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ABSTRACT

We study a ranking and selection problem with exponential sampling distributions. Under a Bayesian
framework, we derive the posterior distribution of the performance parameter, and provide a normal
approximation for the posterior distribution based on a central limit theorem to efficiently learn about the
performance parameter. We formulate dynamic sampling decision as a stochastic control problem, and
propose a sequential sampling procedure, which maximizes a value function approximation one-step ahead
and is proved to be consistent. Numerical results demonstrate the efficiency of the proposed method.

1 INTRODUCTION

Ranking and selection (R&S) has been widely studied in simulation optimization field (see Bechhofer
et al. 1995; Powell and Ryzhov 2012). The objective is to select the alternative with the largest mean
performance from finite k alternatives:

〈1〉 ∆
=arg max

i=1,2,··· ,k
µi ,

where µi, i = 1,2, · · · ,k is the unknown mean performance of each alternative i, which can be estimated
by Monte Carlo simulation under a finite sampling budget constraint T .

The unknown performance of each alternative µi is estimated by independent and identically distributed
(i.i.d.) simulation replications Xi,`, ` ∈ Z+, i = 1,2, · · · ,k. Simulation replications of different alternatives
are often assumed to be independent, i.e., f (·;θ) = ∏

k
i=1 fi (·;θi), where f (·;θ) is the joint density of

(X1,`,X2,`, · · · ,Xk,`) with θ ∈ Θ containing all unknown parameters in the joint distribution, and fi (·;θi)
is th density of Xi,` with θi ∈ θ containing all unknown parameters in the marginal sampling distribution
of alternative i. In the classic R&S problem, the normal sampling distribution is predominantly assumed,
i.e., Xi,` ∼ N

(
µi,σ

2
i
)
, ` ∈ Z+, i = 1,2, · · · ,k. In the case where the sampling distribution is not normal, the

normal assumption can be justified by batching (Chen and Lee 2011).
How to allocate the simulation replications among k alternatives for efficiently selecting the best

alternative is the key problem in the R&S problem. The indifference zone (IZ) paradigm is well-researched,
which guarantees a probability of correct selection (PCS) up to a certain probability level (see Bechhofer
1954; Rinott 1978; Kim and Nelson 2001; Ni et al. 2017). The optimal computing budget allocation
(OCBA) (Chen et al. 2006; Chen et al. 2000; Peng et al. 2016) is a sampling allocation procedure
whose goal is to enhance the efficiency for finding the best alternative by intelligently allocating simulation
replications based on the (posterior) mean and variance information. Recently, Peng et al. (2018) formulate
the sequential allocation problem as a stochastic control problem, and a dynamic allocation procedure that
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maximizes a value function approximation (VFA) one-step ahead is proved to achieve an asymptotically
optimal sampling ratio of PCS for selecting the best under the normal assumption.

Many sequential sampling procedures (Gao et al. 2017; Peng and Fu 2017; Shin et al. 2018; Chen and
Ryzhov 2019b) are derived to achieve a static sampling ratio with certain desirable asymptotic properties
such as optimizing the large deviations rate of PCS in Glynn and Juneja (2004), which offer no theoretical
support for the finite sample performance. In classic R&S problems where the objective is to select the
alternative with the optimal mean from alternatives following normal sampling distributions, the sequential
sampling procedure derived in such a way to achieve desirable asymptotic properties could be an efficient
sampling allocation policy, because the mean-variance tradeoff happens to lead to a good sampling allocation
policy in certain scenarios. However, this is not always the case in general settings. Recently, Shin et al.
(2016) report the poor finite-time performance of sequentially implementing the asymptotically optimal
sampling ratio for selecting the best quantile under some particular distributions. In Peng et al. (2015) and
Peng et al. (2018), there are examples where the mean-variance tradeoff could lead to misleading results
in a certain low-confidence scenario (i.e., differences between competing alternatives are small, variances
are large, and the simulation budget is relatively small), which highlights a significant difference between
the asymptotic property and finite-sample property for a sampling procedure.

