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ABSTRACT

In this paper, we propose an approach to construct uniform error bounds (or confidence intervals) for
stochastic kriging with a prescribed confidence level. The theoretical development sheds some light on the
impact of simulation experimental designs and budget allocation schemes as well as their relative importance
on the large-sample properties of stochastic kriging. Through numerical evaluations, we demonstrate the
superiority of the uniform error bounds to the simultaneous confidence intervals obtained by applying
Bonferroni correction under various experimental settings.

1 INTRODUCTION

In the recent decades, research on metamodeling techniques for stochastic simulation experiments has
received considerable attention from the stochastic simulation research community (Ankenman et al. 2010;
Dellino et al. 2012; Ng and Yin 2012). Several metamodeling methodologies, such as stochastic kriging
(SK, Ankenman et al. (2010)), have been proposed for approximating the mean response surface implied
by a stochastic simulation under the impact of heteroscedasticity (i.e., the simulation output variance varies
across the input space).

Built on Gaussian process (GP), SK is a popular approach suitable for heteroscedastic simulation
metamodeling (Chen and Zhou 2017; Wang and Chen 2018). Similar to kriging, a popular methodology
for design and analysis of deterministic computer experiments (Santner et al. 2003), a key element of
SK prediction is the use of conditional inference based on GP. At each prediction point in the input
space, the conditional distribution of a GP is normal with mean and variance in closed form. A pointwise
confidence interval of the SK predictor with a prescribed coverage probability can be constructed based on
this conditional distribution. In many applications, however, it is often desirable to have a joint confidence
region of the SK predictor over an arbitrary set of prediction points with a prescribed simultaneous coverage
probability. Existing approaches to construct a joint confidence region typically rely on bootstrapping and
correction methods such as Bonferroni or Šidák (De Brabanter et al. 2011) and only apply to a finite number
of prediction points. It would be more desirable to develop a method capable of providing reasonable
bounds on the maximum approximation error achieved by the SK predictor across the input space. Such a
bound can be useful in constructing confidence regions with a guaranteed simultaneous coverage probability,
though somewhat conservatively.

In this paper, we propose a method to construct uniform error bounds of the SK predictor. A key
implication of this work is that the large-sample properties of SK depend on the number of design points
and their locations determined by the experimental design adopted as well as the budget allocation scheme
implemented; moreover, the impact of the experimental design dominates that of the budget allocation
scheme. The rest of the paper is organized as follows. In Section 2, we provide a brief review on SK.
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In Section 3, we provide the main results on constructing uniform error bounds for SK. In Section 4, we
present some numerical experiments to demonstrate the performance of the proposed uniform error bounds.

2 REVIEW OF STOCHASTIC KRIGING

In SK, the system output obtained at a point x∈X ⊆Rd on the jth simulation replication Y j(x) is modeled
as

Y j(x) = f (x)+ ε j(x), (1)

where f (x) denotes the unknown true mean response that we intend to estimate at x ∈X and it is assumed
that f : X →R represents a second-order stationary mean-zero Gaussian process (GP, Santner et al. (2003)).
The spatial covariance between any two points in the GP is given by ΣM(x,x′), where ΣM : Rd×Rd→R+

denotes the kernel or covariance function. The simulation errors incurred at x on different replications,
ε j(x)’s, are assumed to be independent and identically distributed (i.i.d.) random variables with mean
zero and input-dependent variance V(x)≡ Var(ε j(x)). We assume the normality of ε j(x) which could be
anticipated since in a discrete-event simulation the simulation output Y j(x) typically represents the average
of a large number of more basic random variables obtained on the jth simulation replication.

