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ABSTRACT

Biopharmaceutical manufacturing faces critical challenges, including complexity, high variability, lengthy
lead time, and limited historical data and knowledge of the underlying system stochastic process. To
address these challenges, we propose a green simulation assisted model-based reinforcement learning to
support process online learning and guide dynamic decision making. Basically, the process model risk
is quantified by the posterior distribution. At any given policy, we predict the expected system response
with prediction risk accounting for both inherent stochastic uncertainty and model risk. Then, we propose
green simulation assisted reinforcement learning and derive the mixture proposal distribution of decision
process and likelihood ratio based metamodel for the policy gradient, which can selectively reuse process
trajectory outputs collected from previous experiments to increase the simulation data-efficiency, improve
the policy gradient estimation accuracy, and speed up the search for the optimal policy. Our numerical
study indicates that the proposed approach demonstrates the promising performance.

1 INTRODUCTION

To address critical needs in biomanufacturing automation, in this paper, we introduce a green simulation
assisted Bayesian reinforcement learning to support bioprocess online learning and guide dynamic deci-
sion making. The biomanufacturing industry is growing rapidly and becoming one of the key drivers of
personalized medicine. However, biopharmaceutical production faces critical challenges, including com-
plexity, high variability, long lead time, and very limited process data. Biotherapeutics are manufactured
in living cells whose biological processes are complex and have highly variable outputs (e.g., product
critical quality attributes (CQAs)) whose values are determined by many factors (e.g., raw materials, media,
critical process parameters (CPPs)). As new biotherapeutics (e.g., cell and gene therapies) become more
and more “personalized,” biomanufacturing requires more advanced manufacturing protocols. In addition,
the analytical testing time required by biopharmaceuticals of complex molecular structure is lengthy, and
the process observations are relatively limited.

Driven by these challenges, we consider the model-based reinforcement learning (MBRL) or Markov
Decision Process (MDP) to fully leverage the existing bioprocess domain knowledge, utilize the limited
process data, support online learning, and guide dynamic decision making. At each time step t, the system
is in state st , and the decision maker takes the action at by following a policy at = πt(at |st). At the next
time step (t +1), the system evolves to new state st+1 by following the state transition probabilistic model
P(st+1|st ,at ;ωωω), and then we collect a reward rt(at ,st). Thus, the statistical properties and dynamic evolution
of stochastic control process depend on decision policy πt and state transition model P(st+1|st ,at ;ωωω). In
the biomanufacturing, the prior knowledge of state transition model is constructed based on the existing
biological/physical/chemical mechanisms and dynamics. The unknown model parameters ωωω (e.g., cell
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growth, protein production, and substrate consumption rates in cell culture; nucleation rate and heat transfer
coefficients in freeze drying) will be online learned and updated as the arrivals of new process data. The
optimal policy depends on the current knowledge of process model parameters.

In this paper, we propose a green simulation assisted Bayesian reinforcement learning (GS-RL) to
guide dynamic decision making. Given any policy, we predict the expected system response with prediction
risk accounting for both process inherent stochastic uncertainty and model estimation uncertainty, call
model risk. The model risk is quantified by the posterior distribution and it can efficiently leverage the
existing bioprocess domain knowledge through the selection of prior and support the online learning. Thus,
the proposed Bayesian reinforcement learning can provide the robust dynamic decision guidance, which
can be applicable for cases with various amount of process historical data. In addition, motivated by the
studies on green simulation (i.e., Feng and Staum (2017) and Dong et al. (2018)), we propose the stochastic
control process likelihood ratio-based metamodel to improve the policy gradient estimation, which can fully
leverage the historical trajectories generated with various state transition models and policies. Therefore,
the proposed green simulation assisted Bayesian reinforcement learning can: (1) incorporate the existing
process domain knowledge; (2) facilitate the interprertable online learning; (3) guide complex bioprocess
dynamic decision making; and (4) provide the reliable, flexible, robust, and coherent decision guidance.

For the model-free inforcement learning, Mnih et al. (2015) introduce the experience replay (ER)
to reuse the past experience, increase the data efficiency, and decrease the data correlation. It randomly
samples and reuses the past trajectories. Built on ER, Schaul et al. (2016) further propose the prioritized
experience replay (PER), which prioritizes the historical trajectories based on temporal-difference error.

The main contribution of our study is to propose a green simulation assisted Bayesian reinforcement
learning (GS-RL). Even though both GS-RL and PER are motivated by “experience replay” and reuse the
historical data, there is the fundamental difference between GS-RL and PER. In our approach, the posterior
distribution of state transition model can provide the risk- and science-based knowledge of underlying
bioprocess dynamic mechanisms, and facilitate the online learning. Then, the likelihood ratio of stochastic
decision process is used to construct the metamodel of policy gradient in the complex decision process
space, accounting for the selection and impact of both policy and state transition model. It allows us to
reuse the trajectories from previous experiments, and the weight assigned to each trajectory depends on
its importance measured by the spatial-temporal distance of decision processes. In addition, a mixture
process proposal distribution used in the likelihood ratio can improve the estimation accuracy and stability
of policy gradient and speed up the search for the optimal policy. Since the model risk is automatically
updated during the learning, our approach can dynamically adjust the importance weights on the previous
trajectories, which makes GS-RL flexible, efficient, and automatically deal with non-stationary bioprocess.

The organization of the paper is as follow. In Section 2, we provide the problem description. To facilitate
the biomanufacturing process online learning and automation, we focus on the model-based reinforcement
learning with the posterior distribution quantifying the model risk. Then, in Section 3, we propose the green
simulation assisted policy gradient, which can fully leverage the process trajectories obtained from previous
experiments and speed up the search for the optimal policy. After that, a biomanfuacturing example is
used to study the performance of proposed approach and compare it with the state-of-art policy gradient
approaches in Section 4. We conclude this paper in Section 5.

