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ABSTRACT

We describe a software system called ExecutionManager (abbreviated EM) that controls the execution of
third-party software (TPS) for analyzing networks. Based on a configuration file that contains a specification
for the execution of each TPS, the system launches any number of stand-alone TPS codes, if the projected
execution time and the graph size are within user-imposed limits. A system capability is to estimate
the running time of a TPS code on a given network through regression analysis, to support execution
decision-making by EM. We demonstrate the usefulness of EM in generating network structure parameters
and distributions, and in extracting meta-data information from these results. We evaluate its performance
on directed and undirected, simple and multi-edge graphs that range in size over seven orders of magnitude
in numbers of edges, up to 1.5 billion edges. The software system is part of a cyberinfrastructure called
net.science for network science.

1 INTRODUCTION

1.1 Background and Motivation

Network representations of cyber-physical systems abound. This is because a network is a powerful
abstraction, where nodes or vertices represent entities such as people, devices, machines, and cities, and
edges represent interactions between entities. Thus, there are many classes of real networks, including
social networks (e.g., friendship, social media networks), technical networks (e.g., coauthorship, brain
networks), and infrastructure networks (e.g., Internet, power grid, cellular and telephone, water, natural
gas, road networks); see e.g., (Easley and Kleinberg 2010; Hu et al. 2018). Ahmed et al. (2020) give a
short overview of the growth in usage of networks in academic and technical fields.

There is a wide range of simulation systems that use networks as the underlying description of a
population and of interactions among its members. These include NetLogo, NDLIB, Repast, Swarm, and
Flame, to name a few (Tisue and Wilensky 2004; Collier and North 2012; Rossetti et al. 2018). A
small sampling of network-based simulation applications includes virus propagation (Halloran et al. 2008),
invasive species migration (McNitt et al. 2019), and evacuation planning (Yang et al. 2019). Structural
analysis is another class of network operations, geared to answering fundamental questions such as “Is this
road (or trade) network connected?” and “What neurons in the brain have the most connections to other
neurons?” (Sporns 2013). There are many other types of computations performed on networks, e.g., time
series analyses on brain and seismic networks (Sporns 2013; Grassi et al. 2018).
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For these reasons and others, our research group and other team members are building a first-of-its-kind,
general-purpose open access cyberinfrastructure (CI) for network science called net.science. The initial
version of net.science was released in June 2021 (URL: https://net.science) and will be updated at regular
intervals. See Ahmed et al. (2020) for an overview. One of the services it provides is user searching over a
large set of networks. Network properties and other metadata are searchable entities. For example, a user
analysis within net.science may require networks with a giant component, an average degree between 15
and 25, and at least one million nodes. The user composes and submits a query containing this information,
and net.science returns a collection of networks that meets these requirements. Consequently, structural
properties must be computed and available for each network, in order for the query system to function
effectively. The need for these computations on, and properties of, networks was the driving force behind
the development of ExecutionManager (EM), a software subsystem in net.science.

More specifically, EM is a stand-alone controller software that takes as input a sequence of specifications
for other (third-party) softwares (TPSs) and executes them in a serial fashion. TPSs are separate source
codes, possibly developed by other organizations, that must be executed, often in groups of codes, based
on user-specified criteria. For our particular need of metadata generation, after the results for each TPS
are generated, EM extracts from these output files predefined metadata, which then form a JSON object
of metadata for that network.

Our system supports data science for simulation in the following ways. First, networks are used in
simulations and characterizing them provides insights into simulation inputs. Second, network properties
are often used to explain simulation dynamics on networks, e.g., Kuhlman et al. (2015); hence, these
properties aid in understanding simulation outputs.

