
Proceedings of the 2021 Winter Simulation Conference 
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo and M. Loper, eds. 

A RESTFUL PERSISTENT DEVS-BASED INTERACTION MODEL FOR THE 
COMPONENTIZED WEAP AND LEAP RESTFUL FRAMEWORKS 

 
 

Mostafa D. Fard 
Hessam S. Sarjoughian 

 
Arizona Center for Integrative Modeling & Simulation 

School of Computing, Informatics, and Decision Systems Engineering 
Arizona State University 

Tempe, AZ, 85281, USA 
 

 
 
 
ABSTRACT 

Modeling the interactions between separate models contributes to building flexible hybrid simulation 
frameworks. In earlier work, an Algorithmic Interaction Model was proposed and developed to integrate 
the componentized WEAP and LEAP RESTful frameworks for modeling and simulating water and energy 
systems. However, this approach does not separate modeling and simulation protocol from each other. It 
also does not support flexible, structured model hierarchies. To overcome these limitations, the parallel 
DEVS formalism is used to develop an Interaction Model for use with the DEVS-Suite simulator. The 
resulting DEVS Interaction Model (DEVS-IM) is supported with a RESTful framework and MongoDB for 
storing the interaction models for the coupled water and energy models. The DEVS-IM, grounded in system 
theory and component-based modeling, offers strong support for the model reusability, flexibility, and 
maintainability traits essential for developing realistic simulations of coupled energy and water systems. 

1 INTRODUCTION 

The Food-Energy-Water Nexus (FEW-Nexus) has emerged as necessary for their better use, production, 
and management (Hoff 2011). The “nexus” refers to the relationships among food, energy, and water sys-
tems. The “incorporation” and “cross-linking” defining the nexus are crucial for understanding and man-
aging the food, energy, and water systems as a whole system. Improving our understanding of these systems 
as a whole system requires modeling the degree to which each system depends on and affects the others. 
For example, water needs to irrigate land for food production and coal power plants for energy generation. 
Energy requires for agricultural practices and to transport and treat water. Agricultural activities can gen-
erate energy through biofuels but also affect water quality. Knowledge of the linkages, synergies, and con-
flicts is needed to develop policies for the sustainability of collective water, energy, and food systems.  

Modeling the FEW-Nexus is a challenging task that requires extensive data on specific study areas 
(Zhang et al. 2019; Fard et al. 2020). Domain experts can participate in collective work using existing tools 
and better use of previously acquired knowledge and experience. The Water Evaluation and Planning 
(WEAP 2021) and Low Emissions Analysis Platform (LEAP 2021) tools are used to model, simulate, and 
evaluate individual and combined water and energy systems. The advantage of using such tools and frame-
works reduces the effort and resources needed for simulation studies.  

The composition of models is considered essential in developing complex systems and simulation mod-
els capable of expressing a system’s structure and behavior (Sarjoughian 2006). Systems are integrated 
from homogenous or heterogeneous sub-systems. Each sub-system can be considered as an independent 
system or component. Considering the water, energy, and food systems as separate models/components and 
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coupling them via an interaction model leads to modularity and valuable flexibility for modeling, simulat-
ing, and evaluating the FEW and its nexus  (Fard and Sarjoughian 2020b; Fard et al. 2020). 

Addressing the need to integrate tools for understanding and assessing the FEW-Nexus, this article is 
presenting a new modeling and simulation design based on the DEVS formalism for coupling models de-
veloped in the WEAP and LEAP systems. Even though these tools are internally linked, defining interac-
tions between water and energy models is limited in terms of flexibly defining choices of data to be com-
municated, time resolution, and control with support for distributed simulation. The contributions of this 
paper are (i) a DEVS-based Interaction Model that conforms to the Knowledge Interchange Broker model-
ing approach, (ii) a persistent model base for supporting a family of DEVS-IM models in MongoDB, (iii) 
the DEVS-IM MongoDB aimed at automated partial code generation for the DEVS-Suite simulator, (iv) a 
RESTful architecture that supports (i) and (ii). 