In this work, we assume simulation replications for each alternative follow an exponential distribution,
i.e., Xi,` ∼ E (λi), i = 1,2, · · · ,k. The sojourn time in a stationary M/M/1 queueing model follows an
exponential distribution (Shortle et al. 2018), and other application background related to the exponential
sampling distribution contains product life in reliability engineering (Romeu 2003). Compared with the
classic R&S problem with the normal assumption, the literature on the R&S problem with exponential
sampling distributions is relatively scarce, with a few exceptions including Gao and Gao (2016), which
proposed an sampling procedure called OCBA-exp under an exponential assumption, and Chen and Ryzhov
(2019a), which proposed a sampling procedure called BOLD under more general sampling distributions.
Both methods are derived to achieve the optimal large deviations rate of PCS without a theoretical support
on the finite-sample performance.

Our work focuses on developing an efficient sequential sampling procedure for finding the best alternative
among alternatives following exponential sampling distributions. Under a Bayesian framework, we derive
the posterior distribution of a performance parameter, i.e., the reciprocal of the mean, and provide a normal
approximation for the posterior distribution based on a central limit theorem to efficiently learn about the
performance parameter. We formulate the dynamic sampling decision as a stochastic control problem,
and propose a sampling procedure called dynamic allocation for exponential distribution (DAED), which
maximizes a VFA one-step ahead. The proposed DAED has a theoretical support on the finite-sample
performance in derivation, and it is proved to be consistent as the simulation budget goes to infinity. In
numerical experiments, our method has an edge over OCBA-exp and BOLD when the number of alternatives
is relatively large and the simulation budget is relatively small. Moreover, the numerical results demonstrate
that the sampling procedure with asymptotic optimality may perform poorly under finite simulation budget,
and the desirable asymptotic properties of OCBA-exp and BOLD are inadequate to explain their good
finite-sample performance.

The rest of the paper is organised as follows. Section 2 formulates the proposed problem. The Bayesian
and stochastic control framework are introduced in Section 3. The value function approximation and
dynamic allocation scheme are proposed in Section 4, and Section 5 provides numerical results. The last
section concludes the paper.

2 PROBLEM FORMULATION

Among k alternatives with unknown mean µi, i = 1,2, · · · ,k, our objective is to find the best alternative:

〈1〉 ∆
=arg max

i=1,2,··· ,k
µi ,
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where 〈i〉, i= 1,2, · · · ,k are indices ranked by their performances such that µ〈1〉> µ〈2〉> · · ·> µ〈k〉, and each
µi is estimated by Monte Carlo simulation. Let T be the total number of simulation budget and Xi,` be the
`-th replication for alternative i, which follows an independent exponential distribution, i.e., Xi,` ∼ E (λi),
where λi is the unknown rate parameter and µi = 1

/
λi, i = 1,2, · · · ,k. Then the best alternative with the

highest unknown mean can also be expressed by

〈1〉 ∆
=arg min

i=1,2,··· ,k
λi .

At the t-th step, the sampling policy At (Et−1)∈ {1,2, · · · ,k} allocates the t-th replication to an alternative
based on posterior information Et−1 collected throughout (t−1) allocated samples. The information set
Et contains all sample observations and prior information ζ0. Under a Bayesian framework, the selection
decision at the t-th step 〈1〉t can be the alternative with the smallest posterior estimate of λi, i = 1,2, . . . ,k.
Correct selection means the selected alternative is the best alternative, i.e., 〈1〉t = 〈1〉, and the posterior
PCS for selecting the best alternative can be expressed as

PCSt = Pr{〈1〉t = 〈1〉|Et}

= Pr{
⋂

j=2,3,··· ,k

(
λ〈1〉t < λ〈 j〉t

)
|Et}.

Similar to that in Peng et al. (2018), the dynamic sampling decision can be captured by a stochastic
control problem with state Et , action At+1 for 0≤ t < T , transition Et →{Et ∪Xi,t+1}, and given a sampling
policy AT (·) = (A1 (·) , · · · ,AT (·)), the expected reward/cost can be defined recursively by

VT (ET ;AT (·)), E [1(〈1〉T = 〈1〉)|ET ]

= Pr
(

λ〈1〉T < λ〈 j〉T , j ∈ {2,3, · · · ,k}
∣∣ET
)
,

which is a posterior integrated PCS (IPCS) and 1{·} is an indicator function that equals to 1 if the event
in the bracket is true, and for 0≤ t < T ,

