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ABSTRACT

Simulation is often used to evaluate and compare performances of stochastic systems, where the underlying
stochastic models are estimated from real-world input data. Collecting more input data can derive closer-to-
reality stochastic models while generating more simulation replications can reduce stochastic errors. With
the objective of selecting the system with the best performance, we propose a general framework to analyze
the joint resource allocation problem for collecting input data and generating simulation replications. Two
commonly arised features, correlation in input data and common random numbers in simulation, are jointly
exploited to save cost and enhance efficiency. In presence of both features, closed-form joint resource
allocation solutions are given for the comparison of two systems.

1 INTRODUCTION

The need to compare the expected performances of two or multiple stochastic systems naturally arise in the
areas of healthcare, supply chain, logistics, production, queueing systems, portfolio management, among
others. The stochastic systems under consideration typically involve uncertainties that are captured by a
set of probability models. The associated probability distributions are either specified by domain experts
or estimated from data. These probability models, serving as inputs to the stochastic system, can be the
customer arrival and service processes in a service system or the daily demands and lead times in a supply
chain system. After the input probability distributions are specified or estimated, simulation is often used to
evaluate the expected system performance, particularly in cases where analytical solutions are not available.

This paper presumes that there is independent and identically distributed data available or that can be
collected that faithfully represents the true input distributions. When the input probability distributions are
estimated from data, there exists a statistical estimation error due to the finite amount of data collected.
The statistical estimation error from the input distributions may propagate and cause uncertainties in the
evaluation of system performances. The resulting uncertainty in the performance evaluation caused by
using an incorrectly specified input distribution (due to estimation error) is called input uncertainty. The
input uncertainty cannot be eliminated by increasing the number of simulation replications used to evaluate
the system performances, but can potentially be reduced by collecting more data. In many applications,
the data to be collected is multi-dimensional and is usually generated sequentially from real operations.
Therefore typically the available data that can be collected in one operational period is corrected. Consider
a site selection problem where a manager chooses one out of m sites to run a new branch store. The
manager may need to run simulation to evaluate revenues for each site with different store designs. One
of the key input distributions is the daily traffic flows. On day i, the full set of data that may be collected
is Ai = (Ai,1,Ai,2, . . . ,Ai,m) in which Ai, j denotes the traffic flow at the j-th site on day i. Due to the
nature of the data generation process, (Ai,1,Ai,2, . . . ,Ai,m) are typically correlated, possibly due to common
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unobserved features from the same day and other observed dependencies such as the adjacency between
sites. Ideally, collecting this full set of data Ai is preferred and provides the best possible information, but
this can be costly or even inaccessible. On the other hand, when the correlation structure within the full
set of input data generated in the same period is exploited, it may not be necessary to collect the full set
of data. Therefore this correlation structure may be used to save input data collection cost.

In this paper, we propose a general framework to study the joint resource allocation problem for
input data collection and simulation. The objective is appropriately allocating resource to maximize the
probability of correctly selecting the system with the best performance. Two commonly arised features,
correlation in input data and common random numbers in simulation, are jointly exploited to save costs.
For input data collection, in presence of the correlation structure among different sources, options are
available to either jointly collect data simultaneously from the different sources, or to collect data solely
from a particular source. For simulation, one has the option to either use common random numbers to
simultaneously evaluate performances for different systems or to evaluate independently a single system.
We provide closed-form optimal resource allocation solutions that maximize the asymptotic probability of
correct selection, when the resource budget is large. Our results explicitly show that how the correlation
structure is exploited to save costs and improve performances, and how the optimal resource allocation
strategy depends on the correlation structure.

Two scenarios are considered in our framework. First, we consider scenarios (in Section 3) where the
“monetary” cost of generating a simulation replication is much smaller than the cost of collecting a sample
of input data. For example, these situations happen when the scale and structure of the problem permits the
generation of simulation replications efficiently even on personal computers, while the input data needs to
be purchased from a data vendor at a significant price or needs to be collected by multiple staff throughout
a number of days. One may then assume a simplification that once the input distributions are estimated,
the expected performance evaluation via simulation is immediately available at no cost. Therefore in these
situations, the resource allocation problem focuses entirely on the input data collection part. Second, we
consider scenarios (in Section 5) where the simulation cost is not negligible compared with the input
data collection cost. These scenarios arise in performance evaluation for complicated systems, in which
high performance computing resources are needed for simulation. Otherwise if not using designated high
performance computing resources, the simulation may take too long a time. The simulation costs therefore
may be evaluated by monetary costs for purchasing computing resources or by the opportunity costs for
long simulation time. In these scenarios, the optimal resource allocation strikes a balance between the
input data collection costs and simulation costs, to jointly control input uncertainty and simulation error.