2 BACKGROUND 

In this section, details pertaining to the scope of this paper are briefly presented. The emphasis is on model 
composability. The interaction model specification and the database model repository presented in this pa-
per are intended to be agnostics to simulation platforms. There are a variety of approaches, frameworks, 
and tools for multiple simulators to interoperate (Wang et al. 2011). In this work, the DEVS Interaction 
Model is developed as a RESTful framework. This supports the DEVS-IM and the Componentized WEAP 
and LEAP to execute as separate RESTful simulators.    

2.1 Componentized-WEAP & Componentized-LEAP Frameworks 

The Componentized-WEAP (C-WEAP) and Componentized-LEAP (C-LEAP) RESTful frameworks are 
componentized proxies of the WEAP and LEAP systems (Fard and Sarjoughian 2020a). Each system be-
comes a component-based tool supported within a RESTful framework. These frameworks have model 
components for all entities, variables, and data defined in the WEAP and LEAP systems. The returned data 
of different APIs is in JSON format (correspond to the defined domain models for the components and 
variables). The C-WEAP and C-LEAP frameworks present the same schema for a project, its scenarios, 
components, and the input/output variables belong to each component. The executions of the water and 
energy model are supported by the WEAP and LEAP systems. 

2.2 The Algorithmic Interaction Model 

As a first design for coupling the C-WEAP and C-LEAP models, an Algorithmic Interaction Model (Algo-
rithmic-IM) is developed based on the Knowledge Interchange Broker (KIB) approach (Fard and 
Sarjoughian 2020b). The interactions between the water and energy models are defined as separate models. 
The input and output relationships between the composed models are defined as a set of hierarchically 
structured components (i.e., interaction model). The components, as modules and transformations, pre-
scribe time-based data mappings subject to a controlled execution regime. Thus, the water and energy mod-
els do not have direct knowledge of each other. However, this interaction model does not separate domain-
specific model specification from its execution protocol, a fundamental principle of the Knowledge Inter-
change Broker modeling approach for model composability. 

Figure 1 presents a portion of the class diagram for the Algorithmic-IM. The gray and yellow classes 
are abstract and concrete classes, respectively. The interaction model has a set of Modules, each composed 
of one or more Transformations. Two different kinds of input and output ports are defined, module’s ports 
and transformation’s ports. The module’s ports support receiving/sending data from/to water and energy 
models via function calls. These ports allow the modules to communicate to specific entities and variables 
in the C-WEAP and C-LEAP models (defined in the WEAP and LEAP systems). Three types of coupling 
are supported between the module and/or transformation ports; modules’ inputs to transformations’ inputs, 
transformations’ outputs to transformations’ inputs, and transformations’ outputs to modules’ outputs. The 
data communicates unidirectionally via defined couplings. Each transformation can process data values on 
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its input ports and send data values on its output ports. The structure of the received or sent data in each 
module and transformation must be defined, and it must implement the IMessage interface. 

The Algorithmic-IM has a cyclic, discrete time-step, and synchronous execution protocol for concur-
rent and bidirectional data mappings between the water and energy models. The Algorithmic-IM has a 
round-based execution regime consisting of six steps. 1) executing the connected systems to the module’s 
input ports, 2) invoking data from the systems via module input ports, 3) sending the received data to the 
transformation’s input ports, 4) executing the transformations, 5) sending the processed data to the module’s 
output ports/other transformation’s input ports; finally, 6) sending the output data (collected in the module’s 
output ports) to the external systems. Consequently, connected systems (i.e., WEAP and LEAP) can execute 
independently and simultaneously by executing the interaction model (Fard and Sarjoughian 2020b). The 
Algorithmic-IM communicates with the C-WEAP and C-LEAP frameworks using their designated REST-
ful APIs. Using the signature of the C-WEAP and C-LEAP framework’s APIs, every module’s port con-
structs the relevant URL of the componentized water and/or energy models. The composition of the water 
and energy models via the Algorithmic-IM is well-formed in structure and behavior. The execution perfor-
mance of the Algorithmic-IM was tested for a real example (the Phoenix Active Management Area) with 
an acceptable result (around 4 percent overhead) in comparison to the internal linkage between the WEAP 
and LEAP systems. Nevertheless, the Algorithmic-IM design has some limitations and constraints, which 
are tried to be eliminated in a new design based on the parallel Discrete Event System Specification (DEVS) 
formalism. 

