

48

The result of simulation has proved that using static preset intensity pa-
rameters based on mean intensity during the specific time period differs from
the dynamic one. Although the test run with dynamic intensity was done with
only one intensity being changed periodically during the run, it had great im-
pact on the fitness function. Currently there are not many devices that could
provide scientists with the information about road section situation therefore
only one dynamic parameter was involved. Having stated that, installation of
more facilities on intersections leading to getting more parameters, including
intensity, for the system to work properly is considered to be a matter of great
importance.

References

1. Sin-Chun Ng, Chok-Pang Kwok. An Intelligent Traffic Light System
Using Object Detection and Evolutionary Algorithm for Alleviating Traffic
Congestion in Hong Kong. International Journal of Computational Intelli-
gence Systems. Vol.13(1), 802-809.

2. Stetsenko I. V., Dyfuchyn A. Petri-object Simulation: Technique and
Software. Information, Computing and Intelligent Systems 1, 51-59 (2020).

3. Стеценко І. В. Петрі-об’єктна модель системи управління транспорт-
ним рухом // Вісник НТУУ «КПІ». Інформатика, управління та обчислю-
вальна техніка: Зб. наук. пр. – К. : ВЕК+, 2011. - № 54. – С.116-125.

UDC 519.876.5

MODELING OF A QUEUING SYSTEM BASED ON CEN
NETWORK IN GPSS WORLD SOFTWARE ENVIRONMENT

O. M. Khropatyi

Chernihiv Polytechnic National University

A queuing system (QMS) is any system in which the flow of requirements
meets the limited possibilities of their processing [1]. The QMS can perform
certain operations on the requirements coming into the system. An element
of the system that performs operations on requirements is called a service
device or simply a device. Queues may arise within the QMS system. A queue
is a set of requests waiting to be serviced when the device is already busy
servicing a previous request.

Consider the process of modeling a queuing system based on the task.
Suppose we need to simulate the operation of a small system that has one

49

Control E-Network (CEN), designed for control and management of data
(transitions, etc.), and one device that takes the value obtained after that. To
simulate the operation of this system, you can take such a unit as a millisec-
ond (ms). This choice was made for clarity and correctness of the results.

We need to define the parameters of the system:
 CEN network load factor;
 device load factor;
 maximum, average and current number of data in each queue;
 average service time (control and management);
 the average time of data in each queue, etc.

Consider the process of building a simulation model of the simplest QMS
system by creating and executing simulation models in the GPSS World [2]
environment. To facilitate the construction of the simulation model, the pro-
cess of functioning will take place in a single-channel open system.

Receipt of requirements to the QMS system is modeled by the operator
GENERATE, which in the task can be written as: GENERATE (Exponential
(1,0,190)).

The field of operand A determines the time interval between the arrival
of two requests coming one after another to the service channel. This program
uses the built-in exponential distribution function. The average request arrival
time is 190 ms, which is the third argument of the Exponential function.

The request is queued for processing. This can be simulated by the
QUEUE operator, which only in conjunction with the corresponding
DEPART operator collects statistical information about the queue. In the pro-
gram, the QUEUE statement will look like this: QUEUE CHERGA_NET.

The field of operand A is given the symbolic or numeric name of the
queue. This queue task is named CHERGA_NET. This name reflects the es-
sence of the described element of the system - the queue for data to the CEN
network [3].

Following the logic of the process, the request can be queued only when
the service channel is released. To do this, enter the SEIZE operator, which
determines the occupancy of the service channel, and when you release the
last request, which is ahead, leaves the queue and goes to the service channel.
This will be modeled as: SEIZE NETWORK.

In the field of operand A is given the symbolic or numerical name of the
service channel. The channel program is named NETWORK. The output of
the product from the service queue is fixed by the DEPART operator with the
corresponding queue name: DEPART CHERGA_NET. Next, the mainte-
nance time of the device is simulated. To model this process, the operator is
used: ADVANCE (Exponential (1,0,150)).

50

The field of operand A indicates the exponential distribution with an av-
erage service time of the requirement of 150 ms. After processing the request,
a message about the release of the service channel must be sent. This is done
using the operator: RELEASE NETWORK. After maintenance, the require-
ment leaves the system. This action is modeled by the operator:
TERMINATE 1. The number of requirements that have been serviced in our
system will be equal to 10000.

To build a histogram of the time spent in the queue, add to the program the
first operator QTABLE: t_cherga QTABLE CHERGA_NET, 1,1,250. Here in
the field of operand A of the histogram T_cherga the name of the queue
CHERGA_NM is indicated, operand B is the end of the first interval, operand C
is the width of the intervals, operand D is the number of intervals of the histogram.

Finally, the GPSS program will look like shown in Fig. 1.

Fig. 1. Window with the model of the simplest QMS

Fragments of the REPORT window with simulation results for this model

are presented in Fig. 2.

51

Fig. 2. Fragments of the REPORT window with simulation results

The data in turn have the following values: MAX (Maximum length) - 24;

CONT. (Current length) - 0; ENTRY (Number of inputs) - 10000; ENTRY
(O) (Number of inputs with zero time) - 2173; AVE.CONT. (Average num-
ber of entrances) - 2,653; AVE.TIME (Average time in the queue) - 512,807;
AVE. (Average time without zero inputs-O) - 655.177; RETRY (Number of
detainees in case of queue status) - 0.

In addition to the above table, as a result of the model, a histogram of the
values of the time of the requirements in the queue was constructed. To view
this histogram, it was necessary to open the graph of the histogram
T_CHERGA, the window of which is shown in Fig. 3.

Fig. 3. The window of the histogram of the time spent in the queue

52

As can be seen from Fig. 3, the average time in the queue (Mean) coin-
cides with the value of the same parameter (Ave.Time), presented in the
REPORT window, and is equal to 512,807 ms. In addition, from the histo-
gram you can get an additional value of the standard deviation (S.D.) of this
parameter (queue time), which is not given in the table.

The value of the average queue length obtained by means of the simula-
tion model, which is equal to 2,653, can be compared with the value calcu-
lated for the simplest QMS. With the specified parameters, the load factor
will be equal to:

 (1)
Then the average length of the queue will be equal to:

 (2)
Therefore, the GPSS World software environment is ideal for creating and

executing simulation models. The simulation model of the simplest queuing
system was investigated and a comparison with analytical solutions was suc-
cessfully made.

Literature

1. Kazymyr V.V. Research methods. Methodical instructions to the cycle
of laboratory works for masters of specialty 123 Computer Engineering /
Chernihiv: ChNTU, 2018,.P. 42-48.

2. Kudryavtsev E.M. GPSS World. Fundamentals of simulation modeling
of various systems. / DMK Press, 2004. - 320 p.

3. O. Khropatyi, O. Lohinov and V. Kazymyr, "Embedded Models Real-
ization Platform in IoT," 2020 IEEE 5th International Symposium on Smart
and Wireless Systems within the Conferences on Intelligent Data Acquisition
and Advanced Computing Systems (IDAACS-SWS), 2020, pp. 1-6, doi:
10.1109 / IDAACS-SWS50031.2020.9297061.