2 LITERATURE REVIEW

Comparing the expected performances of two or multiple systems via simulation is a fundamental component
in the problems of Ranking and Selection (R&S) and Discrete Optimization via Simulation (DOvS). When
one knows explicitly the input distributions, or has the ability to generate simulation replications from the
true input distributions, the focus of these problems is then on developing efficient simulation procedures
to select the best system. Procedures developed in the literature typically adopt a frequentist or a Bayesian
view. See Kim and Nelson (2007) and Chen et al. (2015) for an overview. Our paper follows a frequentist
perspective.

When the input distributions are not explicitly known, or when one does not have the ability to generate
samples from the true input distributions, a series of works discuss the quantification of input uncertainty
and its impact on the comparison of system performances. See Cheng and Holloand (1997), Chick (2001),
Barton et al. (2014), Xie et al. (2014), Song et al. (2015), Corlu and Biller (2013), Wu and Zhou (2017),
Wu and Zhou (2018) among others. The closest to our work are Wu and Zhou (2017) and Song and Nelson
(2019). Song and Nelson (2019) exploits the effect of common input distribution to reduce the uncertainty
in system performances comparison, when the input data set is given. They construct valid confidence
intervals for system comparison that incorporate input uncertainty, the common input distribution effect,
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and simulation uncertainty. Wu and Zhou (2017) allows the collection of additional input data from multiple
independent sources and discusses the optimal resource allocation for input data collection and simulation.
Our paper is different to the literature in three folds: (1) we exploit the correlation structure in the input
data to reduce the input data collection cost, and show how the correlation structure impacts the optimal
resource allocation strategy. (2) we propose a general framework that integrates input data collection and
simulation in which the data collection and simulation costs themselves can be random; (3) we investigate
the joint optimal resource allocation when both the correlation in the input data and the use of common
random numbers in the simulation procedures are exploited.

When the performance of each system is evaluated independently, the best system selection problem
shares the same formulation as the best arm identification problem; see Karnin et al. (2013), Kaufmann and
Kalyanakrishnan (2013), Glynn and Juneja (2015), Ryzhov (2016), Russo (2020) among others. In fact, if
we separate the input data collection problem and the best system selection problem, each problem shares
a very similar formulation with a best arm identification problem, provided that the observation of each
dimension in the data is independent and that the performance evaluation of each system is independent.
Differences emerge when correlation is present either in the input data collection or among simulation
evaluations.

The use of common random numbers (CRN) in the simulation procedures for R& S and DOvS have
been widely discussed. See Yang and Nelson (1991), Glasserman and Vakili (1994), Nelson and Matejcik
(1995), Dai and Chen (1997), Kim and Nelson (2001) among others. Specifically, Fu et al. (2007) discusses
the optimal allocation of simulation replications on each system when the CRN technique is used. Their
work did not discuss errors created from input data. We propose an alternative framework that allows
the simulation costs to be random, and consider the joint resource allocation problem for both input data
collection and simulation.

3 A GENERAL FRAMEWORK

We introduce a basic and general framework that allows us to integrate simulation for performance evaluation
and input data collection for input distribution estimation. In this framework, the costs for simulation and
input data collection can be random. We first focus on describing the input data collection and input
distribution estimation in the framework.

Consider a set of systems labeled by index set [m] = {1,2, . . . ,m}. When m = 2, for example, there
are two systems to compare. For i ∈ [m], the expected performance for system i is given by αi(θ

∗
i ), where

αi : Rdi →R is a continuously differentiable function, and θ ∗i ∈Rdi is the true input distribution parameter
associated with system i (e.g., arrival and service rates, lead time expectation, shape parameters, etc.). We
first consider scenarios where the simulation cost is negligible compared to input data collection cost, so
that the expected performance function αi(·)’s are viewed to be available at no cost whenever the input
distribution is specified. We recognize that the input distribution parameters θ ∗1 ,θ

∗
2 , . . . ,θ

∗
m need to be

estimated. This can be based on common observations (X̃i j : i ∈ [m], j ≥ 1) or based on independently
gathered observations (Xi j : j ≥ 1) for i ∈ [m]. We assume that the cost of collecting the j-th copy of a set
of common observations (X̃i j : i ∈ [m]) collected simultaneously is given by τ̃ j, while the cost of collecting
individual Xi j is given by τi j. These data collection costs can be random variables themselves. Then, with
a budget c in hand, we can either collect

Ñ(c) = max{n≥ 0 : τ̃1 + . . .+ τ̃n ≤ c}

copies of “common observations” or

Ni(c) = max{n≥ 0 : τi1 + . . .+ τin ≤ c}

copies of observations solely from system i. In this framework, we assume that

1. (τ̃ j,(X̃i j : i ∈ [m]) : j ≥ 1), (τ1 j,X1 j : j ≥ 1), . . ., (τm j,Xm j : j ≥ 1) are independent sequences.
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2. (τi,(X̃i j : i ∈ [m]) : j ≥ 1) is iid in j.
3. For each i ∈ [m], ((τi j,Xi j) : j ≥ 1) is iid in j.

