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ABSTRACT

Boarding is an important process for airline companies, with direct impact in operation efficiency and
customer satisfaction. In some countries, priority boarding is required by law; elders, pregnant women,
people with infants or disabilities have the right to embark first, regardless of ticket class, loyalty program
or boarding group. The present work examines the effect of the adoption of priority boarding policy on
total boarding time, along with other factors that are known to affect the efficiency of the boarding process,
using an agent-based simulation model that represent the boarding process in a Boeing 767-300 aircraft.
The simulated results indicate that the boarding process is improved by adopting priority boarding, which
is beneficial not only to operational efficiency, but also has the potential of enhancing customer experience,
thus suggesting that priority boarding should be a highly encouraged practice among airline companies.

1 INTRODUCTION

Before the COVID-19 pandemic imposed severe constraints on mobility of people around the globe and
consequent unheard drop in transport activity was observed, data reports from 2019 show that approximately
46.8 million flights occurred in that year, involving roughly 4.5 billion passengers, with annual demand growth
of about 4.2% worldwide (IATA 2019); these figures reveal the importance and reach of air transportation
for global economic activity. The increase in demand for air transportation and the intensification of air
traffic and congestion is expected to cause delays, leading to customer dissatisfaction and elevated costs to
airline companies; each minute of delay has estimated cost varying from US$30 to US$250 (Horstmeier
and de Haan 2001; Nyquist and McFadden 2008). An important performance indicator for determining
profitability and competitiveness of airline companies is the so-called turnaround time (More and Sharma
2014): it consists of the time the aircraft remains on ground after its arrival at the gate, until it is ready
for the next departure. Several operations take place during this interim, including airplane cleaning and
fueling, disembarking and boarding of crew and passengers, complete unloading and loading of luggage
and cargo, re-catering, among others. The boarding process has a major impact in turnaround time, thus
optmizing this operation is critical (Neumann 2019). In fact, modifications implemented in the boarding
process of an airline company in the past have proven to lead to a reduction of about 20% in boarding
time (Briel et al. 2005).

Several factors are known to influence the boarding process, including number of passengers, aircraft
capacity, and amount of carry-on luggage (Hutter et al. 2019). Passenger behavior is an important and
somewhat unpredictable component; for instance, frequent flyers are more likely to be familiar with the
process, and may help expedite it, while for someone who rarely flies, the boarding process can be confusing,
which may contribute for additional delays. Previous research considered various factors that influence
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the boarding process and, consequently, should be addressed regarding its optimization, including possible
interferences in the process (van den Briel et al. 2003; Steffen 2008; Delcea et al. 2018), the number of
passengers (Schultz et al. 2013; Miura and Nishinari 2017) or passenger’s group behavior (Cimler et al.
2012; Budesca et al. 2014; Iyigunlu et al. 2014; Zeineddine 2017), the quantity of luggage on-board (Milne
and Kelly 2014; Notomista et al. 2016; Tang et al. 2018), as well as combinations of such human factors.
Likewise, new concepts for cabin configuration that may promote a smoother boarding operation have been
investigated (Schmidt et al. 2016).

The boarding strategy is also expected to influence the boarding process. Some studies suggest that
random boarding is faster than the back-to-front strategy: Van Landeghem and Beuselinck (2002) used
simulation and considered several boarding strategies; Ferrari and Nagel (2005) adopted a deterministic
process; and Qiang et al. (2017) carried out an experimental test in a school bus. In contrast, other authors
concluded that back-to-front is a better boarding strategy: Schultz et al. (2013) conducted an assymetric
simple exclusion process and considered different airplanes (A320-200, B777-200 and A380); Delcea et al.
(2018) used agent-based simulation and several luggage scenarios.

In most countries, passengers who wish to board first due to any special reason may do so by requesting
for assistance prior to regular boarding. However, this process is not mandatory and requests are dealt
with as best suited for airline companies. In Brazil, in contrast, according to Resolution nº 280 from July
11th, 2013, issued by the Brazilian Civil Aviation Regulatory Agency (ANAC), elderly passengers (above
60 years), pregnant women, passengers with infants, or with disabilities have priority boarding.