2 PROBLEM DESCRIPTION AND MODEL BASED REINFORCEMENT LEARNING

To facilitate the biomanufacturing automation, we consider the reinforcement learning for finite horizon
problem. In Section 2.1, we suppose the underlying model of production process is known and review the
model-based reinforcement learning. Since the process model is typically unknown and estimated by very
limited process data in the biomanufacturing, in Section 2.2, the posterior distribution is used to quantify
the model risk and the posterior predictive distribution, accounting for stochastic uncertainty and model
risk, is used to generate the trajectories characterizing the overall prediction risk. Thus, in this paper, we
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focus on the model-based reinforcement learning with model risk so that we can efficiently leverage the
existing process knowledge, support online learning, and guide process dynamic decision making.

2.1 Model-Based Reinforcement Learning for Dynamic Decision Making

We formalize model-based reinforcement learning or Markov decision process (MDP) over finite horizon H
as (S ,A ,P,r,s1,H), where S is a set of states, s1 is the starting state, A is the set of actions. The process
proceeds in discrete time step t = 1,2, ...,H. In each t-th time step, the agent observes the current state
st ∈S , takes an action at ∈A , and observes a feedback in form of a reward signal rt+1 ∈ R. Moreover,
let πθθθ : S →A denote a policy specified by parameter vector θθθ ∈Rd . The policy is a function of current
state, at = πθθθ (st), whose output is action for deterministic policy or its selection probabilities for random
policy. For non-stationary finite horizon MDP, we can write πππθθθ = (π1

θθθ
, . . . ,πH

θθθ
).

Let P(st+1|st ,at ;ωωωc) represent the state transition model characterizing the probability of transitioning
to a particular state st+1 from state st . Suppose the underlying process model can be characterized by
parameters ωωωc. Let Dπππθθθ

Pωωωc (τττ) denote the probability distribution of the trajectory

τττ = τττ [1:H−1] ≡ (s1,a1,s2,a2, . . . ,sH−1,aH−1,sH)

of state-action sequence over transition probabilities parameterized by transition model P(st+1|st ,at ;ωωωc)
starting from state s1 and following policy πππθθθ . The bioprocess trajectory length H can be scenario-
dependent. For example, it can depend on the CQAs of raw materials and working cells. We write the
distribution of decision process trajectory as

Dπππθθθ

Pωωωc (τττ)≡ p(s1;ωωωc)
H−1

∏
t=1

π
t
θθθ
(at |st)p(st+1|st ,at ;ωωωc). (1)

Let R(τττ) denote the expected total reward for the trajectory (sample path) τττ starting from s1, i.e.,
R(τττ)≡∑

H−1
t=1 γ t−1rt(st ,at), where γ is the discount factor and the reward rt(st ,at) occurring in the t-th time

step depends on the state st and action at . Therefore, given the process model specified by ωωωc, we are
interested in finding the optimal policy maximizing the expected total reward,

πππ
?
θθθ (·|ωωω

c) = argmax
πππθθθ

µ
c(πππθθθ )≡ argmax

πππθθθ

E
τττ∼D

πππ
θθθ

P
ωωωc (τττ)

[
H−1

∑
t=1

γ
t−1rt

∣∣∣∣∣πππθθθ ,s1

]
. (2)

2.2 Model Risk Quantification and Bayesian Reinforcement Learning

However, the underlying process model is typically unknown and estimated by the limited historical real-
world data. Here, we focus on Bayesian reinforcement learning (RL) with model risk quantified by the
posterior distribution. We consider the growing-batch RL setting (Laroche and Tachet des Combes 2019).
The process consists in successive periods: In each p-th period, a batch of data is collected with a fixed
policy from distributed complex bioprocess, it is used to update the knowledge of bioprocess state transition
model, and then the policy will be updated for the next period. At any p-th period, given all real-world
historical data collected so far, denoted by Dp, we construct the posterior distribution of state transition
model quantifying the model risk, p(ωωω|Dp) ∝ p(Dp|ωωω)p(ωωω), where the prior p(ωωω) quantifies the existing
knowledge on bioprocess dynamic mechanisms. Since the posterior of previous time period can be the
prior for the next update, the posterior will be updated as new process data are collected. There are various
advantages of using the posterior distribution quantifying the model risk, including: (1) it can incorporate
the existing domain knowledge on bioprocess dynamic mechanisms; (2) it is valid even when the historical
process data are very limited, which often happens in the biomanufacturing; and (3) it facilitates online
learning and bioprocess knowledge automatic update.

At any p-th period, to provide the reliable guidance on the dynamic decision making, we need to consider
both process inherent stochastic uncertainty and model risk. Let µ(πππθθθ ) denote the total expected reward
accounting for both sources of uncertainty: µ(πππθθθ )≡ Eωωω∼p(ωωω|Dp)

[
E

τττ∼D
πππ

θθθ
Pωωω

(τττ)

[
∑

H−1
t=1 γ t−1rt |πππθθθ ,s1,ωωω

]]
, with
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the inner conditional expectation, µ̃(πππθθθ ;ωωω)≡ E
τττ∼D

πππ
θθθ

Pωωω
(τττ)

[
∑

H−1
t=1 γ t−1rt |πππθθθ ,s1,ωωω

]
accounting for stochastic

uncertainty and the outer expectation accounting for model risk. Therefore, given the partial information
of bioprocess characterized by p(ωωω|Dp), we are interested in finding the optimal policy,