1.2 Novelty of Our Work

Here, we discuss the novel aspects of the EM system. First, EM provides a programming language agnostic
and application agnostic control system for executing TPSs, i.e., stand-alone C, C++, Java, Julia, Python,
etc. codes that run in their own address spaces. The particular use case in this paper is structural analysis
computations on networks, but the EM system has a broader scope. The current version of EM incorporates
particular codes from two structural analysis libraries, namely NetworkX (Hagberg et al. 2008) and SNAP
(Leskovec and Sosič 2016), to demonstrate its use and illustrate important aspects. Second, constraints
can be set on each TPS, independent of network, such that the code will not be executed on a particular
network unless all the constraints are satisfied. This is useful, for example, if some TPS (e.g., computation
of betweenness centrality (Easley and Kleinberg 2010)) does not scale well to large graphs. Third, EM can
operate outside of net.science, on its own, e.g., on laptops and PCs for individual or smaller group use, as
well as on high performance computing (HPC) systems for wider use on larger networks.

We clarify here that EM is not a workflow system. See Related Work (Section 2). EM has some aspects
of one, such as running multiple codes, in a particular order. However, EM is specifically designed to be
light-weight with less overhead than a workflow system, but with fewer features.

1.3 Our Contributions

A. ExecutionManager software system. An overview of the software system is provided in Figure 1.
The Controller in light blue orchestrates the work done by the system. The input graph (Graph file in the
figure, in gray) is operated on by each specified code (in magenta) in net.science or that resides in the file
system (yellow background in figure). This collection of codes is executed (invoked) by the controller,
one at a time, based on the input from the Code specs (specifications), in gray. Performance data, used for
determining whether a code should be run and for storing execution time and graph size after the code is
run, are stored in files (the drums represent files and database tables, but currently the system works with
data files). Data from the output files of each code (in green) are extracted and operated on, to generate data
that are assigned to the graph (metadata, in orange). Additional details are provided in Section 3. In this
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paper, we focus on stand-alone codes (magenta) that use SNAP and NetworkX functions, for demonstration
purposes. However, there is no restriction on the codes that can be integrated. (Currently, we are using
serial codes, per our exemplar libraries; parallel codes will be included in the future.)
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Figure 1: ExecutionManager software system diagram. This system (i) controls the execution of other third
party software (TPS), labeled codes, (ii) monitors the execution of these codes, (iii) extracts and stores
performance data on the codes, (iv) makes performance (i.e., execution duration) predictions for future
executions of the codes, and (v) extracts user-specified data from the output from the TPSs. Features of the
system are overviewed in Section 1 and are detailed in Section 3.

B. Performance evaluation of the system. Twelve networks are analyzed, ranging over five orders of
magnitude in numbers of nodes and seven orders of magnitude in numbers of edges, up to a maximum
of 1.5 billion edges. Studies were performed on an HPC cluster with the following characteristics: Dell
PowerEdge C6420 2.666 GHz hardware nodes, with 384 GB RAM and 40 cores per node. Each core in
a node is an Intel Xeon Gold 6148, 2.40 GHz with 1280 KiB L1 cache, 20 MiB L2 cache, and 27 MiB
L3 cache. We find the following: (i) execution times for different TPSs on the same network can range
over five orders of magnitude; and (ii) for a specific TPS, the execution times across the networks of
this study can range over eight orders of magnitude. These observations demonstrate the need to control
the execution of each TPS in a network-independent fashion, in order to avoid invoking (TPS, network)
combinations with excessive execution times and memory requirements. EM controls the execution of
each TPS based on the following characteristics: (i) predicting the execution time for a current graph by
performing a regression on previous executions of the TPS on other graphs; (ii) comparing this predicted
time to a user-specified maximum allowable execution time; (iii) comparing the graph size in terms of
number of nodes, number of edges, and number of nodes-plus-edges, and comparing these with upper limit
values for this TPS; (iv) if any of these comparisons fails (e.g., the predicted execution time is greater than
the maximum allowable execution time), then the TPS is not executed on this particular network. These
control features are extensible. Networks used in this performance study are presented in Section 4 and
results from the study are provided in Section 5.