Thus, the present work contributes to the subject by evaluating the effect of priority boarding of
passengers with special needs combined with different boarding strategies on boarding time. This is
achieved by modeling a heterogeneous population, i.e., to each passenger is randomly apppointed an age
group, a walking speed and a time to allocate the luggage in the overhead bin. In order to do so, an
agent-based simulation model has been proposed. The use of computer simulations offers the benefits of
(i) low cost, (ii) safety, as well as the (iii) possibility of representing various scenarios. An agent-based
simulation approach allows the modeling of a heterogeneous population whose behavior evolves with time
and according to interactions with other agents (Bonabeau 2002).

2 METHODOLOGY

An agent-based model (ABM) was adopted for boarding simulation. In the ABM approach, the system is
comprised of a set of independent entities (called agents) that may interact with one another. As each agent
has its own characteristics and makes its own decisions based on a given set of rules, ABM is able to capture
the random nature associated to the aircraft boarding process, regarding both the environment conditions
(airplane structure) and the passengers’ (physical, behavioral) characteristics. The simulation model was
implemented in the open agent-based modeling environment NetLogo (Wilensky 1999) to simulate various
boarding scenarios. In all of the following discussions the characteristics of a Boeing 767-300 aircraft will
be used as an example. The process is general, though, and can be applied to any aircraft configuration.

The cabin layout is based on a Boeing 767-300 aircraft, with seat configuration 2-3-2, and maximum
capacity of 294 passengers. The twin aisle aircraft accommodates a total of 42 rows and 8 exits. The cabin
is discretized into 0.5 m x 0.5 m nodes, classified as structures (seats, toilet, and fuselage) or open spaces
(aisles, legroom and exits), as illustrated in Figure 1. The simulation time is set so that 20 ticks correspond
to 1 second.

The most common boarding strategies are considered: (i) random, (ii) back-to-front by-blocks,
(iii) luggage-first, and (iv) two-doors. Different boarding scenarios are evaluated regarding a proba-
bility factor of passengers having carry-on luggage; the examined possibilities are: (i) 10%, (ii) 50%,
(iii) 75%, and (iv) 100%. Likewise, three load factors are considered: (i) 147, (ii) 235, and (iii) 294
passengers. Elder passengers are modeled as heterogeneous agents with different characteristics, and the
combination of the above-mentioned factors in scenarios with and without priority boarding are evaluated.
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Figure 1: Example of boarding simulation for the Boeing 767-300 aircraft. Arrows correspond to passengers
and their facing directions; white cells represent open spaces where passengers can walk freely, such as
aisles and legroom; brown cells represent seats; blue cells represent aircraft internal structures; and green
cells represent doors and emergency exits.

2.1 Passenger’s Characteristics

There are four characteristics that differentiate passengers from each other: (i) age and, consequently,
walking speed; (ii) seat ticket assignment; (iii) possession of carry-on luggage; and (iv) time needed to
store luggage at overhead bin.

In this study, priority boarding is assigned to a passenger according only to his or her age. Thus,
the model incorporates different age groups, following the Brazilian population distribution from 15 to 74
years of age (IBGE 2010): (i) 15-16, (ii) 17-25, (iii) 26-50, (iv) 51-64, and (v) 65-75 years; for each age
group, a particular walking speed is defined as follows.

Most of the studies addressing walking dynamics are set in open spaces, characterized by free flow
of people. In the literature (Willis et al. 2004), pedestrians are observed on a street, and their walking
speeds, which depend on their ages, are modeled as a random variable with normal distribution with mean
of 1.47 m/s and standard deviation of 0.299 m/s. A previous study (Mas et al. 2013), based on empirical
observation of a real life aircraft boarding process, determined a mean walking speed of 0.5 m/s, when
all passengers are considered equally. In order to model different walking speeds for agents within the
aircraft cabin, the strategy adopted in the present investigation consists in applying for each age interval a
correction of the reference speed value (0.5 m/s) according to free flow walking speed distribution.

Seat tickets are randomly distributed among passengers, and all seats inside the airplane are available.
Moreover, all passengers are assumed to be traveling alone, i.e., there is no group formation. Therefore,
passengers enter the cabin one at a time, with a destination seat, since there is no free or preferred seating.

Each passenger is allowed to have at most one carry-on luggage and there is no physical limitation to
the overhead bin. The possession of a carry-on luggage is determined randomly, according to an assigned
probability: when this probability is set to 0, no passenger carries a piece of luggage on-board; if the
probability is set to 100%, every passenger has a carry-on luggage. Four different values for this probability
are evaluated, as described above.