πππ
?
θθθ (· |p(ωωω|Dp)) = argmax

πππθθθ

µ(πππθθθ )≡ argmax
πππθθθ

Eωωω∼p(ωωω|Dp)

[
E

τττ∼D
πππ

θθθ
Pωωω

(τττ)

[
H−1

∑
t=1

γ
t−1rt

∣∣∣∣∣πππθθθ ,s1,ωωω

]]
. (3)

3 GREEN SIMULATION ASSISTED REINFORCEMENT LEARNING WITH MODEL RISK

In this section, we present the green simulation assisted Bayesian reinforcement learning, which can
efficiently leverage the information from historical process trajectory data and accelerate the search for the
optimal policy. In Section 3.1, at each p-th period and given real-world data Dp, we derive the policy gradient
solving the stochastic optimization problem (3) and develop the likelihood ratio based green simulation to
improve the gradient estimation. Motivated by the metamodel study in Dong, Feng, and Nelson (2018), a
decision process mixture proposal distribution and the likelihood ratio based metamodel for policy gradient
are derived, which can reuse the process trajectories generated from previous experiments to improve the
gradient estimation stability and speed up the search for the optimal policy. In Section 3.2, we provide the
algorithm for proposed online green simulation assisted policy gradient with model risk.

3.1 Green Simulation Assisted Policy Gradient

At each p-th period and given real-world data Dp, we develop the green simulation based likelihood ratio to
efficiently use the existing process data and facilitate the policy gradient search. Conditional on the posterior
distribution p(ωωω|Dp), the objective of reinforcement learning is to maximize the expected performance
πππ?

θθθ
(· |p(ωωω|Dp)) = argmaxπππθθθ

µ(πππθθθ ). Based on eq. (3), we can rewrite the objective function,

µ(πππθθθ ) = Eωωω∼p(ωωω|Dp)

[
E

τττ∼D
πππ

θθθ
Pωωω

(τττ)

[
H−1

∑
t=1

γ
t−1rt

∣∣∣∣∣πππθθθ ,s1,ωωω

]]

=
∫ ∫ pωωω(s1)∏

H−1
t=1 πθθθ (at |st)pωωω(st+1|st ,at)

pω̄ωω(s1)∏
H−1
t=1 π

θ̄θθ
(at |st)pω̄ωω(st+1|st ,at)

pω̄ωω(s1)
H−1

∏
t=1

π
θ̄θθ
(at |st)pω̄ωω(st+1|st ,at)

H−1

∑
t=1

γ
t−1rt p(ωωω|Dp)dτττdωωω

= Eωωω∼p(ωωω|Dp)

[
E

τττ∼D
πππ

θ̄θθ
Pω̄ωω

(τττ)

[
pωωω(s1)∏

H−1
t=1 πθθθ (at |st)pωωω(st+1|st ,at)

pω̄ωω(s1)∏
H−1
t=1 π

θ̄θθ
(at |st)pω̄ωω(st+1|st ,at)

H−1

∑
t=1

γ
t−1rt |πππθθθ ,s1,ωωω

]]
.

= Eωωω∼p(ωωω|Dp)

[
E

τττ∼D
πππ

θ̄θθ
Pω̄ωω

(τττ)

[
Dπππθθθ

Pωωω
(τττ)

Dπππ
θ̄θθ

Pω̄ωω
(τττ)

H−1

∑
t=1

γ
t−1rt |πππθθθ ,s1,ωωω

]]
. (4)

The likelihood ratio Dπππθθθ

Pωωω
(τττ)/Dπππ

θ̄θθ

Pω̄ωω
(τττ) in eq. (4) can adjust the existing trajectories generated by policy πππ

θ̄θθ

and transition model p(st+1|st ,at ;ω̄ωω) to predict the mean response at the new policy µ(πππθθθ ).
Let k denote the accumulated number of iterations for the optimal search occurring in the previous p

periods. For notation simplification, suppose there is a fixed number of iterations in each period (say K).
At k-th iteration, we only generate one posterior sample ωωωk ∼ p(ωωω|Dp) to estimate the outer expectation
in eq. (4). For the candidate policy πππθθθ k , the likelihood ratio based green simulation is used to estimate the
mean response µ(πππθθθ k). It can reuse the process trajectories obtained from previous simulation experiments
generated by using the policies and state transition models (πππθθθ i ,ωωω i) with i = 1,2, . . . ,k. They are obtained
in previous p periods with different posterior distributions, i.e., p(ωωω|D`) with `= 1,2, . . . , p. Then, since
each proposal distribution is based on a single decision process distribution D

πππθθθ i
Pωωωi

(τττ) specified by (πππθθθ i ,ωωω i),
we create the green simulation individual likelihood ratio (ILR) estimator of µ(πππθθθ k),

µ̂
ILR
k,n ≡

1
k

k

∑
i=1

1
ni

ni

∑
j=1

D
πππθθθk
Pωωωk

(τττ(i, j))

D
πππθθθ i
Pωωωi

(τττ(i, j))

Hi j−1

∑
t=1

γ
t−1rt(a

(i, j)
t ,s(i, j)t )

 , τττ(i, j) i.i.d∼ D
πππθθθ i
Pωωωi
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where τττ(i, j) is the j-th sample path generated by using (πππθθθ i ,ωωω i) and n = (n1,n2, . . . ,nk) is the combination
of replications allocated at each (πππθθθ i ,ωωω i) for i = 1,2, . . . ,k. Since the process trajectory length is scenario-
dependent, we replace the horizon H with Hi j to indicate its trajectory dependence.

This expected total reward estimator µ̂ ILR
k,n can be used in the policy gradient to search for the optimal

policy. Under some regularity conditions, we provide the derivation for the policy gradient estimator.

