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ABSTRACT

We study the problem of simulating a class of nonstationary spatio-temporal Poisson processes. The Poisson
intensity function is non-stationary and piecewise linear in both the time dimension and the spatial location
dimensions. We propose an exact simulation algorithm based on the inversion method. This simulation
algorithm adopts three advantages. First, the entire procedure involves only closed-form computation with
no need for numerical integration or numerical inversion of any function. Each step in the algorithm
only requires exact arithmetic operations. Second, the proposed algorithm is sample efficient, especially
compared to the thinning method when the maximum intensity value is much larger than the minimum
intensity value. Third, the algorithm generates arrivals sequentially, one at a time in ascending order, so
that they can be conveniently fed into real-time or online decision-making tools.

1 INTRODUCTION

A spatio-temporal point process is a random point field that models both temporal and spatial dispersions of
points. Each point represents the arrival of an event or an entity at a specific time and location. The arrival
time belongs to a time interval [0,7] (for example, an operational period); and the arrival location rests
within a set of spatial locations S C R? (for example, a region of interest). For any sub-space S; C S and
time sub-interval [r,#]] C [0,T], N (S; X [r1,¢]]) records the total number of arrivals whose arrival location
and arrival time fall into S; x [t;,7{]. A classical and widely used point process model is a Poisson process.
The non-stationary spatio-temporal structure is characterized by a non-negative Poisson intensity function
A(s,t) where s denotes location and 7 denotes time. For a spatio-temporal Poisson process, given any
SiCSand 0<t <t; <T, N(S x[t1,t]]) is Poisson distributed with mean parameter

E(N (51 % [11.]])) :/SESI /te[m”x(s,t)dsdz.

Moreover, if Sy X [t1,#1],82 X [t2,8}], ..., Sm X [tm,1,,] are m disjoint subsets of S x [0,7], the arrival counts
attributed to each subset N (S; x [t1,#{]) ,N (S2 X [t2,85]), ... ,N (Sp X [tm,1,,]) are independent.

The non-stationary spatio-temporal Poisson process (NSSTPP) is a popular model in applications with
time-varying arrival streams with heterogeneous geographical information. The Poisson assumption can
be justified when the point process is used to model arrivals that originate from many independent sources.
One theoretic support of the Poisson assumption is given by the Palm-Khintchine theorem, describing that
the superposition of a large number of independent point processes with small volumes can approximately
be viewed as a Poisson process (Heyman and Sobel 2004). Therefore, spatio-temporal Poisson processes
are especially suitable to model arrivals of entities if each one of them arrives at the system independent
of the others. The calling for a taxi or a ride-sharing service, for example, could be regarded as a Poisson
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process as passengers largely make their own decisions on when and where to use the service. The NSSTPP
also serves as a baseline model to add additional realistic features, such as a self-exciting feature and an
event-driven feature, which are not captured by the Poisson assumption. Our work makes the Poisson
process assumption and focuses primarily on the modeling and simulation of NSSTPPs.

In order to build a spatio-temporal Poisson point process model with time-varying and location-varying
intensity, we start by partitioning the space and the time interval into disjoint sub-spaces and sub-intervals.
The resolution of the partition typically depends on the application objective and the sensitivity to model
granularity. Once the partition is done, the simplest non-stationary intensity function is then given by
assigning the intensity value to be constant for a given sub-space over a given sub-interval of time. Such
a model is called a piecewise constant spatio-temporal intensity model. However, such an intensity model
seems aesthetically unreasonable, given its implausible discontinuities, and is likely to model poorly arrivals
that are close to the sub-interval boundaries and at locations that are close to sub-space boundaries. A
piecewise linear spatio-temporal intensity is a natural next step to consider that strikes a balance between
model granularity and model complexity. Specifically, for any given time ¢, the intensity function is linear
over each sub-space, and for any given location s, the intensity is linear over each time sub-interval. The
continuity of the intensity function, if desired, can be easily ensured in the time dimension, by connecting
the intensity value over boundaries of time sub-intervals (see Zheng and Glynn (2017)). However, the
continuity is not as straightforward to ensure over the boundaries of sub-space. In fact, not every type of
each sub-space partition allows a successful construction of a continuous piecewise linear intensity. In this
paper, we propose a specific triangulation partition of space. That is, we consider a smallest rectangle that
covers S and then divide the space into rectangular sub-regions based on the partition of the x-axis and y-axis,
and each rectangle is further partitioned into two adjacent right triangles sharing the same hypotenuse,
denoted as lower and upper right triangles. Given the triangulation partition of space, a spatio-temporal
piecewise linear intensity that is continuous in location can be fully determined by the intensity value on
the triangle vertices.

