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ABSTRACT 

You have built a simulation model, but now must choose runs to i) validate it, and ii) to gain insight about 
the associated real system and to make managerial recommendations. Do you need guidance? This 
introductory tutorial views the design of experiments as a five-step process, and presents graphical tools 
for each of the five steps. Further, with a graphical framework for the design, results can be presented 
graphically as well, helping you communicate the results visually to management in a way that builds trust. 

1 INTRODUCTION 

Discrete-event simulation modeling is a popular method for predicting the performance of complex 
systems, particularly systems that include random phenomena.  Simulation projects can fall short of their 
intended goals, however, unless the simulation model is exercised intelligently to gain useful under-
standing of the likely performance of the real system. 

The design of simulation experiments plays a key role.  Simulation projects are conducted within time 
and budget limits, and often the bulk of time and resources are spent on building and validating the model, 
with little time or budget in the schedule to exercise the model for decision-making insight.  This is risky, 
since poorly planned simulation runs can give results that provide little insight, or worse, provide 
misleading results. Further, the kinds of decisions the simulation model will support should be decided up-
front, since model construction, verification and validation depend on this information (Sargent 2020). 

This tutorial presents a five-step process for the design of a simulation experiment.  Graphical methods 
are emphasized, drawing largely from Barton (1999).  A hypothetical simulation project for a die-making 
machine shop will help to illustrate each step. The tutorial is an updated version of that in Barton (2010) 
including presentation of additional examples and graphical methods for validation of the design. 
Introduction to the design of simulation experiments is presented from different perspectives in the WSC 
papers by Sanchez et al. (2020) and in Kleijnen (2008b). The next section describes the limits of the topics 
covered, defines the five-step process, and describes the machine shop scenario.  Sections 3-8 describe each 
step in more detail and illustrate the activities for the machine shop simulation.  Section 9 shows how to 
use the graphical framework to present results.  In some cases, the graphical display provides more insight 
than an ANOVA table or regression analysis.  A number of other simulation experiment issues are 
summarized in Section 10. 

2 FOCUS OF THE TUTORIAL 

Exactly what activities are considered as part of the design of an experiment?  Consider the overall process 
of scientific investigation.  Generally, it is a repeating, cyclic process which can be broken down into several 
activities: 
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A. State a hypothesis to be evaluated (e.g., the appropriateness of a particular model). 
B. Plan an experiment to test the hypothesis. 
C. Conduct the experiment. 
D. Analyze the data from the experiment.  This will likely lead to modification of the original 

hypothesis, and a return to activity A for the next cycle. 
 
This tutorial focuses on activities A and B.  Typically, simulationists (and the simulation methodology 

literature) focus on C and D, but careful conduct of A and B can simplify the remaining activities.  Activity 
B is what we will call the design of the simulation experiment (DOE), although many texts consider B, C, 
and D together under this topic. 

For people without statistical training, it can be difficult to organize information about the system under 
study in a way that aids the design of the experiment. To help clarify this process, we break the design tasks 
A and B into five steps. 

 
1. Define the goals of the experiment. 
2. Identify and classify independent and dependent variables. 
3. Choose a probability model for the behavior of the simulation model. 
4. Choose an experiment design. 
5. Validate the properties of the chosen design. 
 

The next sections describe each step in detail.  To make these activities concrete, they will be described in 
the context of a hypothetical simulation project. 

Imagine that you have constructed a simulation model of a machine shop that specializes in making 
dies for stamping parts.  You are particularly interested in the operation of the milling machines, and in 
how jobs are released to the shop floor.  You would like to choose operating policies that allow the shop to 
perform efficiently.  You want to examine how shop operation is affected by release policies, the schedule 
for preventative maintenance, the speed/feed of the milling machines for a particular family of dies, and the 
production lot size.  This example is described in more detail as we cover the five steps of the DOE process. 

3 DEFINE GOALS 

Of course, the selection of what conditions to run in a simulation experiment depends on the goals of the 
experimenter.  Why was the simulation model constructed?  What particular issues are being examined 
during the current cycle of experimentation?  These goals generally fall at a middle level in the hierarchy 
of goals within the organization that is sponsoring the development and use of the simulation model.  It is 
good to place these goals in perspective, to gain support for the effort that will be required, and to make 
sure that the short-term objectives are consistent with the overall goals of the organization. 
Goal hierarchy plots provide a graphical means to do this, and to simultaneously identify resources that will 
be needed to conduct the simulation study.  These plots were developed as part of a special decision-making 
procedure called the Analytic Hierarchy Process (Saaty 1980).   