∇θθθ µ̃(πππθθθ ;ωωω) = ∇θθθ Eτττ∼D
πππ

θθθ
Pωωω

[
H−1

∑
t=1

γ
t−1rt |πππθθθ ,s1,ωωω

]
=
∫

∇θθθ Dπππθθθ

Pωωω
(τττ)

[
H−1

∑
t=1

γ
t−1rt(st ,at)

]
dτττ

=
∫

Dπππθθθ

Pωωω
(τττ)∇θθθ log(Dπππθθθ

Pωωω
(τττ))

[
H−1

∑
t=1

γ
t−1rt(st ,at)

]
dτττ

=
∫

Dπππθθθ

Pωωω
(τττ)

H−1

∑
t=1

[∇θθθ log(πθθθ (at |st))+∇θθθ log(p(st+1|st ,at))]

[
H−1

∑
t=1

γ
t−1rt(st ,at)

]
dτττ

=
∫

Dπππθθθ

Pωωω
(τττ)

H−1

∑
t=1

[∇θθθ log(πθθθ (at |st))]

[
H−1

∑
t=1

γ
t−1rt(st ,at)

]
dτττ

= E
τττ∼D

πππ
θθθ

Pωωω

[
H−1

∑
t=1

∇θθθ log(πθθθ (at |st))

[
t−1

∑
t ′=1

γ
t ′−1rt ′(st ′ ,at ′)+

H−1

∑
t ′=t

γ
t ′−1rt ′(st ′ ,at ′)

]∣∣∣∣∣πππθθθ ,s1,ωωω

]

=
H−1

∑
t=1

Eτττ [1:t−1]

[
Eτττ [t:H−1]

[
∇θθθ log(πθθθ (at |st))

t−1

∑
t ′=1

γ
t ′−1rt ′(st ′ ,at ′)

∣∣∣∣∣τττ [1:t−1]

]∣∣∣∣∣πππθθθ ,s1,ωωω

]

+E
τττ∼D

πππ
θθθ

Pωωω

[
H−1

∑
t=1

∇θθθ log(πθθθ (at |st))
H−1

∑
t ′=t

γ
t ′−1rt ′(st ′ ,at ′)

∣∣∣∣∣πππθθθ ,s1,ωωω

]

= E
τττ∼D

πππ
θθθ

Pωωω

[
H−1

∑
t=1

∇θθθ log(πθθθ (at |st))
H−1

∑
t ′=t

γ
t ′−1rt ′(st ′ ,at ′)

∣∣∣∣∣πππθθθ ,s1,ωωω

]
(5)

= E
τττ∼D

πππ
θ̄θθ

Pω̄ωω

[
Dπππθθθ

Pωωω
(τττ)

Dπππ
θ̄θθ

Pω̄ωω
(τττ)

H−1

∑
t=1

∇θθθ log(πθθθ (at |st))
H−1

∑
t ′=t

γ
t ′−1r′t(st ′ ,at ′)

∣∣∣∣∣πππθθθ ,s1,ωωω

]
(6)

where eq. (6) holds due to similar derivation as eq. (4). Eq. (5) holds because

Eτττ [1:t−1]

[
Eτττ [t:H−1]

[
∇θθθ log(πθθθ (at |st))

t−1

∑
t ′=1

γ
t ′−1rt ′(st ′ ,at ′)

∣∣∣∣∣τττ [1:t−1]

]∣∣∣∣∣πππθθθ ,s1,ωωω

]

= Eτττ [1:t−1]

[
t−1

∑
t ′=1

γ
t ′−1rt ′(st ′ ,at ′)Eτττ [t:H−1]

[
∇θθθ log(πθθθ (at |st))|τττ [1:t−1]

]∣∣∣∣∣πππθθθ ,s1,ωωω

]
(7)

where
Eτττ [t:H−1]

[
∇θθθ log(πθθθ (at |st))|τττ [1:t−1]

]
=

H−1

∏
t ′=t+1

∫
πθθθ (at ′ |st ′)p(st ′+1|st ′ ,at ′)dat ′dst ′+1

∫
πθθθ (at |st)p(st+1|st ,at)∇θθθ log(p(st+1|st ,at)πθθθ (at |st))datdst+1

=
∫

p(st+1,at |st)∇θ logp(st+1,at |st)datdst+1, since p(st+1,at |st) = πθθθ (at |st)p(st+1|st ,at)

= ∇θθθ

∫
p(st+1,at |st)datdst+1 = ∇θθθ 1 = 0.

By plugging in eq.(6), the policy gradient becomes,
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∇θθθ µ(πππθθθ ) = ∇θθθ Eωωω

[
E

τττ∼D
πππ

θθθ
Pωωω

(τττ)

[
H−1

∑
t=1

γ
t−1rt

∣∣∣∣∣πππθθθ ,s1,ωωω

]]
= ∇θθθ Eωωω [µ̃(πππθθθ ;ωωω)] = Eωωω [∇θθθ µ̃(πππθθθ ;ωωω)]

= Eωωω

[
E

τττ∼D
πππ

θ̄θθ
Pω̄ωω

[
H−1

∑
t=1

∇θθθ log(πθθθ (at |st))
Dπππθθθ

Pωωω
(τττ)

Dπππ
θ̄θθ

Pω̄ωω
(τττ)

H−1

∑
t ′=t

γ
t ′−1r′t(st ′ ,at ′)

]]
. (8)

Then, we obtain the individual likelihood ratio based policy gradient estimator,

∇̂θθθ µ
ILR
k,n =

1
k

k

∑
i=1

1
ni

ni

∑
j=1

H−1

∑
t=1

∇θθθ log(πθθθ k(a
(i, j)
t |s(i, j)t ))