 
Figure 1: Modeling specification class diagram for the Algorithmic Interaction Model. 

3 RELATED WORK 

The research on the FEW-Nexus has seen a significant increase in both the number of studies and the 
scientific community’s ability to assess water, energy, and food linkages at multiple resolutions. Thirty-
five methods, tools, and frameworks are reviewed in detail related to the Water-Energy Nexus based on the 
geographical scale and the nexus scope (Dai et al. 2018). Some frameworks, such as CLEWS (Howells et 
al. 2013) and NexSym (Martinez-Hernandez et al. 2017), are modular. Some other frameworks and tools, 
such as the WEF Nexus Tool 2.0 (Daher and Mohtar 2015) and WEAP-LEAP (Sieber et al. 2005), are not 
founded on component-based modeling principles. 

Modeling the interactions between heterogeneous model types has been specified using the DEVS for-
malism (Mayer and Sarjoughian 2016). In this case, parallel DEVS is used to specify and implement the 
KIB as an Interaction Model for hybrid Composable Cellular Automata and Geographical Resources Anal-
ysis Support System (GRASS) models. The Geo-KIB is developed as an extension of the KIB to support 
spatiotemporal data mappings (Boyd and Sarjoughian 2020). It is designed and implemented using modular 
object-oriented design principles and techniques. The Geo-KIB has a set of spatiotemporal data mapping 
functions to regulate the interaction between two I/O modular models. One simulation is designated as input 
and the other as output for the Geo-KIB. Each mapping can have some inputs (discrete-event and discrete-
time inputs) and some outputs (active and passive outputs) ports to be connected to the simulations. This 
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type of interaction modeling is used to compose distinct spatiotemporal agent-based models where human 
food consumption and food growth bidirectionally interact with one another. It is also used for composing 
discrete spatiotemporal agent-based and GRASS models. 

The Service-Oriented Architectures (SOA) has been widely used as the communication mechanism to 
achieve interoperability and composability for simulations in a transparent, open, and scalable way (Tsai et 
al. 2006). Among these is the web-based DEVS distributed framework was defined in DEVS/SOA archi-
tecture (Mittal et al. 2009). In another work, the RESTful Interoperability Simulation Environment (RISE) 
supports interoperating heterogeneous simulation models and tools regardless of their underlying technol-
ogy or algorithms (Al-Zoubi and Wainer 2010).  

Today’s most common database implementation is based on the relational model, which uses SQL as 
its query language. For example, the CoSMoS modeling and simulation tool stores and generates partial 
code for families of parallel DEVS models as relational databases (Sarjoughian and Elamvazhuthi 2009). 
Also, simulation software such as AnyLogic uses relational databases to read input data and write simula-
tion output. Not Only SQL (NoSQL) databases are receiving popularity for their capability in dealing with 
a large amount of complex data in various structures (Parker et al. 2013). MongoDB  (MongoDB 
Documentation 2021), a NoSQL database, has dynamic schema and stores data as BSON documents (bi-
nary encoded JSON-like objects). This database is used as the model base for the DEVS interaction models.  

4 DEVS-BASED PERSISTENCE INTERACTION MODEL 

It is advantageous to use a formal modeling method instead of an algorithm (presented in section 2.2) to 
model and simulate the interactions between the nexus of the water-energy system. A component-based, 
hierarchical modeling approach that aligns with system thinking helps with the development, reuse, and 
maintainability of interaction models. The parallel DEVS formalism (Chow and Zeigler 1994) is selected 
for designing the Interaction Model due to its strong modularity, hierarchy, and support for discrete-time 
state transitions with inputs and outputs used in C-WEAP and C-LEAP frameworks. Furthermore, it is 
important to use established modeling and simulation engines. The parallel DEVS models can be devel-
oped, simulated, tested, and debugged using the DEVS-Suite simulator (ACIMS 2021; McLaughlin and 
Sarjoughian 2020). Together, the DEVS formalism and the DEVS-Suite simulator provide a solid advance-
ment to the interaction model’s algorithmic approach and implementation. Additionally, this simulator’s 
component-based Model-Façade-View-Control design naturally aligns with RESTful architecture. The 
RESTful architecture of the DEVS-Suite simulator is key for integration with the RESTful C-WEAP and 
C-LEAP tools.  