With a given partition of space and time and the piecewise linear intensity in hand, we propose an
efficient simulation algorithm based on the inversion method. The algorithm is designed by first sequentially
generating arrival times based on the integrated intensity over space. Then, conditional on each arrival time
generated, the location of that arrival is sampled according to the conditional probability density function
(p.d.f.) in space. The inversion method is used in both steps — simulating arrival times and simulating
arrival locations. The function inversions used in the algorithm all adopt closed-form representations that
require no numerical integration or numerical inversion of functions. We describe the algorithm details
and implement the algorithm with two simple numerical examples.

2 LITERATURE REVIEW

Poisson point processes are widely used to model the times at which arrivals enter a system. Common
examples include calls to a service center, clicks on a website, and the stream of photons from an optical
modulator. When the locations of arrivals are taken into consideration, especially in the areas of transportation
and the sharing economy, a spatio-temporal Poisson process is then required to construct the model. Other
application areas of Poisson process models include astronomy (Babu and Feigelson 1996), biology (Othmer
et al. 1988), ecology (Achcar et al. 2011) and wireless networks (Haenggi 2012). A Poisson process with
non-stationary intensities can appropriately capture the time-of-day and location-of-area effects, which may
be first-order features that impact system performances and decisions for a wide range of applications.
Different forms of intensities can be modeled to capture the non-stationarity. In Zhou et al. (2015), for
example, time-varying Gaussian mixture intensity models are modeled to predict the ambulance demand.
Other non-Poisson features such as the self-exciting behavior can be added on top of the standard Poisson
process models, which are popular in application areas such as seismology (Ogata and Zhuang 2006) and
criminology (Mohler et al. 2011), where a Poisson process is often regarded as a background random field.
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The algorithms of simulating Poisson processes can be generally classified into two categories: the
method of inversion and the method of thinning (see Pasupathy (2011) for a review). The thinning method
(see Lewis and Shedler (1979a) for reference) first generates a Poisson process with a simple intensity
function (a constant function, for example) that dominates the true underlying intensity function. Then,
each of the generated arrivals with time and location information is accepted with probability proportional
to the ratio of the associated intensity value divided by the dominating constant intensity value. The method
of thinning is particularly attractive and easy to implement when the intensity value is not changing much
over time and space, or if there is a simple majorizing function that dominates the underlying intensity
function. However, when the intensity exhibits heavy fluctuations in time and location, the thinning method
can be sample inefficient in the sense that a large proportion of the generated arrivals can be rejected. Using
a closely majorizing function helps mitigate this inefficiency. In fact, a widely used majorizing function
is a piecewise linear intensity function. In those cases, the use of the thinning method is based on first
efficiently simulating a Poisson process with a piecewise linear intensity, which is exactly the focus of our
paper.

The use of the inversion method (see Cinlar (2013)), alternatively, can be sample efficient where no
generated samples are rejected or wasted. However, the inversion method requires the cumulative intensity
function and its inversion to be tractable. When the Poisson process only has a temporal structure, popular
intensity models that are suitable for the inversion method include piecewise constant intensities (Bratley
et al. 1987; Harrod and Kelton 2006), piecewise linear intensities (Klein and Roberts 1984) and a handful
of other specific intensity models (Lewis and Shedler 1976; Lewis and Shedler 1979b; Chen and Schmeiser
1992). Numerical integration and numerical inversion are needed for more complicated intensity models.
When the Poisson process involves both temporal and spatial structure, it is less clear which models are
suitable for the use of inversion method, and, in particular, how to efficiently perform the inversion method.