4. X̃i1
D
= Xi1 for i ∈ [m]. Var(Xi1)< ∞ for i ∈ [m].

5. E τ̃1 < ∞, Eτi1 < ∞, for i ∈ [m].

In practice, it is often the case that Eτi1 < E τ̃1 for i ∈ [m] and E τ̃1 ≤∑
m
i=1Eτi1. Since Ñ(·) and Ni(·)’s are

renewal counting processes, it is known that

1
c

Ñ(c) a.s.→ λ ,
1

E τ̃1

and
1
c

Ni(c)
a.s.→ λi ,

1
Eτi1

.

Given an overall budget c, suppose we allocate a fraction p to collecting common observations, and a
fraction pi to collecting independent observations from system i, where

p+ p1 + p2 + . . .+ pm = 1,

with p≥ 0, pi ≥ 0, i ∈ [m].
We now assume that one estimates θ ∗i via an maximum likelihood estimator (MLE) θ̂i, where θ̂i

maximizes the likelihood
Ñ(pc)

∏
j=1

fi(θ , X̃i j)
Ni(pic)

∏
j=1

fi(θ ,Xi j),

where fi(θ , ·) is the marginal probability density function of the input data for the i’th system. By taking
the logarithm of the likelihood function

L̃i j(θ) = log fi(θ , X̃i j),

Li j(θ) = log fi(θ ,Xi j),

maximizing the likelihood is equivalent to maximizing the log-likelihood, given by

Ñ(pc)

∑
j=1

L̃i j(θ)+
Ni(pic)

∑
j=1

Li j(θ).

Under appropriate technical conditions, the maximum likelihood estimator θ̂i satisfies

Ñ(pc)

∑
j=1

∇L̃i j(θ̂i)+
Ni(pic)

∑
j=1

∇Li j(θ̂i) = 0

with θ̂i→ θ ∗i almost surely as c→ ∞. Note that

Ñ(pc)

∑
j=1

[
∇L̃i j(θ̂i)−∇L̃i j(θ

∗
i )
]
+

Ni(pic)

∑
j=1

[
∇Li j(θ̂i)−∇Li j(θ

∗
i )
]
=−

Ñ(pc)

∑
j=1

∇L̃i j(θ
∗
i )−

Ni(pic)

∑
j=1

∇Li j(θ
∗
i ).

We adopt the convention that the gradient is a row vector. If Li j(·) is appropriately smooth, then the mean
value theorem implies that

√
c(θ̂i−θ

∗
i )
( Ñ(pc)

c
Hi +

Ni(pic)
c

Hi +op(1)
)
=−

∑
Ñ(pc)
j=1 ∇L̃i j(θ

∗
i )√

c
−

∑
Ni(pic)
j=1 ∇Li j(θ

∗
i )√

c
,
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where the notion oP(1) indicates a small random quantity that weakly converges to zero as c→ ∞. The
Hessian matrix Hi is given by

Hi =
(
E

∂ 2

∂θk∂θl
Li1(θ

∗) : 1≤ k ≤ l ≤ di
)
.

Assume that Hi is negative definite so that detHi is non-singular. Then, when c is large,

c
1
2 (θ̂i−θ

∗
i ) =−

1
λ p+λi pi

( Ñ(pc)

∑
j=1

∇L̃i j(θ
∗)H−1

i√
c

+
Ni(pic)

∑
j=1

∇Li j(θ
∗)H−1

i√
c

)
+op(1).

Hence, we have the following result.

Theorem 1 Assume that for i∈ [m], there exists an open subset wi that is a subset of the feasible parameter
region where the true parameter θ ∗i ∈ wi, and that all third-order partial derivatives of the log-likelihood
functions with respect to input parameters are uniformly bounded for θi ∈ wi. When c→ ∞,

c
1
2 ((θ̂i−θ

∗
i ) : i ∈ [m])⇒

(
− 1

λ p+λi pi

(√
λ pG̃i +

√
λi pi Gi

)
: i ∈ [m]

)
,

where:

• (G̃1, . . . , G̃m) is jointly Gaussian with mean 0.

• G̃i
D
= Gi, where the covariance matrix of Gi is given by H−1

i E∇Li1(θ
∗)>∇Li1(θ

∗)H−1
i .

• The random variables (rv’s) G1,G2, . . . ,Gm are independent and independent of (G̃1, . . . , G̃m).