4.1 Internal Structure Specification 

The specification of the interaction model using the parallel DEVS formalism leads to rigorous, systematic 
model development. Figure 2 illustrates a portion of the class diagram for a new Interaction Model design 
based on the parallel DEVS formalism (called DEVS-IM). This interaction model satisfies two needs. One 
is to model the interactions among the water and entity models. Another is for the highest level DEVS 
coupled model to communicate with other simulators. The modeling package, in Figure 2, highlights the 
DEVS’s core modeling engine. Two main classes in the component package are IMAtomicModel and 
IMCoupledModel. The componentType attribute in these two classes can be IM, INPUT_CONNECTOR, 
OUTPUT_CONNECTOR, PROCESS, TASK, and LOGIC. Each atomic or coupled inherited class sets the 
componentType value in its constructor. The required functionalities for the components are defined in 
their corresponding interfaces. An OutputConnector class may select an InputConnector class (the input 
association relation between the classes), depends on its functionality. The Project class, in the im 
package, is inherited from the Entity class and can have multiple interaction models (see the composition 
relation between the Project and IM classes). The Project, IM, Process, and Task are concrete classes, 
and the Logic, InputConnector, and OutputConnector abstract classes must be specialized. 

The composition of the WEAP and LEAP models can have one or more interaction model components 
for a given project. Because the IM (or Process) class inherits from the IMCoupledModel class, the IM (or 
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Process) component can have many Process, Task, and Logic components as its sub-components. Each IM 
component can have multiple InputConnector and OutputConnector components. These input and output 
components, defined using DEVS atomic models, can be coupled with any DEVS model as well as 
communicating (via function calls) with the C-WEAP and C-LEAP frameworks. The Process component 
cannot have any InputConnector or OutputConnector component as its sub-components. The DEVS 
coupled IM component does not have any external input and external output ports. The init() method in 
the IM class defines the initialization for the interaction model. 

The Task component in the DEVS-IM design serves the purpose of the Transformation component in 
the Algorithmic-IM. The main difference between these two components is the capability to set the time 
advance value in the Task component. Also, a modeler can define other new components (derived from the 
IMAtomicModel class) which have different behavior compared to the Task component. The specification 
of the Task component is defined in Listing 1. The Active and Passive are defined for the values of the 
phase attribute defined in the IMAtomicModel class. The input and output port names and values are defined 
by the modeler. A queue is used to store the input values (messages) received on the input ports when the 
model is in Active phase. The value of ActiveTime is read and changed using the getActiveTime() and 
setActiveTime(…) methods in the Task class (see Figure 2). The activate() method changes the initial 
phase to Active. The output function corresponds to the perform() method. The queue size is checked in 
the internal transition function to define the next state. The specifications for the remaining functions are 
straightforward. Some useful predefined components (e.g., Queue, Stack, Random Generator, Periodic 
Generator, etc.) can be inherited from the Task class to have simpler and faster modeling. 

In addition, the Logic component is an atomic model with a specific behavior that does not increase the 
simulation clock. It can be used to define some logical operations. For example, the Junction component to 
send data on the input/s to all output ports, the Choice component to send the input data to one of the outputs 
based on some condition, and the Synchronization component to sync the inputs and send them on outputs. 
The formal specification of these components is not explained due to the space limitation of the paper. No 
explicit concept of the logic component was used in the Algorithmic-IM. Like the Task component, the 
Logic components can be defined by the user. 