C. Structural properties comparisons. The system is currently set up to compute and extract 52 metadata
properties per network, for subsequent searching within the net.science CI. We are expanding this list,
which can be done in a straight-forward fashion because EM is extensible. Plots of degree distributions
and k-core distributions on directed and undirected networks with up to 1.5 billion edges are shown in
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Sections 6. We demonstrate how one type of distribution is useful for explaining the other distribution, for
several networks.

Paper organization. Section 2 contains related work. Section 3 describes the software modules that
constitute the EM system. Networks used for performance and case studies are listed in Section 4.
Section 5 provides performance evaluation in terms of execution times, and Section 6 contains a case study
using EM. A summary is in Section 7.

2 RELATED WORK

From individual use to cyberinfrastructures for network science. We motivated the development of EM,
in part in Section 1, for its use in CIs and other systems that involve operations on graphs. The Science
Gateways Community Institute (SGCI) has over 600 gateways (https://catalog.sciencegateways.org/#/home).
The XSEDE Science Gateway lists more than 50 gateways (https://www.xsede.org/ecosystem/science-
gateways). EM may also be useful in at least some of these CIs and gateways. For example, the HRGRN
gateway (http://plantgrn.noble.org/hrgrn/) contains biological networks for plant genomics, the UCI Complex
Social Science Gateway (CoSSci, http://socscicompute.ss.uci.edu/) uses phylogenetic trees, and the Center
for Applied Internet Data Analysis (CAIDA, https://www.caida.org/home/) studies internet networks, among
other topics. Structural and other types of analyses on networks are common needs.

We run EM on an HPC cluster for large networks and for the net.science CI. We also have run the system
in a stand-alone fashion on laptops. The system is purposely designed to be light-weight so that it has minimal
installation requirements and footprint. Thus, EM can support a range of CI sizes, and this is important
because CIs range widely in size, as evidenced by the CIs and components presented at the NSF-sponsored
meeting on CIs in February, 2020 (https://figshare.com/search?q=NSF-CSSI-2020-Talk&searchMode=1).

Operations on networks: network structural analysis codes. Simulators that use network representations
of populations were cited in the Introduction (Section 1), as were selected applications for these simulators.
There are several structural analysis libraries, including: Gunrock (Wang et al. 2017), a GPU-based
graph analysis software system; graph-tool (Peixoto, Tiago P. 2014); NetworKit (Staudt et al. 2014), an
OpenMP-based graph structural analysis library; igraph (Csardi and Nepusz 2006), a Python-wrapped C++
implementation of many methods in NetworkX; NetworkX (Hagberg et al. 2008), a Python-based system;
PEGASUS (Kang et al. 2009), an Hadoop-based implementation; and SNAP (Leskovec and Sosič 2016), a
C++ implementation with multithreading, along with Snap.py, which is a Python wrapper around SNAP.
We have selected initially a subset of methods in NetworkX and SNAP for TPSs in EM because of their
large user bases and because they are complementary: NetworkX has many methods and SNAP scales to
large networks. Various kinds of time series analyses in Python can be accomplished by combining several
packages such as pandas, numpy and scipy, and statsmodels.

Workflow management systems. For this discussion, we refer the reader to Liu et al. (2015), da Silva
et al. (2017). Workflow management systems (WMSs) are software platforms that execute a collection
of (interrelated) computational tasks; typically, there are data dependencies among some subsets of tasks.
WMSs also manage data and run tasks on different hardware platforms. Although there are many components
of a workflow system, the important ones for our purposes are workflow language and workflow engine.
The language is used to specify the tasks of a workflow and their ordering, and the engine carries out
these directives. Our system does not have a workflow language; instead, we use a JSON file specification
to control the codes or tasks on a per task basis, independent of network. EM can run codes with data
dependencies, but these dependencies must be specified by a user, through the ordering in which TPSs
are executed. Our system uses codes and data that reside in a file system; our net.science CI handles
management of tasks and data. This enables EM to be light-weight. This separation of concerns also
enables EM to run on its own, outside of any CI, without modification.
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3 SYSTEM DESCRIPTION

Table 1: Major inputs to ExecutionManager: (i) global inputs and (ii) TPS-specific inputs.