Lastly, aisle interference is created by assigning to each passenger a time needed to store the luggage
at the overhead bin. This storing time is modelled as a random variable that follows a Weibull distribution,
defined from field trial measurements (Schultz 2018). This distribution is independent of the passenger’s
age. In the present simulation study, if an agent is flagged as an elder, his or her luggage storing time is
increased in 20%.

2.2 Scenarios Setup

The different simulated scenarios are determined by the combinations of levels of the following factors:
(i) priority boarding setting (PRI), (ii) number of passengers onboard (PAX), (iii) passenger’s luggage
possession probability (LUG), and (iv) boarding strategy (STR). The levels for each factors are presented
in Table 1.

Priority boarding (PRI) can be set either to (i) “on” or (ii) “off”. If it is set ”on”, all agents flagged as
elders enter first, regardless of the boarding strategy. After that entire group has boarded, the rest of the
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Table 1: Factors and corresponding levels used to create different simulation scenarios.

Factor PRI PAX LUG STR
Levels On 294 pax 10% Random

Off 235 pax 50% Back-to-front by block
147 pax 75% Luggage-first

100% Two-doors

agents may enter, according to the determined boarding strategy. It means that, after priority boarding occurs
and other passengers start to enter, some of the seats are already taken, probably causing interferences.
The simulation model does not admit the occurrence of late comers.

The aircraft load factor can take the values: (i) 147 (50%), (ii) 235 (80%), or (iii) 294 (100% airplane
capacity) passengers. The possession of luggage depends on the probability that may assume values:
(i) 10%, (ii) 50%, (iii) 75% and (iv) 100%. In this study, it is assumed that there is no physical limit
onboard to the quantity of carry-on items, i.e., the overhead bins can hold as much luggage as needed.

Regarding boarding strategy, the passengers can come aboard: randomly; from back-to-front, organized
by blocks; or those carrying luggage enter first; or, still, they can get into the plane using one of two doors.
As stated before, within its designated group, the order in which passengers enter the cabin is always
random. When simulating random boarding strategy, no order is defined, and passengers come onboard
according to a first-come first-serve (FCFS) fashion. In back-to-front by-blocks strategy, three boarding
groups with equal number of passengers are defined (front group, middle group, and back-group); the
first passengers to get into the cabin are those in the back group, followed by those in the middle group
and, finally, those in the front group. Another boarding strategy consists in allowing that all passengers
carrying a luggage enter first in random order, and then passengers without luggage are allowed to come
aboard. Lastly, when two doors are available, passengers are allowed to board the aircraft simultaneously
from either the front or rear door, assuming they know exactly which door they should use. Agents are
equally divided in two groups, so that passengers seating in the front half of the airplane enter through the
front door, and passengers seating in the rear half enter through the back door. If two doors are used with
priority boarding, elderly passengers are assumed to enter first through both doors at the same time. This
is a simplification, because airports don’t usually dispose of two jetways per gate and this strategy would
only be available when using buses. If that is the case, when buses are fully loaded, priority boarding is
difficult to follow due to passenger’s hurry to enter the cabin. Yet, in reality, loading through buses may
still also not happen simultaneously, as it is unlikely that the buses arrive at the apron position at the same
time.

2.3 Other Simulation Parameters

There are two additional simulation parameters which are fixed values and cannot be controlled from the
simulation interface: (i) passenger flow rate, and (ii) seat shuffle time.

Passenger flow rate is the time gap between successive passengers entering the aircraft. The value of
this rate depends on the gate control, which is the point where the airline company employees check the
passenger’s identification and travel ticket. The literature reports values varying from 9 pax/min (Marelli
et al. 1998) or 14.1 pax/min (Schultz 2017) to 20 pax/min (Boeing 2005). It is understood that this rate, in
real situations, varies throughout the boarding process, and may be modeled as a random variable: at the
beginning of the boarding process, a higher flow may be observed, and as more passengers are already inside
the cabin, the rate decreases. In the present study, the fixed value of 14.1 pax/min is used, representing
the situation in which passengers enter the cabin uniformly, one at a time, at constant that rate.

Seat shuffle time is the time needed for a seat interference to be resolved. For example, a passenger
assigned to a window seat may be blocked by a passenger already accommodated at the aisle seat. It is
possible to define different shuffle time values, depending on the interference situation underway (Schultz
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2018). The simulation model assumes that all seat shuffles take 10 seconds, a time during which the
passenger who wishes to seat, stays in the aisle blocking the other passengers that come in.