D
πππθkθkθk
Pωωωk

(τττ(i, j))

D
πππθθθ i
Pωωωi

(τττ(i, j))

H−1

∑
t ′=t

γ
t ′−1r′t(a

(i, j)
t ′ ,s(i, j)t ′ )

 . (9)

The importance weight or likelihood ratio D
πππθθθk
Pωωωk

(τττ)/D
πππθθθ i
Pωωωi

(τττ) is larger for the trajectories τττ that are
more likely to be generated by the policy πππθθθ k and transition probabilities Pωωωk . During the model learning
process, the current policy candidate πππθθθ k can be quite different from the policy πππθθθ i for i = 1,2, . . . ,k−1
that generated the existing trajectories. Although this importance weight is unbiased, its variance could
grow exponentially as the horizon H increases, which restricts their applications.

Since the likelihood ratio with single proposal distribution can lead to high estimation variance, inspired
by the BLR-M metamodel proposed in Dong et al. (2018), we develop the bioprocess Mixture proposal
distribution and Likelihood Ratio based policy gradient estimation (MLR), which allows us to selectively
reuse the previous experiment trajectories and reduce the gradient estimation variance. Specifically, at the
k-th iteration of search for optimal policy, we generate a posterior sample of process model parameters,
ωωωk ∼ p(ωωω|Dp). During the optimal policy search, if there are new process data coming, the posterior
will automatically update. The policy candidate πππθθθ k and transition probability model P(st+1|st ,at ;ωωωk)

uniquely define the trajectory distribution D
πππθθθk
Pωωωk

(τττ). Based on the historical trajectories generated during

the previous p periods, we create a mixture proposal distribution ∑
k
i=1 αk

i D
πππθθθ i
Pωωωi

(τττ), and then use it to construct
the likelihood ratio,

fk(τττ|θ̄θθ ,ω̄ωω)≡
D

πππθθθk
Pωωωk

(τττ)

∑
k
i=1 αk

i D
πππθθθ i
Pωωωi

(τττ)
(10)

where θ̄θθ = (θθθ 1, . . . ,θθθ k), ω̄ωω = (ωωω1, . . . ,ωωωk), αk
i =

ni

∑
k
i=1 ni

, and ni is the number of trajectories generated during

the previous i-th iteration with (θθθ i,ωωω i) for i = 1, . . . ,k. By replacing the likelihood ratio D
πππθθθk
Pωωωk

(τττ)/D
πππθθθ i
Pωωωi

(τττ)

in eq. (9) with fk(τττ|θ̄θθ ,ω̄ωω), the green simulation based policy gradient estimator becomes,

∇̂θθθ µ
MLR
k,n =

1
k

k

∑
i=1

1
ni

ni

∑
j=1

[
Hi j−1

∑
t=1

∇θθθ log(πθθθ k(a
(i, j)
t |s(i, j)t )) fk(τττ

(i, j)|θ̄θθ ,ω̄ωω)
Hi j−1

∑
t ′=t

γ
t ′−1rt ′(a

(i, j)
t ′ ,s(i, j)t ′ )

]
(11)

where τττ(i, j) i.i.d∼ D
πππθθθ i
Pωωωi

(τττ) with j = 1,2, . . . ,ni represent the trajectories generated in the previous i-th iteration.

Notice that the mixture proposal distribution based likelihoood ratio fk(τττ|θ̄θθ ,ω̄ωω) is bounded by 1/αk
i . In

this way, the mixture likelihood ratio puts higher weight on the existing trajectories that are more likely
to be generated by D

πππθθθk
Pωωωk

(τττ) in the k-th iteration without assigning extremely large weights on the others.
Since the parameterization plays an important role in the optimal policy gradient approach, we briefly

discuss several possible policy functions. The policy function in reinforcement learning can be either
stochastic or deterministic; see Silver et al. (2014) and Sutton and Barto (2018). The policy for discrete actions

could be defined as the softmax function, πθθθ (a|s)= eθθθT φ(s,a)

∑a′∈A eθθθT φ(s,a′) ,where φ(s,a)∈Rd is feature vector of state-

action pair (s,a). The gradient of the policy function is ∇θθθ log(πθθθ (a|s)) = φ(s,a)−∑a′∈A φ(s,a′)πθθθ (s,a′).
For continuous action spaces, we can apply Gaussian policy; say for example πθθθ (a|s) = N (θθθ T φ(s),σ2)
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for some constant σ , where φ(s) is feature representation of s. The gradient of the policy function is
∇θθθ log(πθθθ (a|s)) = ∇θθθ

−(a−θθθ T φ(s))2

2σ2 = θθθ T φ(s)−a
σ2 φ(s). In general, as long as the predictive models have a

gradient descent learning algorithm, they can be applied in our approach, such as deep neural network,
generalized linear regression, SVM, etc. In the empirical study, we considered a two-layer MLP model as
our policy function.

3.2 Optimal Policy Search Algorithm

Algorithm 1 provides the procedure for the green simulation assisted policy gradient approach to support
online learning and guide dynamic decision making.