Figure 1 shows a goal hierarchy plot for the machine shop study.  At the highest level, one goal of the 
company is to grow its share of the die market.  Two sub-goals to help accomplish this are to lower the cost 
of the dies, and to lower the average cycle time for producing a lot of dies.  In order to achieve lower cost, 
the experimenters need to understand factors that affect throughput and operating costs.  To lower the cycle 
time, the experimenters need to understand the impact that various factors have on cycle time. Both of these 
needs can be met through experimental studies using a simulation model of the shop.  Completing such 
studies requires a validated simulation model and a planned set of model runs.  In turn, the validated 
simulation model requires construction of a model and a (different) set of runs to validate its performance. 

The figure highlights the repeated cycle of experimentation:  the simulation model must be validated 
through a preliminary experiment before conducting the experiment to examine the impact of lot size, 
release policy, etc. on cost, throughput and cycle time.  Table 1 classifies the experiment goals in one 
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direction:  the stage of the scientific process.  At the earliest stage, activities focus on validation.  Next, one 
often seeks to identify the most important design or policy variables affecting system performance.  The 
next cycle often involves experiments to understand in a quantitative and predictive way how design or 
policy variables  affect  system  performance.  In  some cases,  this level of understanding is sufficient for 
decision-making.  In other cases the simulation is exercised with different settings of design or policy 
variables to optimize some measure of system performance.  See Kleijnen and Sargent (2000) for a similar 
structuring of goals. 

 

Figure 1: Goal hierarchy plot for the machine shop study. 

Table 1: Goals by cycle of the investigation. 

Cycle Goal 
1. Early Validation 
2. Early Screening Variables 
3. Middle Sensitivity Analysis, Understanding 
4. Middle Predictive Models 
5. Late Optimization, Robust Design 

 
Specific activities for validation are described in Law (2009) and Sargent (2011) and the references 

cited in these papers.  Screening designs are described in standard texts on the design of experiments such 
as Montgomery (2009), and in papers by Lin (1995) and Sanchez, Wan and Lucas (2009) and references 
therein. Optimization and robust design are frequently topics of tutorials at the Winter Simulation 
Conference, but are too advanced for this tutorial.  This tutorial has its focus on the third and fourth cycles 
of Table 1.   

For our machine shop example, experiment goals connect the third through fifth levels of the goal 
hierarchy plot in Figure 1.  The experiment will enable predictive models of throughput, cycle time and 
operating costs, the fourth cycle in Table 1.  The form of the predictive probability model that will be fitted 
is 
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 Y = 0 + 1g1(x1, x2, ..., xd) + ... + pgp(x1, x2, ..., xd) + , (1) 
 
where Y is either throughput, cycle time, or operating costs (we will need three models),   are independent, 
random quantities with mean zero and unknown variance.  The x’s are independent variables that are 
identified using the techniques in the next section.  The appropriate g functions can be determined using 
the techniques in Section 5.  

When the output measure is an average or cumulative quantity over time, a form of the Central Limit 
Theorem often applies, making a normal distribution a reasonable approximation for . For some simulation 
outputs, it may not be reasonable to assume that the random variation in the output performance measure 
will be normally distributed, however.  

The goal of our example experiment is to provide estimates of the unknown i coefficients in the models 
of form (1), as well as an estimate of the variance of  for each model.  For the machine shop study, there 
are three such models:  one for cycle time, one for operating costs, and one for throughput.  They do not 
necessarily have the same independent variables or same kinds of terms. 

4 IDENTIFY AND CLASSIFY VARIABLES 

The second step in the experiment design process is to identify quantities in the simulation that can be set 
to desired values (independent variables) and the resulting system performance measures that are of interest 
(dependent variables). 

There are two other classes of variables to be considered when designing the experiment.  Nuisance 
variables are known to affect the behavior of the system, but cannot be controlled directly.  These are rarely 
present in simulation, where all factors are generally under the user’s control. 

