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ABSTRACT

In this work, we combine data science, queueing theory and stochastic simulation into an analytical
framework to examine the operations of the Ithaca Police Department (IPD) and develop novel solutions
that address recent staffing shortages of the IPD. With 3 years of IPD call data, we construct and simulate
a novel multiple-dispatch queueing process for modeling the IPD’s operations. Unfortunately, using the
data alone does not capture the real dynamics of IPD’s operations, which made it necessary to augment
the call data with qualitative assessments from police ride-alongs. Our analysis augmented with ride-along
assessments accurately replicates metrics such as emergency response time and officer utilization. Although
it is difficult to fully capture the claimed strains on the department through data alone, hiring additional
officers should make an observable improvement in the performance of the IPD.

1 INTRODUCTION

Ithaca is a mid-sized college city in Tompkins County, upstate New York. It covers approximately 6 square
miles with a permanent population of 31,000, a Cornell University student population of 24,000, and an
Ithaca College student population of 6,000. The Ithaca Police Department (IPD) exercises jurisdiction over
much of the city, excluding the two universities and various villages inside the town.

The Ithaca Police Department is in charge of maintaining the safety of the City of Ithaca and en-
hancing the quality of life of its residents. Recently, due to many officers retiring or being unable to
work, there has been a shortage in the number of active police officers (https://ithacavoice.com/2018/10/
police-staffing-still-in-question-after-common-council-budget-meeting/). This on top of a lack of approval
for additional funding and an overall decreasing applicant pool has led to many problems in the staffing and op-
erations of the IPD (https://www.ithaca.com/news/ithaca/ipd-seeks-funding-for-additional-officers-yet-again/
article_9d47648c-d30d-11e8-b9aa-27cad6619b1d.html). For example, the contractual minimum number
of officers on patrol during any one 8 hour shift is 6, and often times the IPD has only been able to have
4 officers on patrol per shift. Officers have reported feeling overworked, stressed, and incentivized to take
a large amount of overtime, which many officers comment is unsustainable for the long term.

As a result, we were approached by Mr. Dan Cogan, who is the City of Ithaca Chief of Staff, and
Sergeant Loretta Tomberelli to understand whether the IPD needed to hire additional officers by using IPD
call data. The data we were given was in the form of cards, which are brief reports which summarize the
important aspects of the calls that are sent to the Dispatch center. Information such as time of dispatch,
officers involved, location, and time of call completion are all included in these cards. However, despite
having very detailed data, we found that these cards or data do not give a complete picture of all of the
work that police officers do. For example, we observed that a significant amount of time is spent doing
followup work, such as writing summary reports of incidents and conducting investigations. These activities
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are generally not included in the call data, so we find that a purely data-driven approach is not effective
in actually modeling police dynamics. To supplement the data, we also went on ride-alongs with patrol
officers Mr. Michael Meskill and Mr. Kurt Soderholm to gain more insight into how an officer’s time is
occupied during a shift. To understand the impact of the information that is not collected from the data,
we investigated the difference between this purely data-driven “consumer perspective” modeling and the
more holistic "officer perspective” approach later in the paper.

1.1 Goals of Project/Analysis

Broadly, the goal of our project is to use the data from the Ithaca Police Department’s past calls to see
if there are any operational changes that can be made within the department which can decrease the
stress/workload on the officers. We tackle this problem by leveraging the IPD call data and ride-along
information to build a stochastic simulation for IPD’s call process from start to finish. We found that
we could model the IPD’s call process as a non-standard multi-server queue. It is non-standard because
multiple agents may be needed for each individual service request. For example, a report of gunfire would
certainly call for multiple officers, while a noise complaint might only require one officer. By building a
stochastic simulation model of patrol cars responding to calls in Ithaca, we can estimate important IPD
performance measures like emergency-call response time and officer utilization. Moreover, the stochastic
simulation driven by our data analysis will enable us to study the impact of different staffing levels on
these performance measures.