Algorithm 1: Online Green Simulation Assisted Policy Gradient Policy with Model Risk
Input: the number of periods P for real-world dynamic data collection; the number of iterations K

for optimal policy search in each period; differentiable policy πθθθ (a|s), ∀a ∈A ,s ∈S ,θθθ ∈ Rd ;
and initial real-world data D1. Initialize the set of sample trajectories E1, the set of transition
model parameters ΩΩΩ1, and the set of policy parameters ΘΘΘ1 to be empty set.

for p = 1,2, . . . ,P (at each new real-world data collection point) do
for k = (p−1)K +1,(p−1)K +2, . . . , pK do

1. Generate posterior samples ωωωk ∼ p(ωωω|Dp) and build the transition model with new
parameter ωωωk, i.e., p(st+1|st ,at ,ωωωk) for t = 1,2, . . . ,H−1 ;

2. Generate nk trajectories by using the current policy πθθθ k and model parameter ωωωk;
for j = 1,2, . . . ,nk do

(a) Generate j-th episode τττ(k, j) = (s(k, j)1 ,a(k, j)1 ,s(k, j)2 ,a(k, j)2 , . . . ,s(k, j)H−1,a
(k, j)
H−1,s

(k, j)
H ) of

state-action sequence starting from initial state s(k, j)1 ∼ p(s1|ωωωk), interacting with
transition model s(k, j)t+1 ∼ p(st+1|s(k, j)t ,a(k, j)t ;ωωωk) and following policy

a(k, j)t ∼ πθθθ k(at |s(k, j)t ) for stochastic policy or a(k, j)t = πθθθ k(s
(k, j)
t ) for deterministic

policy;
end
3. Reuse the trajectories generated in current and all previous iterations to improve the
gradient estimation;

for i = 1,2, . . . ,k and j = 1,2, . . . ,nk do
Construct the mixture proposal distribution based likelihood ratio, fk(τττ

(i, j)|θ̄θθ ,ω̄ωω), by
using eq. (10).

end

4. Calculate the gradient ∇̂θθθ µ
MLR
k,n based on eq. (11) and update the policy:

θθθ k+1← θθθ k +ηk · ∇̂µ
MLR
k,n ;

5. Record new generated trajectories Ek+1 = Ek∪{τττ(k, j)| j = 1,2, . . . ,nk}, transition model
parameters ΩΩΩk+1 =ΩΩΩk∪{ωωωk} and policy parameters ΘΘΘk+1 =ΘΘΘk∪{θθθ k};

end
6. Collect new process real-world data Lp by following the estimated optimal policy
π̂?

θθθ k
(a|s) from Step (4). Then, update the historical data set Dp+1 = Dp∪Lp and the

posterior distribution p(ωωω|Dp+1).
end

At any p-th period, given the real-world data Dp collected so far, the model risk is quantified by the
posterior distribution p(ωωω|Dp), and then we apply the green simulation assisted policy gradient to search
for the optimal policy in Steps (1)–(4). Specifically, in each k-th iteration, we first generate the posterior
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sample for state transition probability model in Step (1), ωωωk ∼ p(ωωω|Dp), and then generate nk trajectories
by using the current policy πθθθ k and model parameter ωωωk in Step (2). Then, in Steps (3) and (4), we reuse
all historical trajectories and apply the green simulation-based policy gradient to speed up the search for
the optimal policy. After that, as new real-world data coming, we update the posterior of transition model
in Step (6), and then repeat the above procedure. In the empirical study, we use a fixed learning rate
ηk = 0.01. Notice that the proposed mixture likelihood ratio based policy gradient can be easily extended
to broader reinforcement learning settings, such as online, offline, and model-free cases.

4 EMPIRICAL STUDY

In this section, we study the performance of MLR using a biomanufacturing example. The upstream
simulation model was built based on a first-principle model proposed by Jahic et al. (2002) and the
downstream chromatography purification process follows Martagan et al. (2018). The empirical study
results show that MLR outperforms the state-of-the-art policy search and baseline model-based stochastic
gradient algorithms without BLR-M metamodel.

4.1 A Biomanufacturing Example

In this paper, we consider the batch-based biomanfucturing and use the stochastic simulation model built
based on our previous study (Wang et al. 2019) to characterize the dynamic evolution of biomanufacturing
process. A reinforcement learning model with continuous state and discrete action space is then constructed
to search for the optimal decisions on chromatography pooling window, which was studied by Martagan
et al. (2018). Instead of assuming that each chromatography step removes the uniformly distributed random
proportion of protein and impurity (Martagan et al. 2018), we let the random removal fraction following
Beta distribution with more realistic and flexible shape.

This biomanufacturing process consists of: (1) upstream fermentation where cells produce the target
protein; and (2) downstream purification to remove the impurities through multiple chromatography steps.
The primary output of fermentation is a mixture including the target protein and significant amount of
unwanted impurity derived from the host cells or fermentation medium. After fermentation, each batch needs
to be purified using chromatography to meet the specified quality requirements, i.e., purity concentration
reaching to certain threshold level pd . Since the chromatography typically contributes the main cost for
downstream purification, in this paper, we focus on optimizing the integrated protein purification decisions
related to chromatography operations or pooling window selection. To guide the downstream purification
dynamic decision making, we formulate the reinforcement learning for biomanufacturing process as follows.
Decision Epoch: Following Martagan et al. (2018), we consider three-step chromatography. During
chromatography we observe measurements and make decisions at each decision epoch T = {t : 1,2,3}.
State Space: The state st at any decision time t is denoted by the protein-impurity-step tuple st , (pt , it , t)
on the finite space P× I×T , where P≡ [0, P̄] and I≡ [0, Ī]. The state space P is bounded by a predefined
constant threshold P̄ due to limitation in cell viability, growth rate and antibody production rate, etc. The
state space I is bounded by a predefined constant threshold Ī following FDA process quality standards.
Action Space: Let at denote the selection of pooling window given the state ssst = (pt , it , t) at the time
t ∈T following a policy πθθθ (ssst). To simplify the problem, we consider 10 candidate pooling windows per
chromatography step here.
Reward: At the end of downstream process, we record the reward,

r(pt , it , t = 3) =


−c f , if rt < rd ,

r(pd), if rt ≥ rd , pt ≥ pd ,

r(pt)− cl(pd− pt), if rt ≥ rd , pt ≤ pd .