Then, with Theorem 1 in hand,

c
1
2 (αi(θ̂i)−αi(θ

∗
i )) = (θ̂i−θ

∗
i )∇αi(θ

∗)>+op(1)

=− 1
λp +λi pi

(
√

λ pG̃i +
√

λi piGi)∇αi(θ
∗)>+op(1)

=− 1
λp +λi pi

(
√

λ pG̃i +
√

λi piGi)+op(1)

as c→ ∞, where G̃i = G̃i∇αi(θ
∗)>,Gi = Gi∇αi(θ

∗)>, i ∈ [m]. Note that G̃i
D
= Gi, i ∈ [m]. Hence, when

c→ ∞,

c
1
2 (αi(θ̂i)−α j(θ̂ j)− (αi(θ

∗
i )−α j(θ

∗
j ))⇒−

√
λ p

λ p+λi pi
G̃i +

√
λ p

λ p+λ j p j
G̃ j−

√
λi pi

λ p+λi pi
Gi +

√
λ j p j

λ p+λ j p j
Gi.

Denote the right-hand-side above as Wi j. The random variable (rv) Wi j is Gaussian with mean zero and
variance

σ2
i

λ p+λi pi
+

σ2
j

λ p+λ j p j
−

2λ pci j

(λ p+λi pi)(λ p+λ j p j)
,

where σ2
i = VarGi and ci j = Cov(G̃i, G̃ j). We further define ρi j = Corr(G̃i, G̃ j).
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3.1 Optimization Problem for Input Data Collection

With the given framework, when comparing systems i and j, the input data collection problem can be
summarized into the following optimization problem

min
p≥0, pi≥0, p j≥0, p+pi+p j=1

σ2
i

λ p+λi pi
+

σ2
j

λ p+λ j p j
−

2λ pci j

(λ p+λi pi)(λ p+λ j p j)
.

Recall that ci j = ρi jσiσ j. An equivalent formulation is to set qi = λi pi, q = λ p, and minimize

σ2
i

q+qi
+

σ2
j

q+q j
−

2qρi jσiσ j

(q+qi)(q+q j)
(1)

subject to q
λ
+ qi

λi
+

q j
λ j

= 1.

4 OPTIMAL RESOURCE ALLOCATION FOR INPUT DATA COLLECTION

The optimization problem given by (1) to solve the optimal resource allocation for input data collection
turns out to be non-convex. The non-convexity is exactly caused by the correlation feature and creates
difficulty in modeling how the correlation ρi j presented in the input data exactly affects the optimal resource
allocation. The following theorem shows that the optimal objective function can be obtained at the boundary
of feasible region S = {(qi,q j,q)> : qi,q j,q≥ 0, q

λ
+ qi

λi
+

q j
λ j

= 1} ⊂ R3.

Theorem 2 For the optimization problem (1), there exists a solution (q∗i ,q
∗
j ,q
∗) that achieves the optimal

objective value and has at least one element as zero.
With Theorem 2 in hand, it suffices to explore the resource allocation strategies among (qi,0,q),

(qi,q j,0) and (0,q j,q). As we will show later, this leads to a closed-form representation for the optimal
allocation. The proof of Theorem 2 is given as follows.

Proof. For problem (1), let P ⊂S be the set of globally optimal solutions. Denote si := 1
λi
= Eτi1,

s j := 1
λ j

= Eτ j1, s := 1
λ
= E τ̃1 and v(qi,q j,q) := σ2

i
qi
+

σ2
j

q j
− 2qρi jσiσ j

(q+qi)(q+q j)
. Because all the constraints of

problem (1) are linear in qi,q j,q, if (qi,q j,q)> ∈P , it satisfies the following Karush–Kuhn–Tucker (KKT)
conditions (see, for example, Lemma 5.1.4 from Bazaraa et al. (2013)):

siqi + s jq j + sq = 1,
∂v
∂qi
−µi + siu = 0,

∂v
∂q j
−µ j + s ju = 0,

∂v
∂q −µ + su = 0,
µiqi = µ jq j = µq = 0,
µi,µ j,µ ≥ 0,

(2)

where µi,µ j,µ,u are KKT multipliers. The KKT condition describes a necessary condition for the optimality
of a feasible point, for which the gradient of the objective function at the feasible point should be orthogonal
to the feasible set S . Suppose that (q∗i ,q

∗
j ,q
∗)> ∈P satisfies q∗i ,q

∗
j ,q
∗ > 0. Then, according to (2), KKT

multipliers µi, µ j and µ are equal to 0. Thus, we have(
∂

∂qi
v(q∗i ,q

∗
j ,q
∗),

∂

∂q j
v(q∗i ,q

∗
j ,q
∗),

∂

∂q
v(q∗i ,q

∗
j ,q
∗)− ∂

∂qi
v(q∗i ,q

∗
j ,q
∗)− ∂

∂q j
v(q∗i ,q

∗
j ,q
∗)
)

=(−siu,−s ju,(−s+ si + s j)u). (3)
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By multiplying both sides of (3) by (q∗1+q∗)2(q∗2+q∗)2, calculating the gradient of v(qi,q j,q) and eliminating
KKT multiplier u, we have a system of linear equations about q∗i ,q

∗
j ,q
∗:

siq∗i + siq∗i + sq∗ = 1,

2ρi jσiσ jsi(q∗i +q∗)+(si + s j− s)
(
σ

2
i
(
q∗j +q∗

)
−2ρi jσiσ jq∗

)
= 0,

2ρi jσiσ js j(q∗j +q∗)+(si + s j− s)
(
σ

2
j (q
∗
i +q∗)−2ρi jσiσ jq∗

)
= 0.