Combinations of the inversion method and the thinning method are often jointly used to enhance
efficiency. When the Poisson process only has a temporal structure, a piecewise constant or piecewise
linear majorizing function is usually chosen to dominate the underlying intensity function. Then the
inversion method is first used to simulate a Poisson process whose intensity is given by the majorizing
function. Then the thinning method is used to accept or reject arrivals to generate a point process with the
desired intensity. See Liu et al. (2019), Lee et al. (1991), Bratley et al. (1987), Ross (2013) for reference.

When the Poisson process has both temporal and spatial structure, Saltzman et al. (2012) discuss
a simulation algorithm suitable for general multi-dimensional Poisson processes. Their idea is to first
project the Poisson process onto a lower dimension subspace. The use of projection allows the simulation
procedure to be split into two independent and simpler parts. First, the projected Poisson process (in the
lower dimension) is simulated according to an integrated intensity function that integrates out the other
dimensions. Then, the conditional p.d.f. given the arrival time is exploited to determine the coordinates
of arrivals in the other dimensions. Our algorithm uses the same philosophy by first simulating in the
time dimension and then in the space dimension. Given the piecewise linear intensity model in time and
location, both the integrated intensity function and the conditional p.d.f. are also piecewise linear. This
feature allows the use of the inversion method in both parts. In particular, our algorithm does not require any
numerical integration and numerical inversion of functions. All computation is closed-form and involves
only arithmetic operations.

3 METHOD
3.1 Model Description

We consider the time horizon of interest as [0, 7| and the space of interest as S. With a given partition of space
and time, we propose a continuous piecewise linear intensity function on S x [0, 7], such that the intensity
is linear over each sub-interval of time for a given location and is linear over each sub-space at a given time.
The continuity is ensured at the time sub-interval boundaries and the location sub-space boundaries. For the
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proper definition of continuity of the intensity function on the sub-space boundaries, the partition of space is
via triangulation. That is, each sub-space is a right triangle. Two adjacent right triangles share a hypotenuse
and two vertices. Without loss of generality, we take the view that the full space S C R? is a rectangle. (If
the real full space S is not a rectangle, we can always find a set of rectangles to cover S, and then constrain
the intensity to be zero on the excessive space.) Consider the following specific triangulation of S induced
by the two-dimensional grids. Set X = (xo,x1,...,xx) and Y = (yo,y1,...,Yys) as two vectors with ascending
real elements. The full space rectangle S has its four vertices given by (xo,y0), (x0,¥s), (xx, Y1), (Xk,¥0)-
Each subspace is a right triangle with vertices (xg,y;), (Xk+1,Yj) s (X, j41) of (X, ) s (Xk—1,¥7) » (Xks ¥ j—1)
for all the feasible j,k’s. There are in total 2/K right triangles partitioning S. Assume further that the time
interval is partitioned as 0 =59 < s1 < s < --- <s, =T. Denote the intensity value at vertex (xk,y J-,si)
as zx;; for 0 <k < K,0<j<J,and 0 <i< p. Next, we define a piecewise linear intensity function
that can be fully specified by the intensity values {z ;;}. The intensity A(x,y,t) for any given (x,y) € S,
0 <7 <T is fully determined by the z;;’s and is an affine function of the {z;;: all k, j,i}. Note that
for any (x,y,7) there must exist j,k,i such that

X E [Xe—1,X),Y € [Vj—1,¥)] 1 € [siz1,8i] .

Xp—X

If y<yjo1+j—yj-1) R (x,y) lies in the lower right triangular sub-space in the rectangle

[Xk—1,Xk] X [yj—1,y;], with triangle vertices (xx—1,¥j—1),(Xk,¥j—1),(xx—1,yj). Otherwise, (x,y) lies in the
upper right triangle with vertices (xt,y;), (x,yj—1), (xk—1,y;). The intensity of an arbitrary point (x,y) at
t is determined based on the coplanarity. We present the detailed derivation process in the supplement
document. Define

X — X — i
fir o (x,y) £ ke YT
R X—=Xp Y=Yy

Then, if (x,y) is contained in the lower right triangular sub-space, the intensity value is given by
A(x,y,t)