We set the failure cost c f = $48, the protein shortage cost cl = $6 per milligram (mg), the product price $5
per mg, r(pt) = $5× pt , the amount of purity percentage requirement pd = 8 mg, and the purity requirement
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rd ≥ 85%. The operational cost for each chromatography column is $8 for t ∈ 1,2,3 and r(pt , it , t) =−$8
for t ∈ {1,2}.
Initial State: The random protein and impurity inputs for downstream chromatography are generated with
the cell culture first-principle model, which is based on the differential equations with random noise. Here,
we consider a fed batch bioreactor dynamic model proposed by Jahic et al. (2002),

dX
dt

= (−F
V
+µ)X ,

dS
dt

=
F
V
(Si−S)−qsX , P = ν1X and I = ν2X (12)

where ν1 ∼N (0.11,0.012) and ν2 ∼N (0.11,0.012) denote the constant specific mAb protein production
and impurity rates, X denotes the biomass concentration from dry weight (gL−1), V = 1000 is medium
volume (L), Si ∼N (780,40) denotes inlet substrate concentration (gL−1), S is substrate concentration
(gL−1), qs,max = 0.57 is specific maximum rate of substrate consumption (gg−1h−1), qs = qs,max

S
S+0.1 is the

specific rate of substrate consumption (gg−1h−1), µ = (qs−qm) ·Yem is the specific growth rate (h−1) and
Yem = 0.3 is biomass yield coefficient exclusive maintenance and qm = 0.013 is maintenance coefficient
(gg−1h−1). The initial biomass and substrate is set to be (0gL−1,40gL−1). We set the total time of
production fermentation to be 50 days, and obtain p(u) mg of target protein and i(u) mg of impurity by
applying the PDEs in (12). After the harvest, we further add the noise, following the normal distribution
N (0,52), to account for the overall impact from other factors introduced during the cell production process.
Then, the protein p1 and impurity i1 inputs for downstream purification become p1 ∼N (p(u),52) and
i1 ∼N (i(u),52). Therefore, in the empirical study, this PDE first-principle model based simulation is used
to generate the random initial state or input s1 = (p1, i1,1) for downstream chromatography purification.
State Transitions: In each step of chromatography, the random proportions of protein and impurity will
be removed, which depend on the selection of pooling window at . In specific, given a pooling window,
each chromatography step removes random proportions of protein and impurity,

it+1 = (Ψt |at)it and pt+1 = (Ht |at)pt ,

where the fraction Ψt |at ∼ Beta(ψ l
t |at ,ψ

u
t |at) and Ht |at ∼ Beta(η l

t |at ,η
u
t |at) for all at ∈A and t ∈T . We

use the posterior distribution for model parameters ψ l
t |at ,ψu

t |at η l
t |at and ηu

t |at to quantify the model risk.
Here we use a uniform prior Unif(0,300) for all parameters and generate the posterior samples based on
MCMC using “PyMC3”.
Policy: We use a 2-layer perceptron (MLP) of D = 16 dimensional first layer and 10 dimensional output
layer with softmax activation function to parameterize our policy; see Section 11 in Hastie, Tibshirani,
and Friedman (2001) for more discussion. For 10 pooling window outputs, there are 10 units T` with
` = 1, . . . ,10 at the second stage, with the `-th unit modeling the probability of selecting action a` with
` = 1, . . . ,10. There are 10 pooling window candidate actions a`, ` = 1,2, . . . ,10, each being coded as
0-1 variable. The derived feature Zd depends on the linear combination of the input states s, and then the
output T` is modeled as a function of linear combinations of the Zd ,

Zd = Sigmoid(w0d +wT
d s),d = 1, . . . ,D,

T` = β0`+βββ
T
` Z, `= 1, . . . ,10

Prob(a`|s) ≡ MLP`(s) = g`(T), `= 1, . . . ,10 (13)

where Z = (Z1,Z2, . . . ,ZD), T = (T1, . . . ,T10), w = (w0d ,wT
d ),βββ = (β0`,βββ

T
` ). We can obtain the policy

parameters θθθ = (w,βββ ). The activation function is set to be sigmoid function, i.e., Sigmoid(x) = 1
1+e−x . The

output function g`(T ) allows a final transformation of the vector of outputs T, which is set to be softmax
functioon g`(T) = eT`

∑
10
`=1 eT`

.

345



Zheng, Xie, and Feng

4.2 Study the Performance of Green Simulation Assisted Policy Gradient

In this section, we compare the performance of proposed green simulation assisted policy gradient with
RL (MLR), individual likelihood ratio based policy gradient (ILR) and classical policy gradient (PG).

• Likelihood ratio based policy gradient with mixture proposal distribution (MLR): To reduce the
computation complexity, instead of reusing all previous iterations, we introduce a rolling window
parameter kr to control how many historical trajectories we use,

∇̂θθθ µ
MLR
k,n =

1
kr

k

∑
i=k−kr+1

1
ni

ni

∑
j=1

[
Hi j−1

∑
t=1

∇θθθ log(πθθθ k(a
(i, j)
t |s(i, j)t )) fk(τττ

(i, j)|θ̄θθ ,ω̄ωω)
Hi j−1

∑
t ′=t

γ
t ′−1rt ′(a

(i, j)
t ′ ,s(i, j)t ′ )

]
.