Vt (Et ;AT (·))
∆
=E [Vt+1 (Et ∪{Xi,ti+1} ;AT (·))|Et ]|i=At+1(Et)

,

where ti denotes the number of simulation replications allocated to the i-th alternative after allocat-

ing t simulation replications, i.e., ti =
t
∑
j=1

Ai, j (E j−1), i = 1,2, · · · ,k. We have the information set Et =

{ζ0,X
(t1)
1 ,X (t2)

2 , · · · ,X (tk)
k }, where X (ti)

i = (Xi,1,Xi,2, · · · ,Xi,ti). Then, the optimal sampling policy is well
defined by

AT
∗ (·) ∆

=arg max
AT (·)

V0 (ζ0;AT (·)) ,

where ζ0 contains all hyper-parameters for the parametric family of the prior distribution. In principle,
the optimal sampling policy in the stochastic control problem can be solved by backward induction, but it
suffers from curse-of-dimensionality. To avoid this issue, we adopt an approximate dynamic programming
(ADP) scheme, which makes dynamic decisions based on a VFA and keeps learning it with decisions
moving forward (see Powell 2007).

3 POSTERIOR ESTIMATES

We use a Bayesian rule to obtain posterior estimates of the unknown parameters λi, i = 1,2, · · · ,k. We
introduce the conjugate prior for the exponential sampling distribution, which is a Gamma distribution
Gamma(α(0)

i ,β
(0)
i ) with density fi(λi;α

(0)
i ,β

(0)
i ), where

fi (λi;αi,βi) =
βi

αi

Γ(αi)
λ

αi−1
i e−βiλi , λi ∈ (0,∞) , αi,βi > 0 ,
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and Γ(αi) is a gamma function defined by

Γ(α)
∆
=
∫

∞

0
zα−1e−zdz.

By conjugacy, the posterior distribution of λi is Gamma(α(t)
i ,β

(t)
i ), where

α
(t)
i = α

(0)
i + ti ,

and

β
(t)
i = β

(0)
i +

ti

∑
j=1

Xi, j = β
(0)
i + tiX̄

(t)
i .

In addition, α
(t)
i > 1 implies that fi (λi;αi,βi) has a unimodal but skewed shape and the skewness

reduces as the value of α
(t)
i increases. The posterior mean is α

(t)
i

/
β
(t)
i and the posterior variance is

α
(t)
i

/
(β

(t)
i )2.

Denote the prior information set as ζ0 = {α(0)
i ,β

(0)
i , i = 1,2, · · · ,k} and the posterior hyper-parameters

set at each step as ζt = {α(t)
i ,β

(t)
i , i = 1,2, · · · ,k}. Notice that the dimension of the state space Et grows

as the step grows. However, by conjugacy, the sample information set Et can be completely determined
by the posterior hyper-parameters α

(t)
i and β

(t)
i . Then the dimension of the state space is the dimension of

the hyper-parameters, which is fixed at any step.
Remark 1 In most existing allocation procedures, the estimated performance for alternative i at step t can
be expressed as X̄ (t)

i = ∑
ti
j=1 Xi, j

/
ti, which is the sample mean. Although X̄i is an unbiased estimator of µi,

1
/

X̄i is not an unbiased estimator of λi, while the bias λi
/

ti converges to 0 as ti→ ∞ (see Johnson et al.

2002). The estimated performance X̄ (t)
i follows an Erlang distribution Erlang(ti, tiλi), which is a special

Gamma distribution Gamma(ti, tiλi) with a probability density fi(X̄
(t)
i ; ti, tiλi).

Since the Gamma distribution is not closed under linear operations, which would cause a difficulty in
calculating the posterior PCS, we use normal distribution N(τ

(t)
i ,(σ

(t)
i )2), i = 1,2, · · · ,k to approximate the

posterior distribution of λi, i = 1,2, · · · ,k where

τ
(t)
i = α

(t)
i

/
β
(t)
i , and (σ

(t)
i )2 = α

(t)
i

/
(β

(t)
i )2.

The Gamma(αt ,βt) where αt = α0t and βt = β0t with t,α0 ∈ Z+ and β0 > 0 is proved to converge in
distribution to a normal distribution as t→ ∞ in the following theorem.
Theorem 1 As t→ ∞,

√
t
(

Yt −
α0

β0

)
d→N

(
0,

α0

β 2
0

)
,

where Yt ∼ Gamma(αt ,βt), αt ∈ Z+, and
d→ denotes convergence in distribution.