(4)

We discuss 3 different cases:
Case I: If ρi j 6= 0, and one of the following equations holds: 1©si+s j = s, 2© (si + s j− s)σ2

i = 2s jρi jσiσ j,
3© (si + s j− s)σ2

j = 2siρi jσiσ j, then (4) has no solutions. Therefore, there does not exist a KKT point that
has three positive elements.

Case II: If ρi j 6= 0 and none of 1©, 2©, 3© hold, then (4) has a unique solution. We show that this solution
is not optimal for (1), which contradicts the optimality of (q∗i ,q

∗
j ,q
∗)>. Let d = (di,d j,di j)

> be a feasible
direction such that sidi + s jd j + sdi j = 0, and there exists ε0 > 0 enough small such that (q∗i ,q

∗
j ,q
∗)>+ε0d

is still feasible. Denote the value, gradient and Hessian matrix of v at (q∗i ,q
∗
j ,q
∗)> to be respectively v∗,

g∗ and Q∗. We have

v
(
q∗i + εdi,q∗j + εd j,q∗+ εdi j

)
= v∗+ εd>g∗+

1
2

ε
2d>Q∗d +o

(
||εd||2

)
.

The fact that (q∗i ,q
∗
j ,q
∗)> is a KKT point ensures that d>g∗ = 0. We have the following subcases:

(i) si + s j > s, ρi j < 0 or si + s j < s, ρi j > 0. In this case, we choose d = (−s,−s,si + s j)
>, and find

that

d>Q∗d =
(si + s j− s)

(
σ2

j (si + s j− s)−2ρi jσiσ jsi

)2 (
σ2

i (si + s j− s)−2ρi jσiσ js j
)2

4(ρi jσiσ j)3 .

Since si+s j−s
ρ3

i j
< 0, d>Q∗d < 0, there exists 0 < ε1 < ε0 such that v(q∗i + ε1di,q∗j + ε1d j,q∗+ ε1di j) < v∗.

Therefore (q∗i ,q
∗
j ,q
∗)> is not a minimal point.

(ii) si + s j < s, ρi j < 0 or si + s j > s, ρi j > 0. We choose d = (−s,0,si)
>, and calculate that

d>Q∗d =
si(si− s)

(
σ2

j (si + s j− s)−2ρi jσiσ jsi

)2 (
σ2

i (si + s j− s)−2ρi jσiσ js j
)2

4(si + s j− s)(ρi jσiσ j)3 .

Since we have assumed that si < s, d>Q∗d < 0. Similarly to case (i), (q∗i ,q
∗
j ,q
∗)> is not a minimal point.

Case III: When ρi j = 0, we discuss about three subcases: si + s j > s, si + s j < s and si + s j = s. If
si+s j > s, for any point (qi,q j,q)> ∈S satisfying qi,q j,q > 0, d = (−s,−s,si+s j)

> is a descent direction

for both σ2
i

qi+q and
σ2

j
q j+q as a function of (qi,q j,q). Therefore, there exists no optimal solution that has three

positive elements. If si + s j < s, let d = (s,s,−si− s j)
>, we reach the same conclusion as when si + s j > s.

If si + s j = s, define wi := qi +q and w j := q j +q. The problem (1) is then converted to

min
wi,w j≥0

σ2
i

wi
+

σ2
j

w j

s.t. siwi + s jw j = 1.

The optimal w∗i and w∗j satisfies σi
w∗i
√

si
=

σ j
w∗j
√s j

. So in this case, (qi,q j,q)> ∈P if and only if σi√
si(qi+q) =

σ j√s j(q j+q) .
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Summarizing the conclusions of case I, II and III, whenever si + s j 6= s or ρi j 6= 0, the optimal solution
can only be achieved on the boundary of the feasible region. That is, the optimal solution(s) must have at
least one element as zero. When si + s j = s and ρi j = 0, there exists an optimal solution that has at least
one zero element and also an optimal solution that has all positive elements.