In the empirical study, we use the most recent kr = 10 iterations.
• Likelihood ratio based policy gradient with true transition model known (TLR),

∇̂θθθ µ
T LR
k,n =

1
kr

k

∑
i=k−kr+1

1
ni

ni

∑
j=1

[
Hi j−1

∑
t=1

∇θθθ log(πθθθ k(a
(i, j)
t |s(i, j)t )) fk(τττ

(i, j)|θ̄θθ ,ωωωc)
Hi j−1

∑
t ′=t

γ
t ′−1rt ′(a

(i, j)
t ′ ,s(i, j)t ′ )

]

=
1
kr

k

∑
i=k−kr+1

1
ni

ni

∑
j=1

[
Hi j−1

∑
t=1

∇θθθ log(πθθθ k(a
(i, j)
t |s(i, j)t ))

∏
H−1
t=1 πθθθ k(at |st)

∑
k
i=1 ∏

H−1
t=1 πθθθ i(at |st)

Hi j−1

∑
t ′=t

γ
t ′−1rt ′(a

(i, j)
t ′ ,s(i, j)t ′ )

]
,

where the last step holds because
pωωωc (s1)∏

H−1
t=1 πθθθk

(at |st)pωωωc (st+1|st ,at)

∑
k
i=1 pωωωc (s1)∏

H−1
t=1 πθθθ i (at |st)pωωωc (st+1|st ,at)

=
∏

H−1
t=1 πθθθk

(at |st)

∑
k
i=1 ∏

H−1
t=1 πθθθ i (at |st)

.

• Individual likelihood ratio based policy gradient (ILR): It is obtained based on Equation (9),

∇̂θθθ µ
ILR
k,n =

1
k

k

∑
i=1

1
ni

ni

∑
j=1

H−1

∑
t=1

∇θθθ log(πθθθ k(at |st))
D

πππθkθkθk
Pωωωk

(τττ(i, j))

D
πππθθθ i
Pωωωi

(τττ(i, j))

H−1

∑
t ′=t

γ
t ′−1r′t(a

(i, j)
t ′ ,s(i, j)t ′ )

 .
• Empirical policy gradient (PG): It uses the point estimator of state transition model parameter as

the true one,

∇̂θθθ µ
PG

=
1
ni

ni

∑
j=1

[
H−1

∑
t=1

∇θθθ log(πθθθ (at |st))
H−1

∑
t ′=t

γ
t ′−1r′t(a

(i, j)
t ′ ,s(i, j)t ′ )

]
.

Notice that in MLR, ILR, PG approaches, the underlying state transition model is unknown and estimated
by finite real-world data. In TLR, we assume the model is known.

Here we set the amount of real-world data m = 20 for chromatography operation. Fig. 1 shows the
convergence performance of MLR, TLR, ILR, and PG. The results are based on M = 5 macro replications. The
x-axis represents the iteration index k, and the vertical dash line indicates the time when the new real-world
process data are collected. Let rh(k) denote the average reward of the policy obtained from the k-th iteration in
the h-th macro replications, which is estimated by running rtest = 200 trajectories with the true state transition
model. The y-axis reports r̄(k) = 1

M ∑
M
h=1 rh(k). We also plot the 95% confidence band for each approach,

[r̄(k)−1.96×SE(r̄(k)), r̄(k)+1.96×SE(r̄(k))], where SE(r̄(k)) = 1√
M(M−1)

√
∑

M
h=1(rh(k)− r̄(k))2. Fig. 1

shows that MLR (red line) converges faster than PG and ILR. To better compare the performance of
candidate algorithms, we apply the common random numbers (CRNs) for each macro replication.

From Fig 1, we can see the algorithms have already converged after 400 iterations. We compare the
performance of policies obtained from MLR, PG and ILR based on the results from the last 100 iterations.

We record the sample mean µa =
1

100 ∑
500
k=401 r̄(k) and standard error SE = 1

10

√
1
99 ∑

500
k=401(r̄(k)−µa)2 in

Table 1. The results show that MLR tends to have better performance than both PG and ILR approaches.
When ni = 25 based on M = 5 macro replications, the average runtime for MLR is 53.0 mins (12.6

mins for updating posterior distribution and 40.4 mins for policy search). The average runtime for PG is
34.3 mins (12.9 mins for updating posterior distribution and 21.4 mins for policy search). The average
runtime for ILR is 50.1 mins (12.2 mins for updating posterior distribution and 37.9 mins for policy search).
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(a) ni = 50 (b) ni = 25

(c) ni = 10 (d) ni = 5

Figure 1: Convergence results of MLR, TLR, ILR and PG.

Table 1: Average reward estimated based on last 100 iterations for MLR, TLR, ILR and PG.
ni = 50 ni = 25 ni = 10 ni = 5

Mean SE Mean SE Mean SE Mean SE
MLR 2.23 0.10 3.25 0.09 3.07 0.09 2.92 0.11
TLR 2.75 0.10 3.14 0.09 3.08 0.09 2.83 0.11
PG 1.80 0.09 3.04 0.10 3.10 0.10 2.53 0.11
ILR 1.83 0.10 2.36 0.10 3.01 0.10 2.39 0.13

5 CONCLUSIONS
We propose a green simulation assisted policy gradient algorithm. It can reduce the policy gradient
estimation variance through selectively reusing the experiment data and automatically allocating more
weight to those historical trajectories that are more likely generated by the stochastic decision process
of interest. In addition, since we quantify the state transition probabilistic model risk with the posterior
distribution, our model-based reinforcement learning can simultanesouly support online learning and guide
dynamic decision making. Thus, the proposed approach is robust to model risk, and it can be applicable
to various cases with different amounts of real-world data and process dynamic knowledge. In this paper,
the empirical study of biomanufacturing example is used to illustrate that our approach can perform better
than the state-of-art reinforcement learning and policy gradient approaches.
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