:fk,jfl,kfl,j(xay)l (k=1,Yj=158) + fret,jk=1,j=1 (V) A (X, ¥ j=158) + frmt,j—1 .k, j=1 (6, V) A (Xp—1,Yj51)
S j—1dk=1,j( ) + fim1,jk=1,j=1(,Y) + fimt1,j—1.k,j—1(X,¥) '

(1)
Otherwise, if (x,y) is contained in the upper right triangle, the intensity value is given by
A(x,y,1)
Stk 1555 0) + fjk 16 0)A (0 Y- 1,0) + fie1jik -1 (6 9)A (Y1) @)

Srj—1k,j () F+ frj—1,j(%Y) + fee1,jk, j—1(%,¥)

Note that in (1) and (2), the intensity value at (x,y,#) is specified as a linear interpolation of intensity
values at the points {(xg,y;,7)} where the {(xt,y;)} are vertices of some triangle sub-space. Then, for
any 0 <K <K,0<j <Jandt€[si_1,si,

I—Si—1

A (xk’>)7j’>t) =2z ji-1F (Zk/,j/,i _Zk’,j’,ifl) .

i i—1

Therefore, we have now established that A (x,y,7) is a closed-form linear function of the intensities at all
the sub-interval and sub-space vertices, namely {zk, jisall k, ji }
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3.2 Simulation Procedure

In this section, we present the simulation procedure of our model. Due to the page limit, we omit some of
the detailed derivations as well as closed-form representations for coefficients of Equation (A.1), Equation
(A.2) and Equation (A.3). These details and formulas can be found in the supplement document.

In order to simulate the spatio-temporal Poisson processes with a piecewise linear intensity function that
varies in both time and location, we first simulate the time epoch of each arrival, immediately followed by
the corresponding spatial location before the simulation of the next arrival. This approach is referred to as
projection (Saltzman et al. 2012). Two results for high-dimensional Poisson processes in Proposition 1 and
2 provide theory support, whose proofs could be referred in Saltzman et al. (2012). See also Proposition
4.3.1 and Proposition 4.10.1 of Resnick (1992) for further understandings of these propositions of Poisson
processes.

Proposition 1 Let N be a d-dimensional Poisson process defined on (aj,bi] x - -+ X (aq,by] with intensity
function A (z1,22,...,2z4-1,1). Let Ny be a sorted process that records the last coordinate of the realization
of N, then N; is a Poisson process supported on (ag4,b,] with intensity function

my(t) = A(z,1)dz.

/Ze(alvbl}x"'x(adlvbdl}
Proposition 2 Conditional on the last coordinate of an arrival epoch being ¢, the distribution for the other
coordinates has the probability density function given by

A(z1,22,-52a-1,1) /ma(t).

In our spatio-temporal setting, we treat the “last coordinate” described in Proposition 1 and Proposition
2 as time, and “the other coordinates” as the two coordinates indicating the spatial location of an arrival.
The first step is to sequentially generate the time coordinates of arrivals based on the inversion method.
The inversion method is based on the integrated intensity function as illustrated by Proposition 1 and the
associated cumulative integrated intensity. Specifically, the integrated intensity function denoted by m(r)
is obtained by integrating out the space dimensions of the underlying intensity,

P
m(t) = //l(x,y,t)dxdy =Y (aos+a2)I{t € (s/_1,8]} for each 1 €[0,T] (A.1)

s I=1
where ag;’s and a;;’s are closed-form functions of X = (xp,x1,...,xk), ¥ = (yo,y1,...,ys) and the

{zk7 i allk, j,i}. The detailed proof and the closed-form representation for the coefficients of Equa-
tion (A.1) are in the supplement document.

Proposition 3 The integrated intensity function m(t) is piecewise linear in time for ¢ € [0,7], as is shown
in Equation (A.1).

Recall that the inversion method heavily exploits the structure of the cumulative intensity function
(Klein and Roberts 1984). Using Proposition 3, the cumulative intensity function adopts the form of a
piecewise quadratic function, which allows closed-form inversion of the cumulative intensity function.
The details will be further discussed in Section 4. The inversion method permits sequential generation of
inter-arrival times between consecutive arrivals.

For i =1,2,..., upon the generation of the i-th arrival ordered in time, say, with arrival time ¢;, the
specific location is immediately sampled according to a conditional p.d.f. given ¢;. In fact, from Proposition
2, the location of an arrival occurring at #; is a random vector in space, independent of other arrivals, whose
conditional p.d.f. is given by p(x,y;t;) = A(x,y,t;)/m(t;).

