is calculated and subsequently capped at 360 minutes, the median value,
based on the background knowledge and feasibility. Table 3 shows the 6 major configuration changes
selected in this study, based on the number of flights.
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Table 3: Runway Configurations Modelled.

Runway Configuration Change (Configuration Index) Number of Flights
27L, 17 to 27R, 17 (1) 68
27L, 17 to 27R, 35, 26 (2) 49
27R, 35, 26 to 9R, 35 (3) 43
9R, 17 to 27R, 35, 26 (4) 38
9R, 35 to 27R, 35, 26 (5) 33
9R to 27R, 35, 26 (6) 28

4.2 Machine Learning Model

Several machine learning models are evaluated using a single runway configuration change and the root
mean square errors (RMSE) is shown in table 4. Random Forest Regressor (RF) is shown to have the best
result and therefore selected for the regression problem. RF is an ensemble model adopts an averaging
approach, where decision trees are combined and the prediction of the ensemble is then the averaged
prediction of all the randomised decision trees. The randomness in each of the decision trees trained
independently and considered in the prediction reduces the variance of the model as a whole, improving
the overall performance (Pedregosa et al. 2011).

Table 4: RMSE of Regression Models for Arrival Runways Change from 27L, 17 to 27R, 35, 26

Model Root Mean Squared Error (RMSE)
Linear Regression 56.2
Ridge Regression 55.3
Bayesian Ridge 50.0
Support Vector Regression 73.3
K-Nearest Neighbour 65.4
Random Forest Regressor 20.9
AdaBoost 31.9
GradientBoost 33.9

The input features selected involved both the positional flight information and the weather information
and is outlined in Table 5. The target variable is calculated for each of the relevant flights as the time
difference between the time of completion of runway configuration change and time of landing.

Table 5: Regression Analysis Input Features

Input Features
Positional Factors Meteorological Factors

X position Y position Modal flight course Wind Direction Wind Speed Visibility First Cloud Base

5 EXPERIMENT AND RESULTS

5.1 Training and Evaluation

For each individual runway configuration, the regression analysis is carried out first by splitting the training
and test set with a train/test mix of 0.8/0.2. This allowed each of the models to learn from the training set
and then predict the transition timings on the testing set separately, without data leakage. For a supervised
learning prediction, the first evaluative metric chosen to determine the performance for tuning is root mean
square error (RMSE) as defined in Equation 1, where N is the number of data points and the y value is
the target variable (transition time).
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RMSE =

√
1
N

N

∑
i=1

(ypred − yactual)2 (1)

A secondary indicator, R2, or coefficient of determination, is also calculated to measure goodness-of-fit
or how close the predicted data and actual data are by measuring the difference in sum of squares. The
maximum score is 1.0 for a perfect fit. Mathematically, it is represented as R2 = 1− u

v , where

u =
N

∑
i=1

(yactual − ypred)
2, and (2)

v =
N

∑
i=1

(yactual − yactualmean)
2 . (3)

After hyper parameter tuning, the respective RMSE and R2 scores for each of the 6 configuration
changes using a RF model are shown in Table 6. A visual example of the difference in predicted and actual
values of such transition timings for runway configuration index 2 is observed in Figure 9. The percentage
errors between the predicted and actual values are listed in red above the bars.

Table 6: RMSE and R2 Scores of RF Model for 6 Runway Configuration Changes.

Runway Configuration (Configuration Index) RF RMSE RF R2 Score
27L, 17 to 27R, 17 (1) 20.9 0.839
27L, 17 to 27R, 35, 26 (2) 16.7 0.922
27R, 35, 26 to 9R, 35 (3) 37.2 0.906
9R, 17 to 27R, 35, 26 (4) 32.7 0.843
9R, 35 to 27R, 35, 26 (5) 15.2 0.844
9R to 27R, 35, 26 (6) 14.6 0.949

Figure 9: Bar Chart of Predicted and Actual Transition Timings for Runway Configuration Index 2.
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With the results for the 6 runway configuration changes as shown in 6, the R2 scores of at least 0.8
signified each RF model developed could largely explain the variance of transition timings with a good fit
of the results. The median RMSE across the 6 models of 18.8 minutes represents the difference in actual
and predicted values of the runway configuration transition timings. The results highlight the ability of
the model to provide a decent prediction of the transition times as the actual transition times for various
configurations may take several hours based on our definition of transition times.

5.2 Feature Importance

Apart from the selection and scoring of the RF model for each runway configuration change, the author
conducted a further investigation by observing feature importance. The results can be condensed into Table
7. The top 3 important features for each runway configuration index are highlighted in bold.

Table 7: Feature Importance for Configuration Changes using Random Forest Regressor.

Feature Feature Importance for Configuration Index
1 2 3 4 5 6

X position 0.114 0.047 0.04 0.024 0.081 0.012
Y position 0.107 0.134 0.053 0.033 0.352 0.077
Flight course 0.114 0.235 0.066 0.11 0.095 0.019
Wind Direction 0.233 0.161 0.04 0.045 0.264 0.123
Wind Speed 0.26 0.127 0.611 0.093 0.137 0.126
Visibility 0 0 0.002 0.002 0 0
First Cloud Base 0.171 0.296 0.188 0.693 0.071 0.643

From Table 7, it is observed that wind speed, wind direction and first cloud base height are 3 of the most
important factors in almost all the 6 models trained. The predictive power of wind factors in the feature
importance of the models corroborate the conclusion reached in related literature. However, cloud base
height is an important feature specifically in the case of Philadelphia International Airport. Furthermore,
positional factors from the flight information indicated a less important role compared to combined feature
importance from meteorological conditions in the determination of transition time. Considering the entire
runway configuration change process for an ATCO, a macro view such as weather conditions around the
airport vicinity might seem to be a bigger factor than an individual plane’s positioning and distance away
from the runways. Nonetheless, this might still be an area to consider when thinking about the number of
disruptions and holdings that might occur in the terminal airspace.

6 CONCLUSION

The main aim of the study is to develop a model to predict the transition-time required for a runway
configuration change to be completed. Through the heterogeneous sources of data provided, extensive data
preparation and processing is performed, including predictions on runways on which aircraft landed by
using a clustering model. The transition times for 6 major runway configurations changes are modelled
using Random Forest Regressor based on the training and test of the consolidated data set. The prediction
of transition-time for all models achieved R2 scores of at least 0.8 and a median RMSE of 18.8 minutes,
highlighting the predictive capabilities of the machine learning model in a dynamic environment. The
machine learning methodology enabled further inspection of the feature importance in transition timings.
Wind conditions, as expected, played an important role in determining the transition time required. Cloud
base height is surprisingly an important feature in almost all configurations considered in the congested
Philadelphia airspace. The quantification of transition-time may provide Philadelphia ATCO more informed
choices in determining the right runway configuration to achieve the optimal runway capacity.
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For future works regarding transition timings, the machine learning methodology of the study may be
refined by considering other features such as regulatory restrictions or explore inter-regional effects in multi-
airport scenarios. Research on other airports with published time of initiation of runway configuration
changes over extended periods of time may also yield new insights regarding personalised or regional
characteristics of the airport to better serve the ATCO and greater goal of air traffic optimisation.
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