Proof. Note that Gamma(n,λ ) can be represented as the sum of n independent and identically distributed
exponential random variates with rate parameter λ . Then let Yt = ∑

αt
i=1 χi, where χi ∼ E (βt). By a central

limit theorem, we have
√

αt

(
1
αt

Yt − 1
βt

)
√

1
β 2

t

d→N (0,1) as t→ ∞.
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With αt = α0t and βt = β0t, we have

√
t
(

β0√
α0

Yt −
√

α0

)
d→N (0,1) as t→ ∞ ,

which implies that
√

t
(

Yt − α0
β0

)
d→N

(
0, α0

β 2
0

)
as t→ ∞.

The asymptotic result in Theorem 1 justifies the asymptotic normality of Gamma(α(t)
i ,β

(t)
i ). In practice,

normal approximation to gamma distribution performs well when α
(t)
i > 30 (see Tsokos 2012). Therefore,

we use normal distribution N(τ
(t)
i ,(σ

(t)
i )2) to approximate the posterior distribution of λi. Then the posterior

hyper-parameters set at each step becomes ζt = {τ(t)
i ,(σ

(t)
i )2, i = 1,2, · · · ,k}, and the information set Et

can be completely determined by the posterior hyper-parameters τ
(t)
i and (σ

(t)
i )2.

4 DYNAMIC SAMPLING POLICY

With the normal approximation for the posterior distribution of the performance parameters, the joint
distribution of vector (

λ〈2〉t −λ〈1〉t ,λ〈3〉t −λ〈1〉t , · · · ,λ〈k〉t −λ〈1〉t
)
,

follows a joint normal distribution with mean vector(
τ
(t)
〈2〉t
− τ

(t)
〈1〉t

,τ
(t)
〈3〉t
− τ

(t)
〈1〉t

, · · · ,τ(t)
〈k〉t
− τ

(t)
〈1〉t

)
,

and covariance matrix Γ′ΛΓ, where Λ = diag((σ (t)
〈1〉t

)2,(σ
(t)
〈2〉t

)2, · · · ,(σ (t)
〈k〉t

)2) is a diagonal matrix, and

Γ =


1 1 1 · · · 1
−1 0 0 · · · 0
0 −1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1


k×(k−1)

.

In order to derive a sequential sampling procedure with an analytical form, we adopt the VFA technique
developed in Peng et al. (2018). At any step t, we treat the (t +1)-th step as the last step and try to
maximize the expected reward/cost given that the (t +1)-th replication is allocated to alternative i:

Ṽt (Et ; i)
∆
=E[Ṽt+1 (Et ∪{Xi,t+1})|Et ],

where
Ṽt+1 (Et+1)

∆
=Pr(λ〈1〉t+1

< λ〈 j〉t+1
, j = 2,3, · · · ,k|Et+1).

The posterior probability above is the integral of a (k−1) dimensional standard normal distribution
over a region encompassed by some hyperplanes ∑

j−1
`=1 u`,( j−1)z` = τ

(t)
〈1〉t
− τ

(t)
〈 j〉t

, where zi, i = 1,2, · · · ,k−1
are independent standard normal random variables, and U = [ui j](k−1)×(k−1) is an upper triangular matrix
of Cholesky decomposition for Γ′ΛΓ =U ′U . Due to exponential decay of the normal density, the posterior
probability is approximated by an integral over a maximum tangent inner ball in the integral region, which
is visualized in Figure 1. More details about this approximation can be found in Peng et al. (2018). By

2988



Zhang, Li, and Peng

symmetry of the normal density, maximizing the integral is equivalent to maximizing the volume of the
ball, which has the following analytical formula:

Ṽt+1 (Et+1) = min
j 6=1

(
τ
(t)
〈 j〉t
− τ

(t)
〈1〉t

)2

(
σ
(t)
〈 j〉t

)2
+
(

σ
(t)
〈1〉t

)2 .

Figure 1: The posterior probability is captured by the size of the largest internally tangent circle.