Input Type Name Description
Global Graph file File containing graph.
Global Columns in graph file Column indices that contain node IDs that form edges.
Global Edge direction Whether edges in graph are directed or undirected.
Global Edge multiplicity Whether the graph is a simple or mullti-graph.
Global Metadata output file Output file to write metadata across codes.
Global Timing data output file Output file to write code timing data.
Per TPS Code name Full path to code’s main() method.
Per TPS Edge directionality Whether code applies to directed or undirected graphs (or both).
Per TPS Time limit Max. permissible code execution duration.
Per TPS Regression method Method to correlate code execution duration with graph size.
Per TPS Min. data points Min. number of data points to perform a regression.
Per TPS Node limit Max. permissible number of nodes in the graph to run code.
Per TPS Edge limit Max. permissible number of edges in the graph to run code.
Per TPS File of performance data File containing performance data for this code.
Per TPS Output files and metadata Metadata to be extracted from each specified output file.

We now provide additional details regarding the EM system of Figure 1 (Section 1). Key inputs in
the upper left of that figure are shown in more detail in Table 1. Specifically, this table contains the list
of inputs for the system, broken down by global inputs (e.g., the graph) and inputs I per TPS (code) c
(denoted Code specs) in Figure 1.

Figure 2 summarizes controller activities, which align with Algorithm 1; this algorithm presents a
more detailed description of the operations executed by the controller. Per code inputs in the table tell
the controller what checks on the graph to perform for each TPS (code) c, often by comparison with
features in Table 1. If the checks are successful, processing of this graph with the current code c proceeds;
otherwise (e.g., if the graph is too large or the estimated execution duration is too great), code c is not
executed and the system advances to the next code. Algorithm 1 provides the steps for composing the
command line invocation (CLI), by parsing an intermediate representation (IR) for c, in cases where it
exists. Otherwise, the command line invocation is specified explicitly as part of the code information I. A
process is forked and code c is invoked. The controller block-waits for c to complete and obtains outputs
written to standard out by c. Our codes c, by design, print their execution durations to standard out and
the controller captures that output and reads these times, but this information could also be read from an
output file. Alternatively, the total execution life of the worker process could be used as an estimate of
c’s execution time (this duration is recorded). If c completes successfully, the controller writes execution
time to that code’s performance data file, and the controller iterates through c’s output files and extracts
data that it needs, according to I. These extracted data, along with possible computations performed by
the controller, are the metadata assigned to the input graph, in the form of a JSON file. After all codes
c complete, all metadata and timing data are written to files. Table 3 provides a few illustrative TPSs in
net.science that are invoked by EM.

4 NETWORKS

Networks used in our performance and case studies are provided in Table 3. The smaller networks come
from (Jure Leskovec and Andrej Krevl 2014); the social networks of city populations are generated with
procedures in (Barrett et al. 2009). These networks were selected to cover five orders of magnitude in
numbers n of nodes, and seven orders of magnitude in numbers m of edges. Selected properties are also
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Algorithm 1: Computational Code Execution and Data Extraction

1 Input: (1) Name of the file containing the network G(V,E). (2) Set C of third party codes c to
execute against G. (3) Name of the file containing the information I for each TPS (code) c.
(4) Name of performance data file for each of the codes c ∈C. (5) Name of the output file for
metadata. (6) Name of the output file for timing data.

2 Output: (1) All output data files for each code c ∈C. (2) Metadata output (one file). (3) Timing
data output (one file). (4) Append to each performance data file the execution duration for c on G.