2 POLICE DATA

In this section, we describe the data we collected and analyzed to give readers a sense of the large amount
of data cleaning and analysis that was necessary for building our models.

2.1 Explanation of Data

We received data from IPD Sergeant Loretta Tomberelli. We were given the data in the form of cards.
A card represents a specific incident the police department handles. The format of these cards contains
several important details about the call which will be vital for our analysis, namely:

e Call ID: an arbitrary ID that is unique to each call

* Dispatch: The time in which a 911 call is received

*  Enroute: The time when an officer chooses to respond to a call

*  Completed: Time when an officer has completed their initial assessment of the call
*  Crime: Label for what kind of crime is being reported

*  Responding Officers: The list of officers responding to a crime

The general process of a card being logged is as follows. A call for a crime is received at the Dispatch
time, the first officer choosing to take this call is the Enroute time, and when the first officer finishes the
initial assessment they log their Completed time. It is often the case that multiple officers are called to
handle a single call, but the times shown in the data only correspond to the first officer who responds. We
show a sample path of a call into IPD in Figure 1 where the red arrows correspond to actual data points
that were were able to collect from the cards.

2.2 Issues with the Data

Upon receiving the data, we found that the data was not clean and suffered from many problems. The
three main problems with the data were: (1) the data were formatted inconsistently (2) many data points
were missing and (3) there were many spelling errors and inconsistencies. To get a better sense of what the
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Figure 1: The progression of a general 911 call, with red arrows pointing to the points in time present in
the data.

original (uncleaned) looks like, we provide a snapshot in Figure 2. In Figure 3 we also show a snapshot
of the cleaned data, which is much easier to analyze from an analytics perspective.

Figure 2: Original Data

Since the IPD call data is held in a central repository, Sergeant Tomberelli was able to send us one
CSYV for each month of years 2016, 2017, and 2018. However, we found that the data collection process
was not uniform. In fact, we observed that each month could be in one of many different data formats and
there was no clear information that would allow us to know which format it would be. Thus, the decision
was made to use the most convenient and accurate format and remove the rest. The months of data that
were ultimately used in this paper were

1. January, February, September, November, and December of 2016.
2. January, February, March, April, August, September, and October of 2017.
3. February, March, and August of 2018.

In these 15 months of data, we observed that almost 30,000 incidents were recorded yielding about 2,000
incidents per month. The data size was large enough to work with, but we note that much of the summer
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Figure 3: Cleaned Data (All cells with ### encode date-times)

months are missing. However, summer months are typically less busy while students are away from school.
We also should highlight that the data corresponds to the time frame where the IPD has felt that their workload
was too high and the IPD made formal requests to the Mayor’s office in Ithaca to hire 20 additional officers
(https://cnycentral.com/news/local/ithaca-police-department-mayor-dont-see-eye-to-eye-on-staffing).

This cleaned data allowed for easier analysis since we now had a consistent indexing of rows, something
notably absent in the old data. Additionally, the data also had several missing entries, the majority of
which were Enroute times. We learned this was mainly due to officers being in close proximity to a call,
as officers who are already near a crime do not generally log the time they respond to it. We chose not to
impute these data, and will discuss the effects of that in the next section.

3 EXPLORATORY DATA ANALYSIS OF ITHACA POLICE DEPARTMENT CALL DATA

In this section, we conduct an exploratory data analysis of the IPD call data. This data analysis is instrumental
to our paper as it serves as it gives us a sense of how to construct the simulation for various call types.
Moreover, we are able to get accurate estimates of call types, number of officers involved, duration of the
incident, etc.

3.1 Ithaca Police Department Call Data

From the analysis of past call data, we found several important pieces of information relating to how
calls are received and processed within the police department. The first of which being the distribution of
inter-arrival times (the time between one emergency call and the next) was found to be almost perfectly
exponential, see for example Figure 4. This observation is important because the exponential distribution
is the building block of the Poisson process and the Poisson process is well understood in the stochastic
simulation community. Thus, our observation of the inter-arrival times being almost exponential allows us
simulate the calls to the IPD using a Poisson process, which reflects the statistical independence of each
call. Thus, we do not need to resort to more complicated arrival processes like Hawkes processes i.e. (Daw
and Pender 2018a) and (Daw and Pender 2018b).