The fourth type of variable is an intermediate variable.  Intermediate variables cannot be controlled 
independently: they are affected by the settings of the independent variables.  They are not considered 
dependent variables, however, if there is no interest in their value except as it affects an important 
performance measure.  For example, the average number of unscheduled maintenance operations per month 
will affect operating costs for our shop.  This quantity cannot be set independently:  it will depend on the 
speed and feed rates used for the milling machines and on the preventative maintenance policy, among 
other things.  It is not of direct interest, since we care ultimately about cycle time, throughput, and operating 
costs. 

It is important to identify all variables of all four types before planning the set of runs.  Intermediate 
variables must be recognized so that they are not mistakenly included as independent variables.  Nuisance 
variables must be monitored so that random variation in the experiment results can be understood.  ALL 
independent variables should be identified, not just the ones that will be varied in the experiment.  In order 
for you (or others) to be able to reproduce your results at a later date, you must record the (fixed) values of 
any independent variables that you did not adjust, as well as the values of ones that were varied.  The held-
fixed variables have a way of changing over time, as the simulation model is run and rerun for different 
purposes.  Independent variables whose values are actually changed during the experiment will be called 
factors. 

Dependent variables are determined by the objectives of the study.  For our example, they appear in the 
goal hierarchy plot in Figure 1:  cycle time, throughput, and operating costs.  Independent variables are 
harder to identify.  Process diagrams (IDEF0) and cause-effect diagrams can be used to identify them.  We 
will illustrate the cause-effect diagram here.  For examples of IDEF0 process diagrams, see Barton (1997, 
1999). 

Figure 2 shows a cause-effect diagram for throughput, one of the dependent variables in the study.  A 
similar diagram must be constructed for each dependent variable.  The diagram shows paths of cause-effect 
relations.  At the end of each path (on the far right) is the dependent variable, in this case, throughput.  At 
the beginning of each path is a root cause, which may be either an independent variable (if it can be 
controlled) or a nuisance variable. 
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Figure 2: Cause-effect diagram for throughput in the machine shop study. 

Independent variables and nuisance variables appear as lines with no lines impinging on them:  if the 
diagram were a tree, they would be leaves.  The independent variables in ovals in Figure 2 are the ones that 
will be varied in this study. Preventative maintenance appears twice in the diagram but only need be circled 
once.  Setup time is another independent variable but is not circled since it will be fixed at a particular value 
for this study.  The leaf part size and complexity remains to be specified. It might be considered either a 
nuisance variable, if we wish to model a random mix of die types, or a held-fixed independent variable, if 
we wish to consider only a certain fixed mix of parts in our production schedule. 

Intermediate variables appear as branches. Time in unscheduled maintenance will depend on the 
speed/feed of the tools and on the preventative maintenance policy, for example. 

Table 2 shows the dependent variables for our machine shop study, and the independent variables 
associated with each of them.  In parentheses are the ranges of interest for each independent variable.  These 
ranges are determined by practical limits or by policy decisions. 

Next, we need to identify, in a qualitative way, whether we expect a linear or nonlinear relationship 
between independent and dependent variables.  This will determine what g functions we will need in the 
probability model (1). 

Table 2: Dependent variables and associated independent variables for the machine shop study. 

Dependent Independent 

throughput 
job release policy (1, 2), lot size (10-30 pieces), prev. 
maint.(2-8 hours), speed/feed (0.1 - 0.5 inch/second) 

cycle time 
job release policy (1, 2), lot size (10-30 pieces), prev. 
maint.(2-8 hours), speed/feed (0.1 - 0.5 inch/second) 

operating 
costs 

prev. maint.(2-8 hours), speed/feed (0.1 - 0.5 
inch/second) 

5 CONSTRUCT A PROBABILITY MODEL 

This step is closely linked to step one of the overall process of scientific investigation:  state a hypothesis 
to be evaluated. Before we can choose a set of simulation runs, we need to know the form of the model (1) 
that will be fitted and tested.  That means we need to know not only which x’s but also which g’s, as well 
as something about the variance of the ’s.  Often the g functions are just power and cross-product terms of 
the form xi, xixj, xi

2, xixjxk, xixj
2, and so forth.  These forms are supported to some extent by Taylor’s Theorem, 

which shows that polynomial functions (power and cross-product terms) provide good local approximations 
to any smooth response function. 
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Two kinds of graphs can help us identify the kind of terms to be included in the probability model.  A 
priori main effect plots help to identify g function power terms of the form xi, xi

2, xi
3, and so forth.  A priori 

interaction plots help to identify terms of the form xixj, xixjxk, xixj
2, and so forth.  Space and time limitations 

restrict this presentation to main effect plots.  See Barton (1997, 1999) for details on constructing and 
interpreting a priori interaction plots. The main idea is to qualitatively imagine the a priori expected 
relationship between each independent variable and a dependent variable, e.g, throughput. 