Proposition 4 For any given 7, A(x,y,t)/m(t) as a function of location (x,y) is piecewise linear in the
space S. Specifically, if we denote Z{{‘J’.W” and Z{u]p Pl as the lower and upper right triangle respectively in
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the sub-rectangle [x;_,xx] X [yj—1,y;], the function is linear in each triangular sub-space and continuous
on the sub-space boundaries. The closed-form representation for the coefficients of p(x,y;t) are shown in
the supplement document.

The second step is then to simulate the location random vector of an arrival conditional on its arrival time
t. As this random vector (x,y) adopts a piecewise linear density function in space, the marginal cumulative
distribution function (c.d.f.) of each spatial coordinate is given by a piecewise cubic function. A proof can
be found in the supplement document. Although the inversion is harder than that of a piecewise quadratic
function, the closed-form inversion is available for the piecewise cubic function, permitting the efficient
use of the inversion method. In order to simulate the location random vector (x,y), the y-coordinate is first
simulated followed by the simulation of the x-coordinate. To simulate the y-coordinate, the conditional
marginal p.d.f. of y given ¢ is needed,

0

XK J
h(y:t) = / plr,yi)dr =Y (cosr + ey +e2y®) I{y € (—1, 3]} foreach y € yo,ys]  (A2)
A =1

which is a continuous piecewise quadratic function of y. The coefficients ¢, ¢1;; and ¢ ;;, are dependent
on [/ and ¢. To use the inversion method to generate the y-coordinate, the cumulative distribution function,
denoted by H(-;t), is needed. The c.d.f. H(-;7) is a continuous, piecewise cubic function, and the difficulty
of the inversion method lies in solving a cubic equation and identifying which one of the three roots
gives the valid y-coordinate quantity. The closed-form expression of the equation is determined by finding
7 e{1,2,...,J} that satisfies H (y;«_1;t) <U < H (yj+;t), where U ~ Uniform(0,1). Among the three
roots, there exists one and only one real root that is the valid y-coordinate because of the monotone
property of the c.d.f. Therefore, after solving the cubic equation when applying the inversion method, the
appropriate y-coordinate, denoted as y* is found by checking all three roots one after another to verify
whether y; | <y* <yj-. The detailed description is in Algorithm 2.

Once the y-coordinate is simulated, the conditional distribution for the x-coordinate given ¢ and y is
computed by the inversion method to generate the x-coordinate. The density function for this conditional
distribution is piecewise linear. The partition of sub-intervals is related to y. Suppose y;— 1 <y < yjs.

In each initial sub-interval [x;,x;11], a new point x, = %(Xk — Xxx—1) +x; is inserted to compose a
J = J
new partition of the x-dimension, denoted as V = (vo,vy,...,v2k), where vy, = x; and vy = x}c. The
conditional p.d.f. of x given ¢ and y is
2K
q(x;y,t) = p(x,y;t)/h(y;t) = Z (OOJW +Dl’1;y_r,x) I{x € (vi—1,v]} for each x € [xg,xk] (A.3)

=1

where 0¢,.,,’s and 01 ;.,,,’s are dependent on y, # and /. The last coordinate x* is generated by the inversion
method, with more details described in Algorithm 3 and supplement document.

In summary, the simulation procedure first sequentially generates arrivals in their time order. Upon the
generation of each arrival time, the simulation procedure generates the two-dimensional location information
one coordinate after the other. The inversion method with closed-form computations is used in the generation
of all time and location coordinates.

4 ALGORITHM

In this section, implementation details for the simulation algorithm are described. Recall that the first
step in the simulation procedure is to sequentially simulate the time epochs of arrivals according to the
integrated intensity

P
m(t) = / / A(x,y,0)dxdy = Y (ag,+ayt) I{t € (11,5} for each t € [0,T],
S =1
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which is a piecewise linear function in time. The inversion method is applied to sequentially generate the
inter-arrival times. Since the intensity function is piecewise linear, the corresponding cumulative intensity
function is piecewise quadratic.