4.1 Closed-form Optimal Allocation Formula and Interpretation

Denote si := 1
λi

, s j := 1
λ j

, s := 1
λ

, v(qi,q j,q) := σ2
i

qi
+

σ2
j

q j
− 2qρi jσiσ j

(q+qi)(q+q j)
. Theorem 2 implies that

min
(qi,q j,q)>∈S

v(qi,q j,q) = min
{

b∗i ,b
∗
j , b̃
∗} ,

where b∗i = min
(qi,q j,q)>∈S ,qi=0

v(qi,q j,q), b∗j = min
(qi,q j,q)>∈S ,q j=0

v(qi,q j,q), b̃∗ = min
(qi,q j,q)>∈S ,q=0

v(qi,q j,q). We

provide the closed-form value for b∗i ,b
∗
j , b̃
∗ and the associated optimizers.

b∗i =


(√

(−s j + s)σ2
i +
√

s j(σ2
j −2ρi jσiσ j)

)2
, if s jσ

2
i <

(
σ2

j −2ρi jσiσ j

)
(s− s j) ,

s(σ2
i +σ2

j −2ρi jσiσ j), if s jσ
2
i ≥

(
σ2

j −2ρi jσiσ j

)
(s− s j).

The optimal solution to achieve b∗i is

(qi,q j,q) =

(
0,

√
(σ2

j −2ρi jσiσ j)(s− s j)−
√

s jσ
2
i

(s− s j)
√

s jσ
2
i + s j

√
(σ2

j −2ρi jσiσ j)(s− s j)
,

1
s
−

s j

√(
σ2

j −2ρi jσiσ j

)
(s− s j)−

√
s3

jσ
2
i

s(s− s j)
√

s jσ
2
i + s js

√
(σ2

j −2ρi jσiσ j)(s− s j)

)

and (qi,q j,q) = (0,0, 1
s ) respectively under the two conditions.

b∗j =


(√

(−si + s)σ2
j +
√

si(σ2
i −2ρi jσiσ j)

)2
, if siσ

2
j <

(
σ2

i −2ρi jσσ j
)
(s− si) ,

s(σ2
i +σ2

j −2ρi jσiσ j), if siσ
2
j ≥

(
σ2

i −2ρi jσiσ j
)
(s− si) .

The optimal solution to achieve b∗j is

(qi,q j,q) =

( √(
σ2

i −2ρi jσiσ j
)
(s− si)−

√
siσ

2
j

(s− si)
√

siσ
2
j + si

√(
σ2

i −2ρi jσiσ j
)
(s− si)

,0,

1
s
−

si

√(
σ2

i −2ρi jσiσ j
)
(s− si)−

√
s3

i σ2
j

s(s− si)
√

siσ
2
j + sis

√(
σ2

i −2ρi jσiσ j
)
(s− si)

)

and (qi,q j,q) = (0,0, 1
s ) respectively under the two conditions.

b̃∗ = (
√

siσi +
√

s jσ j)
2.

The optimal solution to achieve b̃∗ is (qi,q j,q) = ( σi√
si(
√

siσi+
√s jσ j)

,
σ j√s j(

√
siσi+

√s jσ j)
,0).
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As shown in the closed-form solution for min
(qi,q j,q)>∈S

v(qi,q j,q), the optimal resource allocation critically

depends on the sign and magnitude of the correlation ρi j. We discuss how the different value of ρi j affects
the optimal allocation. First, consider the case when s = si + s j. This corresponds to the case of additive
input data collection costs. If ρi j ≤ 0, the optimal allocation is to independently collect data for system i and
j, and the optimal fraction q∗i ,q

∗
j satisfies σi

q∗i
√

si
=

σ j
q∗j
√s j

. Specifically if ρi j = 0, any allocation (q,qi,q j) that

satisfies σi√
si(qi+q) =

σ j√s j(q j+q) is optimal. If 0 < ρi j < max
{

1
2σiσ j

(σ2
j −

s jσ
2
i

si
), 1

2σiσ j
(σ2

i −
siσ

2
j

s j
)

}
, the optimal

allocation assigns a fraction of budget to collecting common observations and assigns the rest of budget to
solely collecting data from system i if σ2

i /si > σ2
j /s j, or solely system j if otherwise σ2

j /s j > σ2
i /si. When

ρi j ≥max
{

1
2σiσ j

(σ2
i −

siσ
2
j

s j
), 1

2σiσ j
(σ2

j −
s jσ

2
i

si
)

}
, the optimal allocation assigns all the budget to collecting

common observations of data. In summary, when s = si + s j, there are three different regimes of optimal
allocation depending on the sign and value of ρi j.

When s < si + s j, two critical values that affect the optimal allocation are s/min
{

si,s j
}

and ρi j. Note
that in practice s/min

{
si,s j

}
is always greater than 1. Theorem 2 shows that there exists a threshold

value γ > 1 such that if s/min
{

si,s j
}
> γ , the optimal allocation strategy adopts three different regimes.