Given a fixed simulation budget B to expend for approximating the mean response surface via SK, an
experimental design for performing the simulation runs can be given as {(xi,ni)

k
i=1 : ∑

k
i=1 ni = B}, where

k denotes the number of distinct design points selected from the input space X , x1,x2, . . . ,xk denote the
k design-point locations, and ni represents the number of replications to apply at xi, i = 1,2, . . . ,k. With
the simulation outputs generated, one can obtain the SK predictor of f (x0) at any x0 ∈X as follows:

µk,B(x0) = ΣM(x0,X)> (ΣM(X,X)+Σε)
−1 Ȳ ,

and its corresponding predictive variance is given by

σ
2
k,B(x0) = ΣM(x0,x0)−ΣM(x0,X)> (ΣM(X,X)+Σε)

−1
ΣM(x0,X),

where X =
(
x>1 ,x>2 , . . . ,x>k

)> denotes the k×d design matrix; Ȳ =
(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk)

)> denotes
the k×1 vector of the sample averages of simulation outputs, with Ȳ (xi) = f (xi)+ ε̄(xi) and ε̄(xi) denoting
the average random error incurred at xi, i = 1,2, . . . ,k. With a slight abuse of notation, we use ΣM(X,X)
to denote the k×k matrix that records the spatial covariances across the k design points and ΣM(x0,X) to
represent the k×1 vector that contains the spatial covariances between the k design points and the prediction
point x0. The k×k diagonal matrix Σε denotes the variance-covariance matrix of the k×1 vector of average
random errors ε̄ = (ε̄(x1), ε̄(x2), . . . , ε̄(xk))

>, and Σε = diag(V(x1)/n1,V(x2)/n2, . . . ,V(xk)/nk).
A pointwise confidence interval (CI) for the SK predictor at a given prediction point x0 ∈X with a

prescribed confidence level (1−α) can be constructed as µk,B(x0)± z1−α/2σk,B(x0), where α ∈ (0,1) and
z1−α/2 denotes the (1−α/2)-quantile of the standard normal distribution (Kleijnen 2015). One way to
construct a joint confidence region of the SK predictor at N prediction points (i.e., x0,i ∈X , i = 1,2, . . . ,N)
with confidence level (1−α) is to apply Bonferroni correction and obtain a joint confidence region
comprising N pointwise confidence intervals: µk,B(x0,i)± z1−α/(2N)σk,B(x0,i), i = 1,2, . . . ,N. Nevertheless,
the literature on constructing a joint confidence region of the SK predictor over an arbitrary set of prediction
points is sparse.

3 MAIN RESULTS

In this section, we present three main results regarding the construction of probabilistic uniform error
bounds for SK.
Theorem 1 Consider a zero mean Gaussian process defined through the continuous covariance function
ΣM(·, ·) with Lipschitz constant LΣ on the compact set X ⊂ Rd . Also consider a continuous unknown
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function f (x) : X →R with Lipschitz constant L f , and its noisy observations Y (·)’s satisfy the assumptions
stipulated under model (1). Then, the predictive mean function µk,B(·) and standard deviation σk,B(·)
obtained based on a simulation dataset Dk,B = {xi,{Y j(xi)}ni

j=1, i = 1,2, . . . ,k : ∑
k
i=1 ni = B} are continuous

with Lipschitz constant Lµk,B and modulus of continuity ωσk,B(·) on X , which are respectively given by

Lµk,B ≤ LΣ

√
k
∥∥∥(ΣM(X,X)+Σε

)−1
Ȳ
∥∥∥,

ωσk,B(τ) ≤

√
2τLΣ

(
1+ k

∥∥∥(ΣM(X,X)+Σε

)−1
∥∥∥ max

x,x′∈X
ΣM(x,x′)

)
,

where ‖·‖ denotes the Euclidean norm throughout the paper; and LΣ, the Lipschitz constant of the covariance
function ΣM(·, ·), is defined as

LΣ ≡ max
x,x′∈X

∥∥∥∥∥
(

∂ΣM(x,x′)
∂x1

∂ΣM(x,x′)
∂x2

. . .
∂ΣM(x,x′)