By certainty equivalent approximation (see Bertsekas 2005),

Ṽt+1 (Et ∪E{Xi,t+1|Et})≈ E
(

Ṽt+1 (Et ∪{Xi,t+1})
∣∣Et
)
,

we have the following VFA. For `, j = 2,3, · · · ,k, ` 6= j,

V̂t (Et ;1)
∆
=Ṽt+1 (Et ∪E {X1,t+1|Et}) = min

j 6=1

(
τ
(t)
〈 j〉t
− τ

(t)
〈1〉t

)2

(
σ
(t)
〈 j〉t

)2
+
(

σ
(t+1)
〈1〉t

)2 ,

and

V̂t (Et ; j)
∆
=Ṽt+1

(
Et ∪E

{
X j,t+1

∣∣Et
})

= min


(

τ
(t)
〈 j〉t
− τ

(t)
〈1〉t

)2

(
σ
(t+1)
〈 j〉t

)2
+
(

σ
(t)
〈1〉t

)2 , min
6̀= j,1

(
τ
(t)
〈`〉t
− τ

(t)
〈1〉t

)2

(
σ
(t)
〈`〉t

)2
+
(

σ
(t)
〈1〉t

)2

 .

A dynamic allocation for exponential distribution (DAED) that optimizes the VFA is given by

Ât+1 (Et) = arg max
i=1,2,··· ,k

V̂t (Et ; i) . (1)

The proposed DAED utilizes the information on the posterior means and variances of the posterior
distributions, and it is proved to be consistent in the following theorem.
Theorem 2 DAED defined by (1) is consistent, i.e.,

lim
t→∞
〈1〉t = 〈1〉 a.s.
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Proof. We only need to prove that every alternative i, i = 1,2, · · · ,k will be sampled infinitely often
almost surely, and then the conclusion of theorem holds by the consistency of the Bayesian estimate. If
alternative i is sampled finitely often and alternative j is sampled infinitely often, then by the law of large
numbers, we have

lim
t→∞

[
V̂t (Et ; i)−Ṽt (Et)

]
> 0, a.s., lim

t→∞

[
V̂t (Et ; j)−Ṽt (Et)

]
= 0, a.s. ,

which contradicts with the sampling scheme that the alternative with the largest VFA is sampled in DAED.
Therefore, DAED must be consistent.

5 NUMERICAL EXPERIMENTS

In the numerical experiments, we test the performance of different sampling procedures for selecting the
best alternative from alternatives following the exponential sampling distribution. We use the following
approaches for comparison.

• Equal allocation (EA), which equally allocates the total simulation budget to each alternative, i.e.,
ti = T

/
k, i = 1,2, · · · ,k.

• Optimal computing budget allocation (OCBA) in Chen C-H and Lee (2011), which is an efficient
sampling procedure derived for selecting the largest mean under the normal assumption. At each
step, it allocates ∆ simulation replications to alternatives according to the sampling ratios:

w〈i〉
w〈 j〉

=
σ2
〈i〉
(
µ〈1〉−µ〈 j〉

)2

σ2
〈 j〉
(
µ〈1〉−µ〈i〉

)2 , i, j 6= 〈1〉 , w〈1〉 = σ〈1〉

√√√√
∑i6=〈1〉

w2
〈i〉

σ2
〈i〉

, (2)

where w〈i〉 is the sampling ratio for alternative i = 1,2, · · · ,k. To implement OCBA sequentially, we
use the “most starving” rule that minimizes the gap between the number of allocated replications
to each alternative and the number of replications prescribed by (2) (see Chen and Lee 2011).

• Optimal computing budget allocation with exponential sampling distributions (OCBA-exp) in Gao
and Gao (2016), which has an analytical sampling ratios derived to approximately optimize the
large deviations rate of PCS under the exponential sampling distributions. At each step, it allocates
∆ simulation replications to alternatives according to the sampling ratios:

w〈i〉
w〈 j〉

=
σ〈i〉
(
µ〈1〉−µ〈 j〉

)
σ〈 j〉

(
µ〈1〉−µ〈i〉

) , i, j 6= 〈1〉 , w〈1〉 =
√

∑i6=〈1〉w
2
〈i〉,

where µi = 1/λi and σ2
i = 1/λ 2

i , i = 1,2, . . . ,k. We use the “most starving” rule to implement a
sequential OCBA-exp algorithm in numerical experiments.