3 Steps:
A. Read the file containing the network G(V,E).
B. Read the file I containing the set C of third-party codes to run, and their associated information.
C. for each code c ∈C do:

1. Perform checks on graph G to determine whether it should run, as follows.
i. Read performance data file on past execution durations for c on networks of different sizes,

and perform regression, of the specified type, on execution duration versus graph size.
ii. Predict the execution time for c on the current graph G.

iii. Compare predicted time to the maximum allowable execution time (from input I).
iv. Compare n = |V | of G to the maximum graph size, in terms of numbers of nodes, from I.
v. Compare m = |E| of G to the maximum graph size, in terms of numbers of edges, from I.

vi. Compare the sum of n and m of G to the maximum graph size (in terms of both nodes and
edges), from I.

2. If graph passes execution time and size checks then proceed. Else, continue with next code c.
3. Assemble command line to invoke code c (e.g., method name, command line arguments), as

follows.
i. Get name of intermediate representation (IR) file for c from I.

ii. Get location of the executable (or interpretable) code from I.
iii. Read the IR for this code c to assemble command line invocation.

4. Invoke code c as a separate process in its own address space, as follows.
i. Invoke code c on graph G by forking a new process for c.

ii. Block-wait for process c to complete.
iii. Capture and parse standard out from executing c, to obtain execution time for c and

whether code c terminated successfully.
5. If c completed successfully then:

i. Write the execution time of code c to performance data file.
ii. From I, obtain the output files of interest generated by code c and extract data, as follows.

for each output file:
a. Read output file and extract values.
b. Perform computations on these data as necessary.
c. Assign resulting values to keys in metadata.

D. Print metadata to metadata output file.
E. Print timing data for controller and third-party codes to file.
F. Return.

provided, generated with EM, using the third-party codes in the net.science CI (Ahmed et al. 2020) for
network science, which contain the structural analysis methods in SNAP (Leskovec and Sosič 2016) and
NetworkX (Hagberg et al. 2008).
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Figure 2: Actions controlled by the ExecutionManager software system (blue box in Figure 1). This more parsimo-
nious view is described in Section 3.

Table 2: Sampling of network codes (TPSs) currently run within the system. Because of the system design,
adding additional TPSs is straight-forward.

Code Library Description Metadata Properties
Degree distribution SNAP Computes degree distribution

for undirected graphs.
Min, max and average
degrees.

In-degree distribution
(directed graph)

SNAP Computes in-degree distribution
for directed graphs.

Min, max and average
in-degrees.

Out-degree distribution
(directed graph)

SNAP Computes out-degree distribution
for directed graphs.

Min, max and average
out-degrees.

Clustering coefficient
per node (treating
graph as undirected)

NetworkX Computes clustering coefficient
for each node.

Min, max and average
clustering coefficients.

5 PERFORMANCE EVALUATION

All data provided in this section are collected and stored by EM. We refer the reader to Section 1.3 (“Our
Contributions”) for details regarding the hardware platform used to obtain the performance evaluation
results in this section and the case study results in Section 6.

5.1 Timing Data Per Third-Party Software and Network

Figure 3 provides timing data for many (TPS, network) pairs. Networks are specified on the x-axis, in
order of increasing numbers of edges. TPSs, in these cases, structural analysis codes, are plotted in colors;
see the legend. The methods are chosen to show data with different time complexities. For example, the
curves for degree distribution and k-core distribution are close to each other since they use very similar
algorithms whose running times are linear in the size of the network (i.e., (n+m)). At the other extreme,
betweenness centrality is an expensive computation: its execution time is proportional to nm. A key result
is that these data provide motivation for a system to control the execution of TPSs because their execution
times can vary widely; see the figure caption. Figure 4 shows timing data for many TPSs for the MWSU
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Table 3: Networks used in performance evaluation and case study. If there are multiple connected com-
ponents in a graph, we use only the giant component. Here, n and m are numbers of vertices and edges,
respectively, in the giant component; dave and dmax are average and maximum degrees; kmax is the maximum
k-core; cave is average clustering coefficient; and ∆ is graph diameter. All the networks are simple except for
the MMD network (Miami, FL) which has multi-edges. The networks for Miami and Houston are the social
contact networks for either a normative Wednesday, or for all days of the week.