Specifically, conditional on the (i — 1)st arrival time #;_;, the next arrival time #; as a random variable

satisfies ftfil m(t)dt Z —In(1 —U), where Z denotes equality in distribution, and U represents a uniform
random variable supported on [0, 1].

The subtlety of using the inversion method to simulate the next arrival time ¢ is caused by the sub-
interval boundaries. That is, #; and #,_; may be on different time sub-intervals, where the slopes of the
linear intensities are different. As introduced in Klein and Roberts (1984), to resolve this subtlety, an
auxiliary variable u; is introduced to represent the distance between #;_; and the endpoint of the present
sub-interval s;. The specific expression of u; is shown in the Algorithm 1. If the realization of the uniform
random variable U used in variate generation, denoted as u, satisfies u < uy, the next arrival time #; < sy,
while if u > wuy, t; > s;. For t; < sy, t; remains in the same sub-interval as #;_; and is derived by solving
a quadratic equation. Note that the parameters in the quadratic equation, a;;’s and ag;’s, have already
been evaluated in m(t), permitting a closed-form solution of the quadratic equation using the quadratic
formula. The detailed discussion of this equation is in the supplement document. For ¢; > sy, ; goes beyond
the current sub-interval where #;_; is in. Then, a new loop of the iterations begins by setting #;_| = s
and u = (u—ug) /(1 —ug). In the new loop, after the auxiliary variable u; is obtained, u and uy, | are
compared to decide whether #; exceeds the right-side boundary of the new sub-interval. The algorithm
details are shown in Algorithm 1 for the generation of #; based on #;,_;. The algorithm stops if the generation
of next arrival time exceeds the overall time horizon 7.

Algorithm 1 Generating arrivals in the time dimension
Input: The partition of time period, 0 = s < 51 <,...,<s, = T; The sequence of slopes and intercepts
of m(t), ar;’s and ag;’s; The epoch of current arrival, #;_1; The current index of the sub-interval, k;

Output: The occurrence time of the next arrival, #;

: Obtaining u ~ Uniform(0, 1);

: Compute up = 1 —exp [— (a17k/2) (S% —liz_l) — ok (Sk — i1 )] "

. if u < uy then

if a; # 0 then

1
2
3
4
5: ti = <—ao7k + \/Cl(z)’k + a%,ktiz—l +2ay gaoti-1 — 2a17k1n(1 — u)) /ClLk
6
7
8
9

else
i =1t —ln(l — M)/a()’k
end if
. else
10: u=(u—uy)/(1—u)
11: ti—1 = Sk
12: k=k+1
13: end if
14: Go back to step 2;
15: return t;;

Conditional on the the arrival time ¢ of any simulated arrival, recall that the location of this arrival
is a random vector that has probability density given by p(x,y;t) = A(x,y,t)/m(t) at location (x,y). The
algorithm first generates the y-coordinate, described in Algorithm 2.

Once the y-coordinate of the arrival is simulated, the algorithm then simulates the random variable
representing the x-coordinate. The conditional density of this random variable given ¢ and y adopts a
piecewise linear form, with 2K pieces. The boundaries of these 2K pieces have closed-form representations.
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Algorithm 2 Simulating the spatial coordinate y* given the arrival time ¢

Input: The joint p.d.f. p(x,y;r) of x and y conditional on ¢;
Output: The y-coordinate of the given epoch, y*;
1: Obtain the piecewise quadratic probability density function of y,

XK J
h(y;t) = / pryit)dx =Y (coss + criay + c2,0°) I{y € (yi—1, 1]} for each y € [yo,y,]:
X =1

0

: Cr = —(5e2,1403 + 31,1493 + €0,1450);
for each [ € {1,...,J—1} do
Cri1 = 3(c2 — 2051:)Y; + 3 (et — 1 p41:0)¥7 + (€005 — Coup130)1 +Cis
end for
Obtain u ~ Uniform(0,1);
J=1
while u > %c;j*;;y?* + %C]J*;,y%* +c¢o,j 1y +Cj+ do
=i+
end while
: Solve the cubic equation:

R e A T

—_ =
—_ O

32y F 5y F oy +Cp —u=0

12: Determine the only root y* that satisfies the requirement among the three roots by checking

yir—1 <y <y

13: return y*;

Therefore, the simulation of the x-coordinate also adopts the use of the inversion method, based on a piecewise
quadratic cumulative distribution function. The detailed algorithm to simulate the x-coordinate is described
in Algorithm 3. Now with Algorithm 1, Algorithm 2 and Algorithm 3 in hand, the arrivals are simulated
sequentially in time and the location of each arrival is immediately simulated before the simulation of next
arrival. The algorithm for the complete simulation procedure is shown in the supplement document. We
have written a Python code implementation that is available online, see here.