In Figure 4, we also observe that the mean inter-arrival time of each call is 21.67 minutes and the median
inter-arrival call time is 12.4 minutes. This implies that the police department receives an emergency call
approximately once every 21.67 minutes. It also hints that the inter-arrival call data is positively skewed
as well. The inter-arrival time focuses primarily on the Dispatch time, however, it does not reveal any
information about the actual progress of the call. Thus, we also analyzed the distribution of the time
between a call’s arrival and an officer traveling to address the issue (the Enroute - Dispatch time). On the
right of Figure 4, we display the distribution of the gap between Enroute - Dispatch. Similar to what we
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Figure 4: Distribution of Inter-arrival times (mean = 21.67 min, median = 12.4 min) (Left).
Differences in times between Dispatch and Enroute (mean = 10.5 minutes, median = 5.2 min) (Right).

observed with the inter-arrival times, the distribution of the gap between Enroute and Dispatch appears to
be approximately exponential (although a little less so than the inter-arrival times). We also observe that
the mean gap is approximately 10.5 minutes and the median gap is 5.2 minutes, which also implies the
Enroute - Dispatch gap is also positively skewed.

We also analyzed the time it takes for a call to get completed (Completed - Enroute) and the total time a
caller is being serviced (Completed - Dispatch), shown below in Figure 5 on the left and right respectively.
We observe in Figure 5 that the Completed - Enroute gap is approximately exponential as well. The mean
gap is 16.5 minutes and the median gap is 10.3 minutes. In the case of the Completed - Dispatch gap,
once again we see the right plot of Figure 5 that the distribution is approximately exponential. The mean
is roughly 25.3 minutes and the median is 17 minutes.

Figure 5: Differences between Enroute and Completed (mean = 16.5 minutes, median = 10.3 min) (Left).
Differences between Dispatch and Completed (mean = 25.3 minutes, median = 17 min) (Right)

Now that we have a good understanding of the time gaps between events, it is also important to
understand the resources needed per call. Unlike many queueing models that assume that there is one
server assigned to each request, this is not the case in emergency services like the IPD. In Figure 6, we
calculate the number of officers needed per call. We find that 55% of the time only one officer is needed,
27% of the time 2 officers are needed, 10 % of the time 3 officers are needed, 4% of the time 4 officers
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Figure 6: Distribution of Officers Needed per Call (mean = 1.8, median = 1.0) (Left). Distribution of Calls
over an Average Day (bin size = 15 mins) (Right).

are needed and the maximum officers need was 10 during the 3 year time period. We find that on average
1.8 officers are needed per call and the median is 1 officer per call.

3.2 Understanding the Top Offenses

Now that we have an understanding of how many calls are coming in and how many resources they
require, we now can begin to analyze the data in a more refined way. To this end, an important factor
to consider beyond how often calls come in and are processed is when calls come in and what type they
are. Since every shift of the IPD covers a different part of the day, knowing the time of day when calls
are most frequent is very useful for distributing staffing levels between the three shifts. We found the 10
types of calls the IPD receives most frequently to be: ASSIST, NOISECMPLNT, PARKINGPROBLEM,
PDACCIDENT, PROPERTYCMPLNT, SUSPICIOUS, THEFT, TRAFFICCMPLNT, TRAFFICOFFENSE,
WELFARECHECK. We chose to use these offenses as the basis for our simulation because they comprise
about 80% of all calls in the data. Figure 7 gives the top five call types which comprise about 55% of all
call volume.