Network Abbrev. Edge
Direction

n m dave dmax kmax cave ∆

Jazz Jazz undirected 198 2,742 27.7 100 29 0.617 6
Ca-Hepth CAH undirected 8,638 24,806 5.74 65 31 0.482 18
Ca-Astroph CAA undirected 17,903 196,972 22.0 504 56 0.633 14
Epinions Epin undirected 75,877 405,739 10.7 3044 67 0.138 14
VA-Beach VAB undirected 167,722 3,245,840 38.7 399 380 0.186 7
Miami, FL
(Wednesday)

MWSU undirected 4,894,150 87,077,324 35.6 656 47 0.092 11

Miami, FL MMD directed 5,136,141 1,192,987,822 464.5 4342 564 0.022 6
Miami, FL MSD directed 5,136,141 1,039,345,260 404.7 4112 346 0.022 6
Miami, FL MSU undirected 5,136,141 519,672,630 202.4 2056 173 0.022 6
Houston, TX
(Wednesday)

HWSU undirected 5,841,222 129,310,137 44.3 706 51 0.073 12

Houston, TX HSD directed 6,166,985 1,591,054,658 516.0 4186 368 0.021 7
Houston, TX HSU undirected 6,166,985 795,527,329 258.0 2093 184 0.021 7

network, one of the Miami social networks. This network is also part of Figure 3, with color coding
consistent across the two plots.

Ja
zz

CAH
CAA

Epin
VAB

M
W

SU
M

M
D

M
SD

M
SU

HW
SU

HSD
HSU

0.01

0.1

1

10

100

1000

10000

1e+05

1e+06

E
x
e

c
u
ti
o
n

 T
im

e
 (

S
e

c
o
n
d

s
)

Betweenness centrality

Graph diameter

Degree distribution

Kcore distribution
Eigenvector centrality

Figure 3: Timing data collected by EM for execution of five TPSs, across all of the networks shown on
the x-axis. The data show that: (i) there can be five orders of magnitude differences in execution times for
different TPSs, for a given network (Epinions); and (ii) for a particular TPS (graph diameter), there can
be eight orders of magnitude differences in execution times across networks. Hence it is useful that EM
provides conditionals on whether a TPS is executed, based on graph size and predicted execution time.
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Figure 4: Execution durations for TPSs that compute various structural parameters. These data are generated
on the MWSU graph, one of the Miami networks.

5.2 Predicting Execution Duration

Figure 5 provides timing data for executing three TPSs on the networks of this study, as a function of n.
The curves in the plots represent regressions to the data. These equations are used to predict the execution
duration for the same code c, for different graph sizes. These predicted execution times are then compared
to the user-specified limit in execution duration and the code is executed if the predicted time is less than
or equal to the specified time limit. Here, we show data only for the networks in Table 3. In reality,
the system keeps accumulating data for each TPS as it is run, so the number of data points will increase
significantly over time. Nonetheless, the R2 values in the caption of Figure 5 are acceptable. The slopes
of diameter computation and eigenvector centrality are similar since they have nearly the same asymptotic
time complexity (namely, that of multiplying two n×n matrices, where n is the number of nodes).
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(b) Betweenness centrality
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Figure 5: Timing data collected, and regressions performed, by EM for execution of three TPSs, in these
cases, for: (a) graph diameter, (b) betweenness centrality, and (c) eigenvector centrality. The R2 values for
the fits are, respectively, 0.96, 0.99, and 0.90.