∂xd

)>∥∥∥∥∥.
Given any α ∈ (0,1), choose τ ∈ R+ and set

β (τ) = 2log(M(τ,X )/α) and γB(τ) = (Lµk,B +L f )τ +
√

β (τ)ωσk,B(τ), (2)

then it holds true that

P
(
|µk,B(x)− f (x)| ≤

√
β (τ)σk,B(x)+ γB(τ),∀x ∈X

)
≥ 1−α, (3)

where L f denotes a Lipschitz constant of f (·) that holds with probability of at least 1−αL with αL ∈ (0,1)
and can be given as

L f =

∥∥∥∥∥∥∥∥∥∥∥



√
2log

(
2d
αL

)
max
x∈X

√
Σ∂1
M (x,x)+12

√
6d max

{
max
x∈X

√
Σ∂1
M (x,x),

√
rL∂1

Σ

}
...√

2log
(

2d
αL

)
max
x∈X

√
Σ∂d
M (x,x)+12

√
6d max

{
max
x∈X

√
Σ∂d
M (x,x),

√
rL∂d

Σ

}


∥∥∥∥∥∥∥∥∥∥∥
;

L∂ i
Σ

denotes the Lipschitz constant of the partial derivative kernel Σ∂ i
M(x,x) on the set X for i = 1,2, . . . ,d,

and r ≡ max
x,x′∈X

||x−x′||.

Theorem 1 is inspired by Theorem 3.1 of Lederer and Umlauft (2019), and its proof is given in Xie
(2020). Below we make some remarks on Theorem 1. First, the parameter τ denotes the grid constant used
in the derivation of Theorem 1 and M(τ,X ) is the minimum number of points in a grid over X with the
grid constant τ . For example, consider a hypercubic set X ⊆Rd , an upper bound of M(τ,X ) can be given
as (1+ r/τ)d , where r denotes the edge length of the hypercube. Notice that β (τ) and γB(τ) in (2) can
be obtained analytically given a simulation dataset Dk,B and the covariance function ΣM(·, ·). Therefore,
a probabilistic uniform error bound that holds true simultaneously for all x ∈X can be constructed with
a prescribed error level α and a choice of the grid constant τ . Second, we note that the upper bound of
the approximation error achieved at x,

√
β (τ)σk,B(x)+ γB(τ), consists of two parts; and τ can be chosen

arbitrarily small so that the first part dominates the second part. We will use this fact to study the asymptotic
performance of the uniform bound as the number of design points k and the total simulation budget B
approach infinity.

The next result reveals that under appropriate conditions, the approximation error as quantified by the
uniform bound vanishes as k,B→∞. Below we make the choice of grid constant τ depend on the number
of design points k, so β (τ) and γB(τ) depend on k as well. The notation τ(k), βk(τ), and γk,B(τ) will be
used below to emphasize their dependence on k.
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Theorem 2 Suppose that the assumptions of Theorem 1 are satisfied. Furthermore, consider an infinite
sequence of observations are obtained at a growing number of design points and assume that the absolute
value of the unknown mean function f (x) : X → R is bounded above by f̄ ∈ R+. If there exists a ζ > 0
such that σk,B(x) = O

(
log(k)−

1
2−ζ

)
at ∀x ∈X , then it holds for every α ∈ (0,1) that

P
(

sup
x∈X
|µk,B(x)− f (x)|= O

(
log(k)−ζ

))
≥ 1−α.

Proof. Due to Theorem 1 with βk(τ) = 2log(M(τ(k),X )/(πkα)) such that
∞

∑
k=1

πk = 1/2 and the union

bound over all k > 0, it follows that the following event is true with probability of at least 1−α/2:

sup
x∈X
|µk,B(x)− f (x)| ≤

√
βk(τ) sup

x∈X
σk,B(x)+ γk,B(τ), ∀k > 0. (4)

A trivial bound for the covering number can be obtained by considering a uniform grid over the cube
containing X . This approach leads to M(τ(k),X )≤ (1+ r/τ(k))d , where r = max

x,x′∈X
‖x−x′‖. Therefore,

we have

βk(τ)≤ 2d log(1+ r/τ(k))−2log(πk)−2log(α). (5)

Furthermore, due to Theorem 1, we have

Lµk,B ≤ LΣ

√
k
∥∥∥(ΣM(X,X)+Σε)

−1 Ȳ
∥∥∥.