In addition to breaking the data down by time and day, it is also natural to wonder if some of the important
trends hold when observing particular offenses. To explore this, we analyzed the top five offenses: ASSIST,
PARKINGPROBLEM, PDACCIDENT, PROPERTYCMPLNT, and TRAFFICOFFENSE in Figure 7. In
particular, we look at the inter-arrival time, dispatch to completed time (the total time a caller spends
in the police system), and the number of officers used per call. One observation is that ASSIST and
PROPERTYCMPLNT experience the 5:15 PM spike while the other offenses do not. Additionally,
PARKINGPROBLEM peaks in the morning as people wake up and notice parking problems (e.g. they
cannot get out their driveway because someone has parked in front of it). Moreover, the exponential
distribution of the gaps between aggregated calls and their progress is also present for sufficiently common
offenses. There are some notable exceptions, such as how dispatch to completed times are approximately
gamma distributed for PDACCIDENT, but the property generally holds.

Some of the rarer calls, such as stabbings and assaults (which occur 6 and 55 times or .0224% and
.205% of the time, respectively) take up resources disproportionate to their commonality, but there are
special measures for when especially serious crime occurs so that normal operations can continue, such
as receiving aid from the county sheriff or from other towns. So it may be of note that looking at a small
number of common offenses can still give a reasonable picture of what an ”average” day might look like.

For example, this information implies that if one of the more common offenses is especially costly in
man-hours to deal with directly, it may be a non-obvious financial problem as well as a societal one. We are
unable to explore the many opportunity costs such as paperwork time and following up with citizens, which
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Figure 7: Hourly Distribution of Top 5 Offenses

are substantial, but we can calculate some opportunity cost which affects both the citizens affected and the
police department by multiplying average officers responding by the time from dispatch to completion and
the number of times that offense is reported in an hour. Calculating this measure of man-hours per hour
for the top five offenses, we obtain the following values from greatest to least, 3.2 (PDACCIDENT), 1.6
(PARKINGPROBLEM), .70 (TRAFFICOFFENSE), .60 (ASSIST), .48 (PROPERTYCHECK).

3.3 Ithaca Police Department Shift Data

To supplement the call data, we were also given data which illustrated how many officers were working
every day in the years of 1999, 2004, 2009, and 2014. Although not necessarily displayed here, the data
revealed an important trend: the size of the patrol division has been largely constant over the years we
have data on, but the number of people working overall on a given shift has decreased substantially.
Figure 8 shows the shift staffing for any one day, of which data is available for all months of 1999,
2004, 2009, and 2014. In this data, Shift 1 refers to the midnight shift (11 pm day before - 7 am), Shift 2
refers to the day shift (7 am - 3 pm), and Shift 3 refers to the afternoon shift (3 pm - 11 pm). The ~’Patrol”
data is key here, because that is the division of the IPD that is primarily responsible for responding to
citizen calls. There are many other duties officers can take on during their shift, and those were counted
as well. On the left of Figure 8 we plot the Patrol staffing via a box plot and on the right of Figure 8
we plot the Total staffing via a box plot. The data supports claims by the police department that staffing
in the Patrol division has been maintained at the expense of other departments, namely in shift one. In
fact, the median number of officers working has decreased from about 25 in 1999 to about 15 in 2014. In
combination with the steady staffing in patrol, this suggests that a substantial part of the drop in service
may not be in response times, but in how long larger scale tasks and investigations may take, and in non
time related metrics such as number of traffic tickets issued, increased overtime pay, and number of minor
calls not attended to. It is also true that crime in Ithaca has decreased over this time period. It is worth
noting the presence of zeros in the charts of numbers of officers on patrol. It is expected that this is due to
errors in entering the data - that some days may have been skipped and have zeros populating the empty
fields. This said, the data comes directly from the IPD and should therefore be considered reliable.
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Figure 8: Distribution of Officers on Patrol (Left) and Duty (Right) Broken Down by Shift