2.4 Simulation Process

The combination of all factors levels gives a total of 96 possible scenarios; for each one of them, 100 runs
are made for statistical relevance, resulting in a total of 9600 simulation runs. In Figure 5, a simplified
diagram representing the simulation process is shown.

Figure 2: Simulation diagram, regarding order of steps and processes.

At the beginning of the simulation, all agents representing the passengers are created and wait at the
assigned entering door for their turn to enter the cabin. Passengers are positioned by the left front door for
random, back-to-front by-block, or luggage-first strategies; while for the two-doors strategy, the passengers
are positioned before both left doors (front and rear). It is important to stress that passengers cannot
walk past one another, i.e, if there is a slow moving passenger ahead, or if there is an aisle interference,
passengers behind are not able to move freely and overtake the slow passenger. In those cases, they must
wait until the former passenger sits, so then they be allowed to resume his or her normal speed.

With a seat ticket in hand, and assuming that there is a crew member assisting the passenger in
identifying the assigned seat with no mistakes, he or she walks towards the assigned seat row. There are
no lost individuals in the process. When the passenger reaches the destined position, if the passenger is
carrying luggage, a time delay will be added, representing the time needed to store it in the bin. In this
case, the delay will be determined according to the Weibull distribution, as previously described; for elderly
passengers, the time needed to store luggage is increased in 20% on top of that. Then, he or she first
checks if there is no seat interference, i.e., if there is no other agent seating at the same row and blocking
his or her way. If that is the case, another time delay of 10s (seat shuffle time), will be added in order to
represent the time needed to resolve the interference. During these time delays, a passenger will be in the
aisle, blocking other passengers who need to proceed. After that passenger takes the seat, the previously
blocked agents in the aisle resume their movement.

The simulation begins when the first passenger enters the airplane and it ends when all passengers are
seated. At the end, the total boarding time is computed. Notice that some simplifying assumptions are
made in the present model: passengers commit no mistakes in choosing the aisle or finding their seats;
passengers do not surpass one another and wait until the path is free; and there is no physical limitation
to the overhead bin, allowing all passengers to carry a bag onboard.

3 RESULTS AND DISCUSSION

The following results were obtained from 100 replicates of a full factorial experiment, consisting of 96
possible scenarios.
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ANOVA is performed in order to evaluate the effects of the considered factors (PAX, PRI, STR, LUG)
on the total boarding time. The results are displayed in Figure 3. For a 5% significance level, all factors
and first-order interactions are significant, which means that they affect the total boarding time.
Analysis of Variance Table

Response: TBT
Df Sum Sq Mean Sq F value Pr(>F)

PAX 2 637693863 318846931 1.3822e+06 < 2.2e-16 ***
PRI 1 9648003 9648003 4.1825e+04 < 2.2e-16 ***
STR 3 3018529 1006176 4.3618e+03 < 2.2e-16 ***
LUG 3 1159934 386645 1.6761e+03 < 2.2e-16 ***
PAX:PRI 2 33831 16915 7.3329e+01 < 2.2e-16 ***
PAX:STR 6 33102 5517 2.3916e+01 < 2.2e-16 ***
PAX:LUG 6 7261 1210 5.2462e+00 2.096e-05 ***
PRI:STR 3 218594 72865 3.1587e+02 < 2.2e-16 ***
PRI:LUG 3 409612 136537 5.9190e+02 < 2.2e-16 ***
STR:LUG 9 240448 26716 1.1582e+02 < 2.2e-16 ***
Residuals 9561 2205513 231
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 3: ANOVA table.

A linear regression model for the main effects is fit to data and the estimated coefficients are displayed
in Figure 4. The baseline levels for factors PAX, PRI, STR and LUG are, respectively: load factor of
100% (294 pax), priority off, random strategy, and luggage probability of 10%. It means that the estimates
represent expected variations in response compared with the baseline values. The model is significant
(F-statistic = 2.205e+05) and the adjusted-R squared (0.9952) indicates that most of data variability is
explained by the calibrated model.

It is important to underline that these results are not expected to be interpreted as “true” values, in the
sense that validation with real data was not performed. However, care was taken in building a realistic
simulation model, and several tests have been conducted in order to verify whether the simulation model
performs as designed, and that the simulation model is relevant. Therefore, these results are valuable for
gaining insights in terms of relative comparisons, and reaching qualitative conclusions. Thus, for comparison
purposes, simulated total boarding times averages and respective standard deviations are presented in Table 2.
As it can be observed, the standard deviation of most factors are quite large. This is mainly due to the
influence of the number of passengers, which affects the response significantly.