Figure 3 shows a set of four a priori main effect plots for the hypothesized effect of each factor on 
throughput. Plots that are roughly linear over the range of interest require only an xi term. Plots with 
curvature may require an xi

2 term in addition, and plots with changing curvature over the range of interest 
may require xi

3 and higher terms as well. 
Since we are only considering two candidate job release policies, there are only two discrete choices.  

We hypothesize that job release policy 2 will provide greater throughput, although this aspect of the 
hypothesis is not critical to the design chosen in Section 6.  The speed/feed variable can be expected to have 
a linear impact on throughput.  The figure shows an expected increase in throughput as lot size is increased, 
with diminishing returns. Over the region of interest, however, the figure suggests that a linear 
approximation should be adequate.  The preventative maintenance (PM) schedule’s impact on throughput 
is to reduce throughput for too-frequent PM times, and to again reduce throughput (due to frequent 
unscheduled maintenance) if the time between PMs is too long.  In this case, curvature occurs in the region 
of interest, and so linear and quadratic terms for the impact of PM will be included in the model. 

 

Figure 3: A priori main effect plots for throughput. 

Two comments about these plots are in order.  First, there are no scales on the vertical axes.  These 
plots are qualitative, not quantitative.  We do not know the quantitative relationships in advance:  that is 
why we are conducting the simulation experiment!  Second, the qualitative forms need not be correct.  After 
all, they are only our guesses.  These plots provide a description of the hypotheses that we will test in this 
cycle of the scientific investigation. 

An assessment of these figures, along with the a priori interaction plots (not shown) leads to the 
hypothesized model 
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 Y = 0 + 1x1 + 2x2 + 3x3 + 4x3
2 + 5x4 + 6x3x4 + , (2) 

 
Here Y is throughput, x1 is job release policy (JRP: 1 or 2), x2 is lot size (LS: units), x3 is PM schedule 
(hours), and x4 is speed/feed (S/F: in./second), and   is normal with unknown variance.  The only interaction 
term that appears is due to a change in the impact of the PM schedule depending on speed/feed.  Similar 
plots would have to be constructed for the dependent variables cycle time and operating costs. 

6 CHOOSE AN EXPERIMENT DESIGN 

In this activity, one determines the number of distinct model settings to be run, and the specific values of 
the factors for each of these runs.  There are many strategies for selecting the number of runs and the factor 
settings for each run.  These include random designs, optimal designs, combinatorial designs, mixture 
designs, sequential designs, and factorial designs.  

Factorial designs are based on a grid, with each factor tested in combination with every level of every 
other factor.  Factorial designs are attractive for three reasons:  i) the number of levels that are required for 
each factor are one greater than the highest-order power of that variable in the model, and the resulting 
design permits the estimation of coefficients for all cross-product terms ii) they are probably the most 
commonly used class of designs, and iii) the resulting set of run conditions are easy to visualize graphically 
for as many as nine factors.  These designs are not appropriate for sequential settings, or for nonlinear 
models such as Gaussian process models, when space-filling designs are more appropriate. Ryzhov, Yang 
and Chen (2020) provide an excellent advanced tutorial for this setting. 

A disadvantage of factorial designs is that they require a large number of distinct runs when the number 
of factors and/or the number of levels of the factors are large.  In this case, fractional factorials are often 
employed.   This section focuses on factorial and fractional factorial designs. 

Figure 4 shows geometric representations for three and five factors each with two levels.  The five-
factor design shows how additional factors can be incorporated by hierarchically using rectangular frames. 

Figure 5 shows a candidate design for the machine shop study.  Three levels are used for the 
preventative maintenance schedule, to allow estimation of the quadratic term in (2).  There are seven  
coefficients and the variance of  to estimate, so we need at least seven different run conditions, eight if 
there are no replications (repeated runs with the same factor settings).  Replications allow us to check the 
adequacy of the model, so rather than run each factorial point for a total of  24 runs, we have chosen 1/2 of 
the factorial points, and replicated four of those, for a total of 15 runs.  Barton (1998, 1999) describes 
geometric characteristics that can be used to guide the selection of a fraction of the full factorial design. 