• Balancing optimal large deviations (BOLD) in Chen and Ryzhov (2019a), which is derived to
sequentially achieve the optimal large deviations rate of PCS for general sampling distribution. For
the exponential sampling distributions, at each step, BOLD allocates ∆ simulation replications to
alternative 〈1〉 when

∑
j 6=〈1〉

λ〈1〉(w〈1〉+w〈 j〉)
w〈1〉λ〈1〉+w〈 j〉λ〈 j〉

−1− log
λ〈1〉(w〈1〉+w〈 j〉)
w〈1〉λ〈1〉+w〈 j〉λ〈 j〉

λ〈 j〉(w〈1〉+w〈 j〉)
w〈1〉λ〈1〉+w〈 j〉λ〈 j〉

−1− log
λ〈 j〉(w〈1〉+w〈 j〉)

w〈1〉λ〈1〉+w〈 j〉λ〈 j〉

> 1,

and if the above inequality does not hold, BOLD allocates ∆ simulation replications to alternative
〈 j〉, j 6= 1, where

〈 j〉= arg min
j=2,···k

w〈1〉 log
λ〈1〉

(
w〈1〉+w〈 j〉

)
w〈1〉λ〈1〉+w〈 j〉λ〈 j〉

+w〈 j〉 log
λ〈 j〉

(
w〈1〉+w〈 j〉

)
w〈1〉λ〈1〉+w〈 j〉λ〈 j〉

.
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In numerical experiments, we set ∆ = 1 for OCBA, OCBA-exp, and BOLD. We compare the proposed
DAED with seven different sampling policies: EA; OCBA, which allocates simulation replications according
to the OCBA rule with parameters estimated sequentially by available sample information; OCBAt, which
allocates simulation replications according to the OCBA rule given the true parameters; OCBA-exp, which
allocates simulation replications according to the OCBA-exp rule with parameters estimated sequentially
by available sample information; OCBA-expt, which allocates replications according to the OCBA-exp
rule given the true parameters; BOLD, which allocates simulation replications according to the BOLD rule
with parameters estimated sequentially by available sample information; BOLDt, which allocates simu-
lation replications according to the BOLD rule given the true parameters. The initial n0 = 10 simulation
replications are allocated to each alternative for estimating the parameters. The efficiency of each sampling
procedure is measured by IPCS estimated by 100,000 independent macro experiments. IPCSs of different

sampling procedures are presented as functions of the sampling budget t, i.e., IPCSt
∆
=E [1(〈1〉t = 〈1〉)].

Experiment 1 : There are k = 10 competing alternatives following exponential sampling distributions.
The hyper-parameters in the prior are α

(0)
i = 2 and β

(0)
i = 10, i = 1,2, · · · ,10. The total simulation budget

is T = 500 and the first 100 simulation replications are equally allocated to each alternative.

Figure 2: 10 alternatives following exponential sampling distributions with unknown parameters following
gamma prior Gamma(2,10). Initial simulation replications n0 = 10 for each alternative. IPCSs are estimated
by 105 independent experiments.

From Figure 2, we can see that OCBA-expt is the worst among all sampling procedures. BOLDt has
an edge over OCBAt that is better than EA. The IPCS of BOLD increases in a slower rate than the IPCS of
OCBA at the beginning and surpasses the latter when the simulation budget reaches 70. BOLD catches up
with DAED and OCBE-exp as the simulation budget increases. DAED and OCBA-exp have a comparable
performance, which is the best among all procedures. Note that the OCBA-exp and BOLD rules lead to
much poorer performances when the true parameters are given as inputs, which implies that the desirable
asymptotic property is inadequate to explain the good finite-sample performance of OCBA-exp and BOLD
in the experiment.

Experiment 2 : There are k = 10 competing alternatives following exponential sampling distributions.
The hyper-parameters in the prior shape parameters are α

(0)
i = 5 and β

(0)
i = 10, i = 1,2, · · · ,10. The

skewness of the prior distribution in Experiment 2 is smaller than the skewness of the prior distribution in
Experiment 1. The total simulation budget is T = 500 and the first 100 simulation replications are equally
allocated to each alternative.
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Figure 3: 10 alternatives following exponential sampling distributions with unknown parameters following
gamma prior Gamma(5,10). Initial simulation replications n0 = 10 for each alternative. IPCSs are estimated
by 105 independent experiments.