The results for the regression model (Figure 4) and the averages (Table 2) allow drawing interesting
conclusions. Compared to the baseline value of 294 passengers, decreasing the load factor in 20%
significantly decreases the total boarding time in 251 seconds (19.32%) on average. A similar effect is
observed when load factor corresponds to 50% of total capacity: the total boarding time drops 627 seconds
(48.25%) on average. Of course, these are expected results that relate to reality. Intuitively, whenever there
are less passengers on board, the whole boarding process is expected to take less time. It is interesting to
verify a linear effect of PAX factor on the response, which is in agreement to previous findings reported
in the literature (Schultz 2017; Hutter, Jaehn, and Neumann 2019).

The main purpose of the present study was to evaluate the effect of priority boarding requirements on
total boarding time. According to the simulated results, there is evidence that implementing the priority
boarding of elderly passengers has a significant effect in abbreviating total boarding time, as seen in the
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Residuals:
Min 1Q Median 3Q Max

-58.756 -11.477 -0.988 9.982 141.268

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1340.0348 0.5848 2291.49 <2e-16 ***
PAX147 -627.1875 0.4530 -1384.60 <2e-16 ***
PAX235 -251.1770 0.4530 -554.51 <2e-16 ***
PRIOn -63.4035 0.3699 -171.43 <2e-16 ***
STRBack-to-front -33.9082 0.5230 -64.83 <2e-16 ***
STRLuggage-first -11.3117 0.5230 -21.63 <2e-16 ***
STRTwo-door -44.7744 0.5230 -85.60 <2e-16 ***
LUG50 9.4346 0.5230 18.04 <2e-16 ***
LUG75 16.0330 0.5230 30.65 <2e-16 ***
LUG100 30.1975 0.5230 57.73 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.12 on 9590 degrees of freedom
Multiple R-squared: 0.9952,Adjusted R-squared: 0.9952
F-statistic: 2.205e+05 on 9 and 9590 DF, p-value: < 2.2e-16

Figure 4: Linear model coefficient estimates.

regression model and Table 2. Although this result may appear counterintuitive, it indicates that allowing
elder passengers, who are likely to require more time to settle, may improve the boarding process both
in terms of operation, since the total boarding time becomes 6% faster on average, as well as in terms of
customer satisfaction, as reported in Erland et al. (2019).

From the simulation results, the boarding strategy adopted also exhibits a significant effect on total
boarding time. Slower boarding is likely to happen when the random (baseline) strategy is adopted.
Successive improvements in total boarding time are observed for other strategies in the following order:
luggage-first (average 1% decrease), followed by back-to-front by-blocks (3.3% decrease on average) and,
finally, two-doors (4.35% average improvement). In this study, back-to-front strategy seems to be a better
solution than random boarding.

In the present study, the two-doors strategy has the largest effect on decreasing total mean boarding
time. This strategy is implemented in the present simulation model as random boarding with double
boarding rate, since passengers embark from two available doors simultaneously, in random order. Thus, it
is possible that combining other strategies with two-door configuration may further improve the boarding
process. In Delcea et al. (2018), Delcea et al. (2019), Milne et al. (2019), random boarding is compared
to a back-to-front strategy and several other optimized methods applied to two-doors boarding, in a single
aisle aircraft. In those studies, the alternative strategies are faster than random boarding, which strengthens
the proposed argument.

Finally, as it is expected, increasing the amount of carry-on luggage onboard leads to statistically
significant slower boarding processes. When all passengers have a piece of luggage, the highest impact in
total boarding time is observed, corresponding to an increase of 30 seconds (2.95%) on average, compared
to the situation in which only 10% of passengers possess a carry-on item. Intuitively, it is expected that the
amount of luggage contribute to a sharp increase in total boarding time. Although the simulation results
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Table 2: Simulated total boarding time averages and standard deviations.

Factor Level Average (s) Std-Dev (s)
PAX 294 pax 1299.75 44.72

235 pax 1048.57 42.66
147 pax 672.56 38.56

PRI Off 1038.66 261.84
On 975.26 256.60

STR Random 1029.46 262.48
Back-to-front by-blocks 995.55 261.02

Luggage-first 1018.15 261.51
Two-doors 984.67 257.33

LUG 10% 993.05 259.09
50% 1002.48 260.24
75% 1009.08 260.41

100% 1023.24 264.09

show that the effect of luggage in total boarding time is significant, it has not proven to be as strong as
one might presume. It may be explained by the fact that in the simulation model the overhead bin presents
no physical restrictions, which means that the effect of rearranging or finding space is not assessed. This
could be an important source of delays.