5 NUMERICAL EXAMPLE

In this section, we implement our simulation algorithm with a simple given piecewise linear intensity function
as an illustration. Consider the space S = [0.5,5] x [1, 6] and the time horizon [0,3]. Adopting the notation
in Section 3, the partition of the space is given by X = (xo,x1,x2) = (0.5,2,5), Y = (yo,y1,y2) = (1,3,6).
The partition of time is #o = 0,#; = 1, = 3. The intensity value z j; at each vertex (xx,yj,s;) is

20,00 = 3,20,1,0 = 1,202,0 = 1,21,00 = 2,21,1,0 = 30,2120 = 2,22,00 = 0.2,22,1,0 = 0.3,2220 = 0.1
20,01 = 1,z0,1,1 = 3,202,101 = 12,2101 = 1,z1,1,1 = L,2121 =0.1,2201 = 1,221,1 = 3,222,1 =2
2002 =20,z0,12 = 12,2002 = L,z102 = 1.8,21,12 = 9,2122 = 1, 2202 = 2,22,12 = 100,222 > = 1.

Once the intensity value at each vertex is given, the piecewise linear intensity function at any time and
location is fully specified by Equation (1) and Equation (2). The simulation procedure is implemented to
generate N = 1000 independent realizations of the process, including a total number of arrivals at the level
of 600000.
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Algorithm 3 Simulating the spatial coordinate x* given ¢ and y

Input: The joint p.d.f. p(x,y;?) of x and y conditional on #; The y-coordinate of the given arrival and the

associated sub-interval, y € [y;«_1,y;+]; The marginal p.d.f. h(y;z) of y given ;

Output: The x-coordinate of the given arrival, x*;

1:

13:

14:

Obtain the new partition for the x-dimension based on y:

[XOVXIIL [xll ,X]], [xlvx,Z]a Ty [folax/K]a [xll(axK]

Y=Yi*-1

[ (xx — xk—1) + x, and renaming the partition as [vo,vi],- -, [vak—1,Vv2k] for conve-
J J"

where x| =
nience;

: Obtain the piecewise linear probability density function conditional on y:

2K

q(xy,1) = p(x,yit) [h(ys1) = Y (00,150 +011,0%) T{x € (vi—1,wi]} for each x € [xo,xx];
I=1

Dy = _(%Dl,l;y,tx(% +00,1;y,tx0)
for each / € {1,...,2K—1} do
D1 = 5011y — 01 4129, )VF + (00,1590 — D045 133¢ )V + D
end for
Obtain u ~ Uniform(0, 1);
k=1
while u > G(v+) = %017](*;”1/]%* + 00,42y, Vir + Dy do
kK =k*+1;

: end while
: Solve the quadratic equation

1
ialvk* ;y,tx2 + 00,4, X + D —u = 0;
Determine the only root x* that satisfies the requirement among the two roots by checking

X1 <X < Xpers

return x*

In the second example, the space is S = [1,5] x [2,9] and the time interval is [0,3]. The partition of

space is X = (xo,x1,x2) = (1,3,5),Y = (y0,¥1,)2) = (2,3,9) and the partition of time is ) = 0,1, = 0.5,1, =
1,13 =1.5,14 = 2,15 = 3. The intensity value at each vertex (x¢,y;,si), 2,j,i i