 
Figure 2: The class diagram for the DEVS-Based Interaction Model. 
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4.2 External Structure Specification 

Component-based modeling is an approach for simulating water and energy resource systems. A model 
comprises a set of components, each with some defined modeling objectives. The system package in Figure 
3 includes three concrete classes to represent the external systems (i.e., the WEAP and LEAP tools) in a 
hierarchical component-based manner. Multiple Systems can be defined in each project (see the composite 
relation from the Project class to the System class in Figure 3). All classes have the id (as the key attribute) 
and unique name attributes. The ISystem and IFunction interfaces defined the method signatures to be 
implemented in the System and Function concrete classes. The init() and run() methods in the ISystem are 
used for initialization (running at the beginning of the interaction model simulation execution) and execute 
the external simulation system, respectively. A hierarchy of components can be defined in a system, and 
each component can have many functions. A Function can have one parameter of type Object. In the case 
of having multiple input parameters for a function, they must be wrapped in an object/class. The desired 
objective of the Function must be implemented in the exec(…) method. The getResult() method returns an 
IMessage as the result of the execution. In the WEAP and LEAP systems, the functions of each component 
must call the RESTful APIs defined by the C-WEAP and C-LEAP frameworks. In the Algorithmic-IM, all 
these steps are generalized and handled inside the mapping() methods of the module’s ports (see Figure 1). 
The Algorithmic-IM did not have any consideration for the details of the external system’s models. For the 
DEVS-IM, an interface of the external system must be defined in the interaction model. 

Listing 1: Parallel DEVS Task Specification 
𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =< 𝑋𝑋𝑏𝑏,𝑌𝑌𝑏𝑏 , 𝑆𝑆, 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖, 𝛿𝛿𝑒𝑒𝑒𝑒𝑖𝑖 , 𝛿𝛿𝑐𝑐𝑐𝑐𝑖𝑖, 𝜆𝜆, 𝑡𝑡𝑡𝑡 > 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼 = {… }, 𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼 = {… } 
X𝑏𝑏 = {(𝑝𝑝, 𝑣𝑣) | 𝑝𝑝 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼,  𝑣𝑣 ⊂ 𝑣𝑣𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼}, Y𝑏𝑏 = {(𝑝𝑝, 𝑣𝑣) | 𝑝𝑝 ∈ 𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼,  𝑣𝑣 ⊂ 𝑣𝑣𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼} 
𝑆𝑆 =  𝑝𝑝ℎ𝑡𝑡𝐼𝐼𝑣𝑣 × 𝜎𝜎 × 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝐼𝐼ℎ𝑡𝑡𝐼𝐼𝑣𝑣 = {“𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑃𝑃𝑣𝑣𝑣𝑣”, “Active”},𝜎𝜎 = ℜ0

+∞,𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =< ℜ0
+∞, (𝑝𝑝, 𝑣𝑣) >  

𝐼𝐼0 = �
("𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑃𝑃𝑣𝑣𝑣𝑣“, 𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼,∅) 𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼ℎ𝑡𝑡𝐼𝐼𝑣𝑣 == "𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑃𝑃𝑣𝑣𝑣𝑣"

("𝐴𝐴𝐴𝐴𝑡𝑡𝑃𝑃𝑣𝑣𝑣𝑣“,𝐴𝐴𝐴𝐴𝑡𝑡𝑃𝑃𝑣𝑣𝑣𝑣𝐴𝐴𝑃𝑃𝐴𝐴𝑣𝑣,∅) 𝐼𝐼𝑡𝑡ℎ𝑣𝑣𝐼𝐼𝑒𝑒𝑃𝑃𝐼𝐼𝑣𝑣  

𝛿𝛿𝑒𝑒𝑒𝑒𝑖𝑖(𝐼𝐼, 𝑣𝑣, 𝑥𝑥𝑏𝑏) = �
(“Active”,  𝐴𝐴𝐴𝐴𝑡𝑡𝑃𝑃𝑣𝑣𝑣𝑣𝐴𝐴𝑃𝑃𝐴𝐴𝑣𝑣,𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.𝑡𝑡𝑎𝑎𝑎𝑎(𝜎𝜎 + 𝑣𝑣, (𝑝𝑝, 𝑣𝑣)) 𝑝𝑝ℎ𝑡𝑡𝐼𝐼𝑣𝑣 == "𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝑃𝑃𝑣𝑣𝑣𝑣"