When ρ12 is close to -1, the optimal allocation assigns all the budget to independently collecting data for
system i and j. As ρi j increases, the optimal allocation assigns a fraction of budget to collecting common
observations of data simultaneously and assigns the rest budget to independently collecting data from one
of the two systems (in a way analogous to the case of s = si + s j). When ρi j further increases and exceeds

max
{

1
2σiσ j

(σ2
j −

s jσ
2
i

s−s j
), 1

2σiσ j
(σ2

i −
siσ

2
j

s−si
)

}
, the optimal allocation is to collecting common observations of

data simultaneously. The above summarizes the three regimes for scenarios where s/min
{

si,s j
}
> γ .

On the other hand, if 1 < s/min
{

si,s j
}
< γ , there are two different forms. Specifically, there exists a

threshold ρ ′ < 0 such that, if −1 < ρi j < ρ ′, the optimal allocation assigns the budget to collecting data
independently for system i and j; if ρi j > ρ ′, the optimal allocation assigns all the budget to collecting
common observations of data.

5 JOINT RESOURCE ALLOCATION FOR INPUT DATA COLLECTION AND SIMULATION

In this section, we consider scenarios where the simulation cost is not negligible compared with the input
data collection cost. These scenarios arise in performance evaluation for complicated systems, in which
high performance computing resources are needed. The simulation may take too long time if not using
designated high performance computing resources. The simulation costs therefore may be evaluated by
monetary costs for purchasing computing resources or by the opportunity costs for long simulation time. In
these scenarios, it is unrealistic to assume that the expected performances αi(·)’s are immediately available
at negligible cost. In this section, we extend the general framework introduced in Section 3 to include both
input data collection and simulation generation.

Recall that as defined in Section 3, the expected performance of system i is given by αi(θ
∗
i ) for

i ∈ [m], where θ ∗i ∈ Rdi is the true input distribution parameter. Input data is collected and used to derive
maximum likelihood estimators for θ ∗i ’s, denoted by θ̂i for i ∈ [m]. Simulation needs to be run to estimate
the expected performance αi(θ̂i)’s given the estimated input distribution parameters. The simulation can
be done by independently running system i and the sequence of simulation output is (Yi j(θ̂i) : j ≥ 1) for
i ∈ [m]. Alternatively, the technique of common random numbers (CRN) can be used to evaluate the m
systems simultaneously. The sequence of simulation output using CRN is ((Ỹi j(θ̂) : i ∈ [m]) : j≥ 1). When
using CRN, we assume that the cost of obtaining the j-th simulation replication of a set of simultaneous
evaluations (Ỹ1 j(θ̂),Ỹ2 j(θ̂), ...Ỹm j(θ̂)) is given by η̃ j, and the cost of generating individual evaluation Yi j(θ̂i)
for system i is given by ηi j. The simulation costs can be random. Then, given a simulation cost budget c̃,
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we can either generate
M̃(c̃) = max{n≥ 0 : η̃1 + . . .+ η̃n ≤ c̃}

simulation replications using CRN or

Mi(c̃) = max{n≥ 0 : ηi1 + . . .+ηin ≤ c̃}

individual simulation replications for system i. We assume that

1. Conditional on the estimated input distribution parameters θ̂ = {θ̂i : i ∈ [m]}, (η̃ j,(Ỹi j(θ̂) : i ∈ [m]) :
j ≥ 1),(η1 j,Y1 j(θ̂1) : j ≥ 1), . . . ,(ηm j,Ym j(θ̂m) : j ≥ 1) are independent sequences.

2. Conditional on θ̂ , (η̃ j,(Ỹi j(θ̂) : i ∈ [m])) is independent and identically distributed (iid) in j, and
(ηi j,Yi j(θ̂i)) is iid in j for each i ∈ [m].

3. E[Yi1|θ̂i] = E[Ỹi1|θ̂ ] = αi(θ̂i), and Var(Yi1|θ̂i) = Var(Ỹi1|θ̂) = Di(θ̂i) for i ∈ [m]. Cov(Ỹi1,Ỹj1) =

Di j(θ̂) for i, j ∈ [m], where Di(·) and Di j(·) are continuous functions with respect to θi and θ .
4. E η̃1 < ∞, Eηi1 < ∞, for i ∈ [m]. In general, Eηi1 < E η̃1 for i ∈ [m].

Since M̃(·) and Mi(·)’s are renewal counting processes, we have as c̃→ ∞, 1
c̃ M̃(c̃) a.s.→ µ , 1

E η̃1
and

1
c̃ Mi(c̃)

a.s.→ µi , 1
Eηi1

. Given a simulation budget c̃, suppose we allocate a fraction r to simultaneous
evaluations using CRN, and a fraction ri to independent simulation evaluation for system i, where

r+ r1 + r2 + . . .+ rm = 1,

with r ≥ 0, ri ≥ 0, i ∈ [m].
With a given simulation budget and allocation, the simulation estimators for αi(θ̂i)’s are given by

α̂i(θ̂i) =
∑

M̃(rc̃)
j=1 Ỹi j(θ̂)+∑

Mi(ric̃)
j=1 Yi j(θ̂i)

M̃(rc̃)+Mi(ric̃)
.