7 VALIDATE THE PROPERTIES OF THE DESIGN 

Because this design was selected based on geometric properties, there is no guarantee that it will allow the 
estimation of all of the terms in the model. A mathematical check is necessary. The mathematical 
requirements can be found in a design of experiments text such as Montgomery (2009). 

The simplest check, however, is to use guesses for all of the ’s and an estimate of the variance of  to 
generate artificial Y’s using a spreadsheet and the hypothesized model.  Then proceed with a preliminary 
statistical analysis.  If the design is not adequate, the statistical package will inform you that the parameters 
cannot be estimated. You can also use this approach to get an idea about whether the number of runs will 
be sufficient to estimate the coefficients, e.g., in (2), with adequate precision.   If you find a lack of 
significance for the model terms when you analyze the statistics for the artificial data, you will need to 
increase the number of replications, or increase the magnitude of the  coefficients that you want to be able 
to detect. 

Because we have two other dependent variables, and we would like a single experiment to allow us to 
fit all three models, we need further checks on the design. It must also be validated for fitting the 
hypothesized models for cycle time and operating costs. Finally, given that things can go wrong in 
conducting the various experiments, the design should be robust to missing observations, unequal variance 
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across runs, and unexpected terms in the model. These topics are beyond the level of this introductory 
tutorial. 

 

 

Figure 4: Factorial designs for three and five factors. 

 
 

 

Figure 5: Fractional factorial design for the machine shop study. 
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8 GRAPHICAL CHECKS FOR DESIGN VALIDITY 

Fractional factorial designs result in correlation of some model coefficient estimates. This means that some 
estimates bi for i cannot be estimated independently from bj for j (for some i and j). Depending on the 
design structure, this correlation can be partial or total. The nature of this correlation is captured by the 
entries of the inverse of X'X, where X is the design matrix: each row has the value of all g terms for a 
particular planned run, in other words, {g(x)} for design point x in each row of X. It is difficult to compare 
and contrast the designs by comparing these matrices of numbers, however. One might reduce the 
characteristics of (X'X) -1 to a single number, as is done for D-optimal or G-optimal designs, for example, 
but the difference between designs is too complex to be captured by a single number. 

It is possible to maintain a multivariate representation of the design properties using graphical 
representations of the entries of (X'X) -1. Barton and Schruben (1994) introduced the shaded-block matrix 
plot. This method involves two steps: i) construct a set of squares, one for each diagonal entry of (X'X) -1 
such that the size of the square is proportional to square root of the entry, and ii) extend the sides of the 
diagonally-placed squares to form a matrix, shading each off-diagonal block in proportion to the absolute 
value of the corresponding correlation coefficient, r, where | r | = 1 implies 100% shading, | r | = 0  implies 
0% shading – when coefficient estimates are statistically independent. 

To illustrate this technique, we follow the example in Barton and Schruben (1994). An  experiment  
was designed  to examine  the performance  of  a small  manufacturing operation, under different 
configurations of equipment  (Kleijnen  and Standridge 1988). Since the purchase of the manufacturing  
equipment  would be expensive, the experiments were  conducted  using  a computer  simulation.  Four  
types of  machines  were  used  in  the operation.  The goal  of  the experiment  was to study  the throughput  
as a function  of  the number of machines of each type used. The results would identify the most productive 
configuration. The decision variables for the number of machines of each type were x1 (possible values 1, 
2), x2 (possible values 1, 2), x3 (possible values 2, 3) and x4 (possible values 0, 1, 2). Of  course,  there  were  
only (2)(2)(2)(3) = 24 possible configurations, so all possible configurations could be examined using 24 
simulation runs. The experiment was limited to eight runs, however. 

The model to be fitted followed the form in (1), with g1(x) = x1, g2(x) = x2, g3(x) = x3, g4(x) = x4, with 
two additional interaction and terms g5(x) = x2x3 and g6(x) = x4

2. 
Design-plots for the original and three alternative designs are shown in Figure 6. The original design 

based on 8 runs is shown in the upper left corner of the figure.  