("𝐴𝐴𝐴𝐴𝑡𝑡𝑃𝑃𝑣𝑣𝑣𝑣 ",𝜎𝜎 − 𝑣𝑣,𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.𝑡𝑡𝑎𝑎𝑎𝑎(𝜎𝜎 + 𝑣𝑣, (𝑝𝑝, 𝑣𝑣)) 𝐼𝐼𝑡𝑡ℎ𝑣𝑣𝐼𝐼𝑒𝑒𝑃𝑃𝐼𝐼𝑣𝑣  

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖(s) = �
(“Active”,  𝐴𝐴𝐴𝐴𝑡𝑡𝑃𝑃𝑣𝑣𝑣𝑣𝐴𝐴𝑃𝑃𝐴𝐴𝑣𝑣,𝑄𝑄𝑣𝑣𝑄𝑄𝑣𝑣𝑣𝑣) 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 𝐼𝐼𝑃𝑃𝑠𝑠𝑣𝑣 > 1

(“Passive”,  𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝐼𝐼𝑃𝑃𝑡𝑡𝐼𝐼,𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 𝐼𝐼𝑡𝑡ℎ𝑣𝑣𝐼𝐼𝑒𝑒𝑃𝑃𝐼𝐼𝑣𝑣  

𝛿𝛿𝑐𝑐𝑐𝑐𝑖𝑖(𝐼𝐼, 𝑡𝑡𝑡𝑡(𝐼𝐼), 𝑥𝑥) = 𝛿𝛿𝑒𝑒𝑒𝑒𝑖𝑖(𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼), 0, 𝑥𝑥) 
𝜆𝜆(“Active”,𝜎𝜎,𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.ℎ𝑣𝑣𝑡𝑡𝑎𝑎) = 𝑝𝑝𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴() 
𝑡𝑡𝑡𝑡(𝑝𝑝ℎ𝑡𝑡𝐼𝐼𝑣𝑣,𝜎𝜎,𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) = ℜ0

+∞ 

As mentioned before, the interaction model connectors are atomic models from the DEVS viewpoint. 
Simultaneously, they are connectors to the external systems from the interaction model standpoint. Some 
predefined input and output connectors (with specific behavior) are defined in the current DEVS-IM design 
(the predefinedComponent package in Figure 3). The InputConnector and OutputConnector abstract 
classes in Figure 3 (the DEVS-IM design) have the same role as the ModuleInputPort and 
ModuleOutputPort abstract classes in Figure 1 (the Algorithmic-IM design). In the module’s ports of the 
Algorithmic-IM, the mapping() functions defined the port behavior. However, in the DEVS-IM design, 
the behavior defines using the DEVS functions. From the DEVS specification, all the interaction model 
connectors have one input port (named “in”) and can have one output port (named “out”). 

The TransientInput component allows the interaction model to use discrete-event inputs, which trigger 
a reaction in the model when an input is received. The TransientInput class has a write(…) method 
which can be called by the external system or another interaction model to inject data to the interaction 
model in a discrete-event manner. The write(…) method invokes the external transition function of the 
atomic model. The incoming data to the connector (on the “in” input port of the connector) is transiently 
sent (via “out” output port of the connector) to the internal interaction model’s components (which are 
connected to the input connector). 
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Figure 3: DEVS-IM input and output specification for the external system. 

Three output connectors are defined in the DEVS-IM with different behaviors. The TransientOutput 
connector immediately sends data to the external systems. The composite relation from the 
TransientOutput class to the IFunction interface defines a list of destinations to send the data (using the 
exec(…) method of the selected function). Data can be sent to multiple destinations. The message to send 
is set using the setMessage(…) method. For example, the data for the input variables of the WEAP or 
LEAP models can be set using the TransientOutput connector (via C-WEAP and C-LEAP APIs). The 
CallOutput connector uses to call a specific function from an external system and return the result to a 
TransientInput connector. The association relation from the CallOutput class to the IFunction interface 
defines a destination to invoke. If the invoked function needs a parameter, it can be defined using the 
setMessage(…) method. For example, the result of the output variables of the WEAP or LEAP models can 
be read using the CallOutput connector.  The QueueOutput component uses to queue some data to be read 
by the external systems. It has add(…) and poll() methods to add a message to the end of the queue and 
read the head message from the queue, respectively. The first method invokes by receiving a message on 
the input and the second method invokes by an external system. From the DEVS atomic perspective, the 
TransientOutput and QueueOutput connector do not have any output ports. 