Then,

c̃1/2(α̂i(θ̂i)−αi(θ̂i)) =−
1

µr+µiri

(√
µrZ̃i(θ̂)+

√
µiriZi(θ̂i)

)
+op(1),

where, conditional on θ̂ ,

• (Z̃1(θ̂), . . . , Z̃m(θ̂)) is jointly Gaussian with mean 0. Var(Z̃i(θ̂)) = Di(θ̂i) and Cov(Z̃i(θ̂), Z̃ j(θ̂)) =

Di j(θ̂) for 1≤ i≤ j ≤ m.

• Z̃i(θ̂)
D
= Zi(θ̂i), and specifically Var(Z̃i(θ̂)) = Var(Zi(θ̂i)).

• The rv’s Z1(θ̂1),Z2(θ̂2), . . . ,Zm(θ̂m) are independent and independent of (Z̃1(θ̂), . . . , Z̃m(θ̂)).

Hence, as c̃→ ∞,

c̃
1
2 (α̂i(θ̂i)− α̂ j(θ̂ j)− (αi(θ̂i)−α j(θ̂ j))

⇒ −
√

µr
µr+µiri

Z̃i(θ̂)+

√
µr

µr+µ jr j
Z̃ j(θ̂)−

√
µiri

µr+µiri
Zi(θ̂i)+

√
µ jr j

µr+µ jr j
Z j(θ̂ j).

Denote the limiting rv as Vi j(θ̂). Conditional on θ̂ , the rv Vi j(θ̂) is Gaussian with mean zero and variance

Di(θ̂i)

µr+µiri
+

D j(θ̂ j)

µr+µ jr j
−

2µr Di j(θ̂)

(µr+µiri)(µr+µ jr j)
.
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Therefore, conditional on the input distribution specified by θ̂ and given a simulation budget c, the optimal
simulation budget allocation problem in order to differentiate system i and j is given by

min
ri≥0,r j≥0,r≥0,ri+r j+r=1

Di(θ̂i)

µr+µiri
+

D j(θ̂ j)

µr+µ jr j
−

2µr Di j(θ̂)

(µr+µiri)(µr+µ jr j)
.

Suppose that we want to compare the system performances for system i and system j and a total budget
C is allocated to both input data collection and simulation experiments. Suppose we allocate a fraction p to
collecting common observations, a fraction pi (or p j) to collecting independent observations from system
i (or j), a fraction r to running simulation replications to evaluate m systems simultaneously using CRN,
and a fraction ri (or r j) to running individual simulation replications for system i (or j) , where

p+ pi + p j + r+ ri + r j = 1

with p ≥ 0, pi ≥ 0, r ≥ 0, ri ≥ 0, i ∈ [m]. The resulted system performance estimations are α̂i(θ̂i) and
α̂ j(θ̂ j). The following central limit theorem is a direct result by noticing that the uncertainty presented in
the input data collection and the uncertainty emerged from simulation replications are independent.
Theorem 3 When C→ ∞,

C
1
2 [(α̂i(θ̂i)− α̂ j(θ̂ j))− (αi(θ

∗
i )−α j(θ

∗
j ))]

=C
1
2 [(α̂i(θ̂i)−αi(θ̂i))− (α̂ j(θ̂ j)−α j(θ̂ j))]+C

1
2 [(αi(θ̂i)−αi(θ

∗
i ))− (α j(θ̂ j)−α j(θ

∗
j ))]⇒ Ui j(θ

∗),

where Ui j(θ
∗) is a Gaussian rv with mean zero and variance Vari j(θ

∗) given by

σ2
i

λ p+λi pi
+

σ2
j

λ p+λ j p j
−

2λ pci j

(λ p+λi pi)(λ p+λ j p j)
+

Di(θ
∗
i )

µr+µiri
+

D j(θ
∗
j )

µr+µ jr j
−

2µr Di j(θ
∗)

(µr+µiri)(µr+µ jr j)
.

When comparing two systems and selecting the better, maximizing the asymptotic probability of correct
selection is equivalent to minimizing the limiting variance Vari j(θ

∗) as given above. The associated joint
optimal budget allocation problem is given by

min
pi,p j,p,ri,r j,r

Vari j(θ
∗)

s.t. pi + p j + p+ ri + r j + r = 1 (5)

pi, p j, p,ri,r j,r ≥ 0.

Due to the page limit, we conclude by noting that the joint resource allocation problem 5 in presence of
correlation in both input data and simulation can be decoupled into three sub-problems, each admitting a
closed-form solution.
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