6 CASE STUDY

Up to this point, all results have focused on the execution times of the various TPSs that are controlled
by EM. In this section, we provide results that are outputs generated by these TPSs. Figure 6 shows



Carscadden, Machi, Kishore, Kuhlman, Machi, and Ravi

structural analysis results of two types. Figure 6a depicts degree distributions for five graphs. Two are
social networks (CAH and Epin) and these exhibit classic power law degree distributions. The three city
social contact networks (VAB, MWSU, and HSD) also have large right tails, but their slopes at higher
degrees are much steeper (negative slopes) than those of the two social networks. Also, the three city
networks have smaller-degree shapes that have either positive slopes (VAB and HSD) or a plateau (MWSU).
This is because in the city networks, individuals predominantly go to school (for school-aged individuals
[from grade school through high school]) and adults go to college or work, where they mix with significant
numbers of other people. Hence, one does not find relatively large numbers of individuals with very small
degrees, as is the case for CAH and Epin.

Figure 6b contains k-core distributions for the same five networks. The HSD red curve is interesting
because it has a particular shape: large fractions of nodes for smaller and larger k-core numbers, followed
by a steep drop-off where further k-cores (between k-cores of 310 and 368) are very small. This same
curve shape is exhibited for VAB in green, although the steep drop-off occurs at a much smaller k-core
of about 25. The other large network, MWSU, however, does not have this shape: there is a much more
gradual decrease in the fraction of nodes with increasing core number. (Note that both the original plot
and the inset show this behavior.) The reason for this difference is found in the degree distribution plot
of Figure 6a. For both HSD and VAB, to the left of the peak number of nodes for any degree for each
network, the curves decrease, i.e., there are fewer nodes with these lesser degrees. This means that these
fewer nodes with lesser degrees, once they are removed from the network in the process of computing
successively larger k-cores, cause the numbers of nodes in the remaining cores to decrease very slowly. At
some point, here, for a k-core of 310 for HSD, removing greater degree nodes causes the remaining k-core
to almost disintegrate. In contrast, the numbers of nodes with degrees less than 30 (which is the degree
with the greatest number of nodes for MWSU) remain relatively constant. This means that at smaller cores,
larger fractions of nodes are being removed, and therefore the k-core sizes decrease more steadily as the
core number increases. In contrast to the three larger networks, the CAH and Epin graphs have concave
upward k-core distributions, which is typical for scale-free networks.
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Figure 6: Structural analysis results on many networks, where the structural analysis codes are the TPSs and
EM controls their execution. (a) Degree distributions for graphs, where for undirected graphs, the standard
degree is depicted, and for directed networks, the in-degree distribution is shown. (b) K-core distributions
for several graphs. For directed graphs, total degree (=in-degree+out-degree) is used to compute k-cores.

We end this section with three comments. First, it would be virtually impossible to reason about the
k-core distributions without the degree distributions; the latter help explain the former. This demonstrates
the value of structural analysis data for networks. In this case, one structural parameter is used to explain
another. Second, this demonstrates the data science role that EM can play, with respect to networks:
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controlling the generation of different types of data that can be used to understand networks. Third, the
results in Table 3 are metadata extracted from the structural analysis output files, which were executed
through EM. These demonstrate the utility of the EM system.

7 SUMMARY AND FUTURE WORK

We presented ExecutionManager, a software system for managing the execution of third-party software
(TPS). The motivation for this system, its novelty, and our detailed contributions in this work are explained
in Sections 1.1, 1.2, and 1.3, respectively. We evaluated the performance of the system by considering
codes from two libraries, namely NetworkX and SNAP. These results point out that the EM system scales
well to large graphs. We are in the process of extending the system in several ways including the following:
(i) work with job submission systems (in particular, Slurm), (ii) provide plotting functionality for results
from codes, (iii) do a better job of integrating output from multiple networks and methods for cases of
graph collections (e.g., for a series of temporal networks), and (iv) improving the predictions of execution
durations using more advanced methods, e.g., (Ahmad et al. 2019; Hou et al. 2019).
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