Figure 4 illustrates a manually drawn DEVS-IM component diagram. In the top layer diagram, there 
are InputConnector, OutputConnector, Process, Task, and Junction components with couplings among 
them. The connectors named "out1", "out2", and "out3" of the "IM" interaction model are TransientOutput, 
QueueOutput, and CallOutput, respectively. Suppose the input connector “in3” of the “IM” component is 
selected in the output connector “out3” for the input attribute (see Figure 2). In the equivalent DEVS 
model, all components are presented as atomic and coupled models. There are eight atomic models and one 
coupled model in the “IM” component (the “Process 1” coupled model has sub-components, as well). 

As described before, all components in the DEVS-IM design are derived from the atomic or coupled 
DEVS models. Thus, the interaction model is a parallel DEVS model (with some specific atomic models 
as the connectors to communicate with the outside world). Consequently, the DEVS simulation protocol is 
used to simulate the interaction model. To simulate the DEVS models, a hierarchy of simulator objects that 
mirrors the hierarchical tree structure of the DEVS model is used. There is a DEVS simulator corresponding 
to each atomic model and a DEVS coordinator corresponding to each coupled model. A root coordinator 
oversees controlling the executions of all atomic and coupled simulators. The simulators and coordinators 
are responsible for the correct simulation of coupled models. A key advantage of using a well-defined 
simulation protocol is that it allows a simulator to execute models independent of their specific behaviors. 
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Figure 4: An example Interaction Model viewed as a DEVS model. 

4.3 Database Specification 

Figure 5 illustrates the database schema in the DEVS-IM design. There are four collections with id as the 
primary key.  The pk, fk, and dk show the primary key, foreign key, and destination key in a collection or 
relation, respectively. Mandatory values are indicated by the star. The projects collection stores Project 
components (see Figure 2). All atomic and coupled models (i.e., all hierarchy of IM, Logic, Task, Process, 
and Connector components), input and output ports, and couplings defined in an interaction model (see 
Figure 2) are stored in the models collection. The data of the external system interfaces (see Figure 3) are 
stored in the systems and components collections. The ports and couplings in the models collection and 
the functions in the components collection are defined using one-to-many relationship with embedded 
documents. The hierarchy structure for the models and components is defined using one-to-one relationship 
with document references (using parentId field). The rest relationships are defined using one-to-many 
relationship with document references. 

The stored data in the database (specifically the models collection) will be used to generate the skeleton 
of a complete project in the DEVS-Suite simulator to define the behavior for the atomic models in the Java 
programming language. The predefined behavior of the Logic and Connector components define during the 
code generation (see section 4.2). Thus, the modeler can define the behavior for the Task components and 
the functions of the components (for the external system interfaces). The test, debug, and visualization 
features of the DEVS-Suite simulator can also be used to validate the interaction model’s correctness. 
 

 
Figure 5: Database schema of the DEVS-Based Interaction Model. 
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5 INTERACTION MODEL RESTFUL FRAMEWORK 

The layered architecture of the DEVS-IM RESTful framework is shown in Figure 6. The backend section 
is written in the Java Spring Boot framework. The database and the external systems (the C-WEAP and C-
LEAP frameworks) are placed at the bottom layer. The Data Access layer is responsible for storing/retriev-
ing data to/from the database, and it is the only layer that has access to the database. The interfaces of the 
external systems must be defined in the External System Interface part. It manages the required components 
of the external systems and the communication mechanism (e.g., calling RESTful APIs from the C-WEAP 
and C-LEAP frameworks). The business logic and information processes are handled in the Service layer. 
All communications below the Service layer are based on the Domain models (see Figure 2). 

 
Figure 6: The DEVS-Based Interaction Model layer architecture. 