4 SIMULATING THE ITHACA POLICE DEPARTMENT

In this section, we describe how we simulated the IPD’s operations. We chose to model the IPD’s operations
through the lens of queueing theory. Queues have been used for a very long time to model various service
systems in telecommunications, entertainment, transportation, healthcare and even autonomous vehicles,
see for example (Brown et al. 2005), (Zeltyn and Mandelbaum 2005), (Novitzky et al. 2019), (Massey
and Pender 2018), (Nirenberg et al. 2018), (Palomo et al. 2020), (Kahara and Pender 2017), (Pender
et al. 2020), (Daw et al. 2019), (Hampshire et al. 2020). The model we use in this paper is a Markovian
multi-server queue where the number of servers requested per call is random. In this model, we must
specify how it operates when there are not enough servers to initially accommodate a request for help. In
the situation where no police officers are available, we have the call wait until one police officer is available
and that officer is sent to help that issue and no other officers are sent. In the situation where the call
requests more officers than are available we send the idle officers to the scene and no other officers are
sent. This is clearly an approximation to the realistic scenario, but still offers insight into IPD’s process
by which they handle calls.

In most queueing systems, the number of servers requested is equal to one. However, as noted earlier
the IPD can send multiple police officers to handle a call, and sometimes this is required for high priority
calls like shootings and break-ins. In this system, we assume that calls into the police station (or ’customers’
who dial 911) arrive according to a Poisson process with a fixed rate A (0.05 min~—!). Moreover, each
arrival is attached to a request for a random number of officers in order to service the call. From the IPD
data, we observe that it is common for 1 or 2 officers to report to the scene of a call, but there are some
situations (although with lower probability) where more officers are needed. This specific kind of queueing
model where the number of servers is random is not very well studied in literature, however, there are a
few papers that attempt to do so, see for example (Brill and Green 1984), (Federgruen and Green 1984),
(gre ), (Green 1981), (Green 1984), (Schaack and Larson 1989), (Verma et al. 2010), (gre ), (Ignall et al.
1974). Our application to police settings and the performance measures we study are novel in this random
number of servers setting.

The benefit of this simulation is that it takes in the information that we are able to measure from IPD
call data and turns it into insightful information like waiting times or response times for calls. In our
simulation, we input the average time between calls, average time to complete a call, and average number
of officers per call, and then measure how long people calling 911 spend waiting, what percentage of the
shift an officer spends answering calls, the number of people being served in total, and the number of
officers in use at randomly selected points in time. The outputs of the simulation can be used to understand
the caller perspective and give Tompkins county a complete IPD system perspective. Before we went on
our ride-alongs, we assumed that the time to complete a call could be approximated by what was measured
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from the data. This gave an impression that a majority of calls finish in a few minutes, with only a few
taking substantially longer, with an overall average service time of about 20 minutes. We also did not
know how many officers were on duty during a normal shift, so we assumed they had 7 officers per shift
as per contractual minimum. However, the simulation allows us to obtain insight about how increasing or
decreasing the number of officers will impact the community.

4.1 SIMULATION RESULTS: DATA ONLY

First, we detail the results of our naive, pre-ride along approach. Each simulation was run with either
5,6,7, or 8 officers in a shift, an average inter-arrival time of 20 minutes, and an average service time of 25
minutes as given by the call data. We also assumed that the number of officers needed was given by the call
data distribution given in Figure 6. However, we truncated the distribution at 6 officers and re-normalized
the probabilities since needing more than 6 officers is very rare. Thus, the probabilities that were used in
the simulation where p; = .56, p, = .27, p3 = .10, ps = .04, p5s = .02, pe = .01.