Interaction plots are provided for assessing the effects of different combinations of factors levels. The
interaction plots in Figures (5a)–(5c) lead to the conclusion that increasing the number of passengers tends
to increase the total boarding time, whether there is priority boarding policy or not, and also irrespectively
of boarding strategy or the amount of carry-on luggage. Although the ANOVA results indicate statistical
significance of such interaction effects, these do not seem to have important practical significance.

The interaction plot in Figure (5d) indicates that when priority boarding is adopted, all boarding
strategies show significant decrease in total boarding time, with the random boarding (both one or two-
doors) strategies showing the greatest benefits. It indicates that any sort of rule or order is beneficial to
the boarding process and, thus, such actions should be encouraged. On the other hand, the total boarding
time is least affected by the combination of priority boarding with back-to-front by-blocks strategy, since
this boarding strategy already has significant effect on total boarding time.

The interaction plot in Figure (5e) suggests that priority boarding tends to have a more significant
decrease in total boarding time in situations in which more luggage are carried aboard. Also, when priority
boarding is adopted, smaller differences in total boarding times are observed when the amount of luggage
onboard varies; the boarding process efficiency seems to be more robust to change in quantity of bags
when elderly passengers have priority on the embark.

Finally, Figure (5f) shows the interactions between STR and LUG. The percentage of luggage onboard
increases the total expected boarding time regardless of the boarding strategy adopted, as expected.
Nonetheless, the effect of this interaction is significant: random (one or two-doors) and back-to-front
by-blocks strategies are affected similarly by the increase in the amount of carry-on luggage brought by
passengers. When the passengers with carry-on luggage embark first, however, the total boarding time
remains roughly the same if the percentage of luggage is less than 75%. A sharp increase in total boarding
time is observed when the totality of passengers possess a piece of luggage; this makes perfect sense, since
now this strategy is equivalent to random boarding.
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4 CONCLUDING REMARKS

The main objective of the present study was to evaluate the effect of elderly priority boarding requirements
on total boarding time, along with other factors that are known to affect the efficiency of the boarding
process. In order to do so, an agent-based simulation model was built to represent the boarding process in a
Boeing 767-300 aircraft; 100 replicates of a full-factorial experiment with four factors (load factor, priority
boarding for elder passengers, boarding strategy and amount of carry-on luggage onboard), consisting of
a total of 96 scenarios (equivalent of 9600 runs) were performed.

The simulated results showed that, as expected, as both the number of passengers and the amount of
luggage onboard increase, the total mean boarding time also escalates. Moreover, the random boarding
strategy proved to be the least efficient among the strategies investigated, while random embarking using
two-doors led to the smallest expected total boarding time, closely followed by the back-to-front by-blocks
boarding strategy. Therefore, it appears that establishing some structure and order to the boarding process
contributes to its efficiency. There are important interactions among the priority boarding of elderly
passengers, the boarding strategy and the amount of luggage onboard.

The simulated results indicated that the boarding process is improved by adopting priority boarding,
i.e., when slower passengers or passengers who may need extra time to settle, such as elders or passengers
with special needs, embark first. In all simulated scenarios, significant reduction in total boarding time
is observed if priority boarding is adopted, when compared to the standard random boarding process.
Another interesting finding is that process with priority boarding indicates a better robustness regarding the
amount of luggage onboard, being less affected by it. Thus, not only the priority boarding policy benefits
operational efficiency, but also it has the potencial of enhancing customer experience. This is probably the
most valuable insight from the simulated results, and it suggests that this should be a highly encouraged
practice among airline companies.

The proposed work was a preliminary study that can be easily generalized in order to include new features
that confer more realism to the simulation. A possible future direction consists in comparing strategies in
different airplane settings, such in narrow body single aisle aircraft. In our study, all passengers follow
the airline instructions to boarding. However, in reality it is hardly true. For example, in future studies,
passengers who arrive late may be implemented so that their impact in the process may be analyzed. Another
possibility is to allow the detours of passengers so that they be able to surpass a blocking passenger. Also,
future endeavors should include modeling overhead bin capacity, so that if it gets full, passengers would
have to find alternative space to storage their luggage.
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(a) PAX and PRI. (b) PAX and STR.
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Figure 5: Interaction plots.
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