From Figure 3, we can see that the IPCS of OCBA-expt flattens and becomes the worst as the simu-
lation budget grows. The IPCS of EA surpasses OCBAt when the simulation budget reaches 200, and it
also surpasses BOLDt when the simulation budget reaches 300. The IPCS of BOLD increases with the
simulation budget at a slow pace at the beginning, and it surpasses OCBA with the number of allocated
simulation replications up to 50. BOLD catches up with DAED and OCBA-exp, which have a comparable
performance and a slight edge over OCBA, as the simulation budget increases.

Experiment 3 : There are k= 30 competing alternatives following the exponential sampling distributions.
The hyper-parameters in the prior are α

(0)
i = 5 and β

(0)
i = 100, i = 1,2, · · · ,30. The total simulation budget

is T = 900 and the first 300 simulation replications are equally allocated to each alternative.

Figure 4: 30 alternatives following exponential sampling distributions with unknown parameters following
gamma prior Gamma(5,100). Initial simulation replications n0 = 10 for each alternative. IPCSs are
estimated by 105 independent experiments.
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From Figure 4, we can see that the IPCS of EA increases at a slow pace at the beginning, and it surpasses
the OCBA-expt which reaches a plateau when the simulation budget reaches 200. DAED stands out among
all sampling procedures in terms of the performance. DAED has a substantial edge over OCBA-exp at the
beginning, and the difference between DAED and OCBA-exp vanishes as the simulation budget increases.
The advantage of DAED appears to be more significant when the number of competing alternatives is
larger. DAED and OCBA-exp lead BOLD throughout the experiment, and the three sampling procedures
developed under exponential sampling distributions dominate OCBA that is derived under normal sampling
distributions. Although BOLDt and OCBAt are better than EA, their performances are much worse than
the sequential sampling procedures with parameters updated sequentially, which again indicates the sig-
nificant difference between the asymptotic property and finite-sample performance for sampling procedures.

Experiment 4 : There are k = 5 competing alternatives following exponential sampling distributions.
The prior is a uniform distribution on [0.3,0.7]. Although the prior is not the conjugate prior of the
exponential distribution assumed in deriving DAED, the proposed sampling procedure can still apply as
we set the hyper-parameters α0 = β0 = 0 for the algorithm in the experiment. The total simulation budget
is T = 450 and the first 50 simulation replications are equally allocated to each alternative.

Figure 5: 5 alternatives following exponential sampling distributions with unknown parameters following
uniform prior on [0.3,0.7]. Initial replications n0 = 10 for each alternative. IPCSs are estimated by 105

independent experiments.

From Figure 5, we can see that the IPCS of OCBA-expt is almost flat. EA is much better than OCBAt
and BOLDt. The performance of BOLD is comparable to OCBA and the difference between BOLD and
EA becomes smaller as the simulation budget increases. DAED has a slight lead over OCBA-exp at the
beginning, and their performances become almost identical as simulation budget grows large.

Compared with 10 competing alternatives, numerical results show that the performance of DAED is
better when the number of competing alternatives is 30. The advantage of DAED appears to be more
significant as the number of competing alternatives increases.

6 CONCLUSION

This paper studies the dynamic sampling allocation problem for selecting the best alternative from alter-
natives following exponential sampling distributions. Under a Bayesian framework, we develop a normal
approximation scheme based on a central limit theorem to efficiently learn a performance parameter.
A stochastic control framework is proposed to capture the dynamic sampling decision, and an efficient
sequential sampling procedure called DAED is derived by maximizing a VFA one-step ahead, which is
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proved to be consistent. Analysis on the convergence rate of the normal approximation and deriving the
asymptotic sampling ratio of DAED deserve future work.

Numerical experiments show that when the number of competing alternatives is relatively large and
the simulation budget is relatively small, DAED is superior to the existing methods developed for the
problem setting in this work, which could be attributed to the finite-sample theoretical support in deriving
DAED. Particularly, we find that the asymptotically optimal sampling ratio per se may not lead to a good
finite-sample performance for a sampling procedure, whereas sequentially implementing the asymptotically
optimal sampling ratio properly can result in a good sampling policy in some circumstances.
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