Table 1: Markovian Random Server Model (6 Officers).
Pre Ride-Along | Post Ride-Along | Difference
Mean Waiting Time .0537 3.3461 3.2924
Mean Queue Length 2446 5709 3263
Mean Number of Officers Used .0146 2915 2769
Mean Number in System 7504 1.9194 1.169
Table 2: Markovian Random Server Model (7 Officers).
Pre Ride-Along | Post Ride-Along | Difference
Mean Waiting Time .0253 1.4091 1.3838
Mean Queue Length 2094 4948 2854
Mean Number of Officers Used .0062 1381 1319
Mean Number in System 0.7502 1.8222 1.072
Table 3: Markovian Random Server Model (8 Officers).
Pre Ride-Along | Post Ride-Along | Difference
Mean Waiting Time .0061 4251 419
Mean Queue Length .1825 4295 247
Mean Number of Officers Used .0019 .0503 .0484
Mean Number in System 7509 1.7711 1.0202

In Table 1 in the Pre Ride-Along column, we observe that the mean wait is .054 minutes and the mean
number of callers waiting is .24. In Table 2 in the Pre Ride-Along column, we observe that the mean wait
is .03 minutes and the mean number of callers waiting is .21. In Table 3 in the Pre Ride-Along column, we
observe that the mean wait is .01 minutes and the mean number of callers waiting is .18. From the results
in these tables, we are led to believe that the IPD is doing well at handling calls as the queue length and
waiting time are near zero. Moreover, it tells a picture that 7 officers might not be necessary to achieve
good outcomes for the Ithaca community and 6 offices could be enough. However, this perspective is rather
contradictory given the number of officer complaints about working too many hours. We will explore this
further when we integrate our officer-perspective data into the simulation.
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4.2 INCORPORATING RIDE-ALONG INFORMATION INTO THE SIMULATION

Using the data exclusively, we observed that our model predicted the IPD officers appeared much more
idle than what they had claimed. Thus, we decided to go on several 4-hour ride-alongs with Officer Kurt
Soderholm and Officer Michael Meskill. These ride-alongs were quite illuminating because we were able
to experience first hand how calls were handled from start to finish. In addition, we interviewed other
officers about their experiences at the IPD, allowing us to discover several aspects of policing that are not
captured by the call data and are vital for successful and thorough policing. Thus, the call data was good
for understanding the arrival part of the process, but not necessarily the service part of the process.

The most important observation we made from our ride-alongs was that following up on investiga-
tions/calls was a salient (and very time consuming) part of the policing process. These actions do not
make it into the call data, mainly because the follow-up work that officers do is not time-stamped and
recorded. Moreover, re-opening cases and compiling data on previous calls is not recorded either the
call data we received only shows the initial response to calls. After interviewing several officers about
possible time estimates for followup on the most frequent calls, we were able to generate Table 4, which
approximates the average followup time for the top ten offenses. Unfortunately, for ASSIST, SUSPICIOUS,
and TRAFFICOFFENSE, the officers we interviewed could not reach a consensus on how long they took
since they were highly variable and depended heavily on the situation the officers were in. More work in
this regard is needed to fully determine the appropriate distribution of these times. If the completion times
were too variable we indicate in Table 4 that the follow-up time was highly variable.

Table 4: Table detailing the estimated times of completion for certain types of calls

Offense Followup Time Offense Followup Time
ASSIST 25 mins (Highly Variable) SUSPICIOUS 20 mins (Highly Variable)
NOISECMPLNT 15 mins THEFT 2 hrs
PARKINGPROBLEM 20 mins TRAFFICCMPLNT 25 mins
PDACCIDENT 30 mins TRAFFICOFFENSE | 30 mins (Highly Variable)
PROPERTYCMPLNT 2 hrs WELFARECHECK 1 hr

As a result of our ride-alongs, we augmented our call data with the ride-along results of Table 4 to
re-adjust our simulation parameter values. By adding this information, a call would not be considered
complete when an officer entered a completion time, but instead a call was completed when all followup
work was done. This mismatch in the two times hints at an important lesson. The data cards which we
analyzed were from the perspective of the customer. A 911 caller has access to information such as call
time, when the officer arrives, and when they leave. However, the whole story is attained when we integrate
these data with officer-perspective data. Performance measures like the amount of followup, which are
very important for analysis of the police department, but are not easily shown in the caller data. Many
other qualitative things about the police department’s operations can only be learned by interacting with
officers and observing how they spend their time in a variety of situations.