Figure 6: Experiment designs for the study in Kleijnen and Standridge (1988). 
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There was a serious problem with this design - can you see it graphically? For this design, the effect of 
the number of machines of type 4 (x4) is partially confounded with the number of machines of type 3. The 
third machine factor has been recoded as ± 1 rather than 2 or 3, and the levels are represented in the figure 
by triangles and circles, respectively. This design gives coefficient estimates for b3 and b4 that are correlated. 
The confounding is only partial, and it is hard to determine the severity by looking at the design-plot. The 
first alternative, at the upper right, was proposed by Kleijnen and Standridge. The second two designs were 
developed by Barton and Schruben (1994). It is not clear which design is preferable, even after the variance-
covariance factor (inverse information) matrix has been calculated. 

Figure 7 shows the shaded block matrices for these designs. Clearly the Kleijnen and Standridge design 
greatly improves the main effect and interaction coefficient estimates, but it does not permit estimation of 
the quadratic coefficient. The expanded x4 design (allowing simulation of 0, 1, 2, and 3 machines of type 
4) provides good estimates of all model coefficients with little confounding. If the expanded x4 design were 
not feasible, the Barton and Schruben modified design provides an improvement over the original design, 
still permitting estimation of the quadratic coefficient. This graphical presentation makes comparisons of 
the designs much simpler, and such plots are easy to construct. Even using Word, the box sizes can be set 
using Shape Format  Size and shading by Shape Format  Transparency (1 minus the shading value). 
 

   Original Design  Kleijnen and Standridge 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
                     
    Barton and Schruben Barton and Schruben Expanded x4 
     
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Shaded block plots for experiment designs for the study in Kleijnen and Standridge (1988). 
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9 GRAPHICAL DISPLAY OF RESULTS 

A graphical design framework provides an added bonus: it can be used to display the results of the 
experiment.  Figure 8 shows the results of the experiment presented in Figure 5, using the same framework.  
The size of the circle corresponds to the throughput.  We see that lot size increases throughput (the estimate 
for 2 is positive) and increasing the frequency of preventative maintenance increases throughput (the 
estimate for 3 is negative).  No other effects are apparent (except for 0, all other ’s are approximately 
zero). 

 

Figure 8: Results of the machine shop experiment. 

This graphical presentation can be more informative than the estimated coefficients of models like (1) 
Consider the simulation experiment on influenza pandemic behavior in Beeler et al. (2012). The results of 
the full factorial design are not available but can approximated from the significant main effect and two- 
and three-factor interaction coefficients given in the paper. Figure 9 shows the results in the graphical 
framework. The results are easy to interpret:  no vaccination and no self-quarantine is especially bad, 
particularly when infectiousness is high, and a high level of vaccination results in a low number of infections 
when infectiousness is low or medium, regardless of the number of contagious days. High levels of 
vaccination and self-quarantine are necessary to curb infection if both infectiousness and days contagious 
are high. Compare this with the coefficients in Table 1 of their paper: 37 significant coefficients! Without 
Figure 9, these results would be hard to interpret.   

10 ADDITIONAL ISSUES IN PLANNING AND CONDUCTING EXPERIMENTS 

This tutorial focused on the planning of run conditions for fitting a probability model.  There are a number 
of other issues that the simulationist faces when planning an experiment. 

 
1. If the simulation model is non-terminating (as was the case for our machine shop example), then 

the run length (in hours, days, or weeks) must be determined. 
2. There is often a tradeoff between run length and replications.   
3. The variability of the performance measure may differ from one set of experimental conditions to 

another.  This may be handled by adjusting run lengths, transforming the dependent variable, or 
using a weighted least squares method for analysis. 

4. One must determine whether an initial transient period must be deleted from each run. 
5. Random number streams must be allocated to different components of the model. 
6. The results of the experiment must be analyzed:  statistical techniques must be used to fit the 

probability model and test hypotheses about its adequacy. 
7. Experiments may focus on optimization, so a sequential design approach may be preferred. 
8. For sequential experiments and experiments to fit other than linear models (for example, to fit 

Gaussian Process models or neural networks), fractional-factorial designs may not be appropriate. 
 

These issues must be addressed to conduct a successful simulation study.  For in-depth coverage of these 
issues, see Ryzhov, Yang and Chen (2020) and simulation texts such as Law (2007), Kleijnen (2008a), and 
Banks et al. (2009).  
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Figure 9: Results of influenza study in Beeler, Aleman and Carter (2012). 
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