20,0,0 = 5,20,1,0 = 1,202,0 = 1,21,00 = 2,21,1,0 = 0,2120 = 2,22,00 = 0.2,22,1,0 = 0.3,22 20 = 10
20,01 = 1,z0,1,1 = 3,202,1 = 60,2101 = 1,z1,1,1 = 1,2121 = 0.1,2001 = 1,221,1 = 3,202,1 =2
2002 =0,2012=12,2002=1,2102=18,2112=9,2122 = L,2202 =2,22120 = l,2202 =1
2003 = 5,20,13 = 1,2023 = 1,2103 = 2,2113 = 30,2123 = 2,2203 = 2,22,13 = 3,2223 = 0.1
2004 = 1,20,14 =3,2024 = L,z104 = 1,z114 = 1,2124=0.1,2204 = 1,221 4 = 3,2224 =2
20,0,5 = 200,20,15 = 1.2,2025 = 1,2105 = 1.8,21,15 = 9,2125 = 1,205 = 2,2215 = L, 2005 = 1.

For the second experiment, N = 1000 independent realizations of the process are generated, including a
total number of arrivals at the level of 400000.
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Denote the cumulative intensity over time horizon [0, 7] as A(x,y) = f¢ A(x,y,¢)dr and recall that the
integrated intensity over space is given by m(t) = [[¢A(x,y,t)dxdy. For both experiments, we plot in
Figure 1 and Figure 5 the true cumulative intensity A(x,y) and in Figure 2 and Figure 6 the histogram
generated by simulated samples. Specifically, this histogram records the spatial distribution of all simulated
arrivals aggregated over time. We also plot in Figure 3 and Figure 7 the integrated intensity m(z) and in
Figure 4 and Figure 8 the histogram generated by simulated samples recording the temporal distribution
of all simulated arrivals aggregating over space.

Figure 1: The plot of A(x,y) for the first experiment Figure 2: Histogram for the first experiment in the
in the space dimension. space dimension.

Figure 3: The plot of m(¢) for the first experiment Figure 4: Histogram for the first experiment in the
in the time dimension. time dimension.

Figure 5: The plot of A(x,y) for the second exper- Figure 6: Histogram for the second experiment in
iment in the space dimension. the space dimension.

In comparison, we also implement a thinning method to generate the same arrival processes in both
experiments by first generating a spatial-temporal Poisson process with a constant intensity function. The
constant is equal to the maximum value of the given nonstationary intensity model. Then, each arrival is
accepted with probability proportional to the intensity value at that arrival point.
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Figure 7: The plot of m(¢) for the second experiment Figure 8: Histogram for the second experiment in
in the time dimension. the time dimension.

We record the computation time of both the inversion method (our approach) and the thinning method.
All execution times are based on running Python on a 2.6 GHz Intel Core i5 MacBook Air. We find
that the computer time per 10000 arrivals using the inversion method is around 3 seconds. The computer
time per 10000 arrivals using the thinning method is around 0.2/r seconds in which r is the acceptance
rate. In the first experiment, the acceptance rate r is 9.68%, and in the second experiment, r is around
2.6%. In conclusion, when the intensity function is relatively stationary in time and space, which indicates
a close-to-one value of r, the thinning method performs better than the inversion method on efficiency.
When the intensity function changes significantly in either time or location, indicating a small r, the
inversion method (our approach) has advantage in terms of sample efficiency. In the application of taxi and
ride-sharing services, for example, the arrival intensity of the peak hours can be significantly larger than
the intensity of the off-peak hours. The arrival intensity at popular locations (airports, stadiums, etc.) can
be much higher than the intensity at regular residence neighbors. Due to the significant difference between
the peak and average intensities, the associated acceptance rate r could be even smaller than 0.1%. Our
simulation algorithm may be more advantageous in these scenarios.

6 CONCLUSION AND FUTURE WORK

In this work, we propose an inversion-method based simulation procedure for a class of nonstationary
spatio-temporal Poisson processes. When the Poisson intensity function is specified by a piecewise linear
function in both space and time, the proposed simulation procedure involves only closed-form computation
with no need for numerical integration of numerical inversion of any function, therefore rendering the
efficiency. For future work, we are working on efficient estimation procedures and their statistical guarantees.
Other potential future work include developing efficient space partition procedures, generalizing the two-
dimensional space into a multi-dimensional space to incorporate additional features that are attached to
each arrival, and extending the Poisson process model by adding non-Poisson features such as doubly
stochasticity and self-exciting dynamics.
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