4.3 SIMULATION RESULTS: OFFICER-PERSPECTIVE DATA INTEGRATED

Now, we will describe the results for the simulations with extra followup time added and officers removed.
In this simulation, we add an additional 15 minute of follow-up work for each call. The results are given in
the Post Ride-Along column in Tables 1 - Table 3. In Table 1 in the Post Ride-Along column, we observe
that the mean wait is 3.4 minutes and the mean number of callers waiting is .57. In Table 2 in the Post
Ride-Along column, we observe that the mean wait is 1.41 minutes and the mean number of callers waiting
is .49. In Table 3 in the Post Ride-Along column, we observe that the mean wait is .43 minutes and the
mean number of callers waiting is .43. From the results in these tables, we are led to believe that the IPD
not doing as well as indicated in the Pre Ride-Along column and these results are a bit more consistent
with the comments given by the officers.
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We observe in Tables 1 - 3 that all of the performance measures are uniformly worse and and reflect
some of the issues that the IPD has been complaining about. Moreover, we know from the queueing theory
literature that removing one officer (in a small server setting) can have a large impact on performance
measures. One of the most important things to consider when staffing a police department is that officers
might be injured in the line of duty. Thus, it can dramatically affect the performance of the IPD and several
injuries were reported at the time of this work. One complication is that injured officers are not easy to
replace since officers are required to go through extensive training and preparation. Thus, it is important
to staff the IPD beyond levels that meet the performance measures that would be agreed upon by IPD and
the Ithaca government to make sure if an officer is injured that the IPD can still operate at a high level.

5 CONCLUSION & FUTURE DIRECTIONS

In this paper, we combine simulation and data science to construct a queueing model for modeling the
dynamics of the Ithaca Police Department. The results from this research indicate that there are observable
benefits to having at least six officers. It appears that this minimum of six officers tends to be adequate
overall. However, we also observe that adding additional officers such as 7 or 8 can help the IPD respond
even quicker to calls. Moreover, it is clear that the additional officers can alleviate stress, injury, and
overtime considerations that are hard to mathematically quantify. Removing or adding one officer can have
a big impact on the IPD operations and the success of the IPD.

There were several limitations to this analysis that are worth considering. First, there was no hard data
available to us on followup work, which turns out to be an important factor in assessing staffing levels.
Second, it is difficult to say how many officers should be on payroll with the information we have been given.
Specifically, we are unable to comment on whether or not this shift minimum should be reached by utilizing
overtime with current personnel or by hiring additional officers to fill shifts permanently. In deciding which
of these methods to pursue, one must weigh a great amount of data that was simply not available to us, such
as the financial implications of overtime rates vs. benefits for new hires, any causal relationships between
different amounts of overtime and performance decline or staff retention, and availability of candidates in
the appropriate areas. Hopefully, though, the data presented here will illuminate this side of the decision
making.

To further extend this project, it would be beneficial to look at more nuanced elements of police
operations. Possible avenues include examining how staffing changes can be made according to the time
of day as well as the time of year. It would then be possible to weigh the performance of this dynamic
staffing against the direct costs of a constant staffing level. It would also be beneficial to consider how
best to incorporate overtime hours worked into our assessment of a staffing level’s effectiveness.

In a broader sense, our data-driven simulation framework is especially useful given the current climate,
where funding levels for policing is the subject of intense public discussion. In fact, the Mayor Svante
Myrick of Ithaca recently announced plans to replace the IPD with a civilian-led agency. He proposed a
new entity called the Department of Community Solutions and Public Safety. This agency would include
both armed and unarmed first responders that are trained to de-escalate a number of situations, all of whom
will report to a civilian public safety director. Our simulation and analysis is essential to understanding
the efficacy of this new entity. Our simulation is robust in that it allows officials to assess the police
department’s performance for a wide variety of staffing levels and could also be used for evaluating the
performance of this new agency with appropriate staffing levels. It is our hope that our work will be used
to help guide Ithaca’s officials in making decisions about future resource allocation for IPD or any new
public safety entity.
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