Communications in the Service layer are based on the Data Transfer Objects (DTOs). Figure 7 (a) and 
(b) present the DTOs to retrieve data (the response of the GET requests) and insert/update data (the body 
of the POST or PUT requests), respectively. The delete operation handles by setting the id of a component 
as a URL parameter. The Web API layer contains the webserver and controller parts for handling various 
client API requests. The data needed for the RESTful framework is in JSON format. The {JsonIgnore} 
constraint for some attributes in Figure 7(b) indicates that these attributes are hidden for the User Interface. 
These attributes are used to communicate data between Web API and Service layers (see Figure 6). 

The standard naming design of the REST architecture is used to define the DEVS-IM RESTful APIs 
to retrieve, insert, update, and delete different entities in the DEVS-IM RESTful framework using the HTTP 
GET, POST, PUT and DELETE methods. For example, calling the URL “/Projects/1/IMs” with the 
POST method and the body of the request include the IMUpdateDTO object (see Figure 7(b)), inserts a new 
IM component (if the name property is unique in the current project) and returns the inserted value (an 
IMDTO class in Figure 7(a)).  Or, calling the URL “/Models/1” with the GET method (given the model id 
is valid and it is the id of an IM component) returns an interaction model with all connectors, sub-compo-
nents with their input and output ports, and the couplings (the ModelDTO class in Figure 7(a)). 

 
 

(a) (b) 
Figure 7: A portion of the class diagram for the DTOs in the DEVS-Based Interaction Model. (a) To 

retrieve data. (b) To insert or update data. 
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A portion of the class diagram for the Service and the Data Access layers of the DEVS-IM is shown in 
Figure 8. Each service class in the Service package has some association relation with other service clas-
ses, and one association relation with its correspond repository in the Data Access package (just associa-
tion from ModelService and IMService classes to the ModelRepository and IMRepository classes are 
shown in the diagram). The interfaces define the required methods which the corresponding classes must 
implement. Other details of the classes in the Services and Data Access packages are omitted for brevity. 

A sequence diagram scenario for a client inserting an IM model is shown in Figure 9. The incoming 
message 1 by the ui object is processed by the imc object. The id of the project sets in step 2. In step 3, a 
message is invoked on the ims object to insert a new interaction model. The ims object checks some vali-
dation in step 4 (i.e., the name attribute cannot ne null or empty, having a valid id for the project, and 
prevent duplicate names for the interaction model). Then, the DTO object maps to a Domain object, and a 
new valid sequential unique id is set. The ims object invokes message 7 on the imr object for inserting the 
interaction model. The imr object invokes message 8 on the db object (i.e., MongoDB database) and returns 
the inserted data to the database. Finally, the im object (the Domain object) maps to the IMDTO object and 
returns as the result in step 9. The result returns to the imc and ui objects, consequently. 

 
Figure 8: A partial class diagram for the Service and Data Access layers. 
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Figure 9: A sequence diagram to insert an IM model via the DEVS-Based Interaction Model. 

6 CONCLUSION 

The DEVS-Based Interaction Model (DEVS-IM) design is presented in this research for composing C-
WEAP and C-LEAP systems. The interaction model supports the flexible and rigorous specification, im-
plementation, and execution of the water and energy systems nexus using the DEVS-Suite simulator. The 
DEVS-IM, unlike the Algorithmic-IM, separates model specification and its execution. This is crucial for 
simplifying model development, a key challenge for simulating complex food-energy-water dynamical sys-
tems. Higher degrees of model reusability, flexibility, and maintainability can be achieved in comparison 
to the Algorithmic-IM, and more generally, other existing approaches and frameworks in use for developing 
Water-Energy simulations. The DEVS-IM, unlike Algorithmic-IM, is supported with MongoDB and used 
in the RESTful framework. Consequently, the correctness of model specification and execution in the new 
interaction model design is grounded on the parallel DEVS modeling. The DEVS-Suite simulator’s support, 
including verification and black-box unit testing, is important in developing and simulating models. Since 
the C-WEAP, C-LEAP, and DEVS-IM are RESTful frameworks, it is simpler to integrate them. Future 
work includes evaluating the computational efficiency of the DEVS-IM and developing a visual modeling 
environment for creating and simulating hybrid water, energy, and interaction models. 
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