Since the matrix ΣM(X,X)+Σε is positive definite and f (·) is bounded above by f̄ , we have∥∥∥(ΣM(X,X)+Σε)
−1 Ȳ

∥∥∥≤ ∥∥Ȳ ∥∥/λmin (ΣM(X,X)+Σε)≤ (
√

k f̄ +‖ε̄‖)/Vk,min,

where λmin (A) is the minimum eigenvalue of a square symmetric matrix A, Vk,min ≡ min
1≤i≤k

V(xi)/ni, and

recall ε̄ = (ε̄(x1), ε̄(x2), . . . , ε̄(xk))
>. Given that ε̄ is multivariate normally distributed with mean zero and

variance-covariance matrix Σε , ‖ε̄‖2 is equal to
k
∑

i=1
aiZ2

i in distribution, where Zi’s are i.i.d. standard normal

random variables and ai = V(xi)/ni, for i = 1,2, . . . ,k, i.e., ‖ε̄‖2 D
=

k
∑

i=1
aiZ2

i . Then by Lemma 1 of Laurent

and Massart (2000), we have

P

‖ε̄‖2 ≥ 2

(
k

∑
i=1

V2(xi)

n2
i

) 1
2 √

ηk,B +2Vk,maxηk,B +
k

∑
i=1

V(xi)

ni

≤ exp(−ηk,B)

for any ηk,B > 0, where Vk,max ≡ max
1≤i≤k

V(xi)/ni. Therefore, with probability of at least 1−exp(−ηk,B), we

have

‖ε̄‖2 ≤ 2

(
k

∑
i=1

V2(xi)

n2
i

) 1
2 √

ηk,B +2Vk,maxηk,B +
k

∑
i=1

V(xi)

ni
.
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Hence, if we set ηk,B = log(1/(πkα)) so that
∞

∑
k=1

πk = 1/2, then applying the union bounds over all k > 0

yields

∥∥∥(ΣM(X,X)+Σε)
−1 Ȳ

∥∥∥≤
√k f̄ +

2

(
k

∑
i=1

V2(xi)

n2
i

) 1
2 √

ηk,B +2Vk,maxηk,B +
k

∑
i=1

V(xi)

ni


1
2
V−1

k,min

for all k > 0 with probability of at least 1−α/2. Hence, by Theorem 1, the Lipschitz constant of the
predictive mean function µk,B(·) satisfies

Lµk,B ≤ LΣ

√
k

√k f̄ +

2

(
k

∑
i=1

V2(xi)

n2
i

) 1
2 √

ηk,B +2Vk,maxηk,B +
k

∑
i=1

V(xi)

ni


1
2
V−1

k,min

︸ ︷︷ ︸
≡Uk,B

, ∀k > 0,

where Uk,B denotes all the terms to the right of LΣ in the inequality above. Since ηk,B grows slowly (typically
logarithmically with k for some commonly used {πk} sequences), it is not hard to see that Lµk,B ∈ O(k)
with probability of at least 1−α/2. The modulus of continuity ωσk,B(·) of the predictive standard deviation
satisfies

ωσk,B(τ)≤
[

2LΣτ(k)
(

k max
x̃,x̃′∈X

ΣM(x̃, x̃′)
/

Vk,min +1
)] 1

2

as
∥∥∥(ΣM(X,X)+Σε)

−1
∥∥∥≤ 1

/
Vk,min. Due to the union bound, (4) holds with probability of at least 1−α

with

γk,B(τ)≤
[

2LΣτ(k)βk(τ)

(
k max

x̃,x̃′∈X
ΣM(x̃, x̃′)

/
Vk,min +1

)] 1
2

+L f τ(k)+LΣUk,Bτ(k). (6)

γk,B(τ) must converge to zero as k,B→ ∞ to guarantee a vanishing approximation error at ∀x ∈X . This
can be achieved if the grid constant as a function of k, τ(k), decreases faster than O

(
(k log(k))−1

)
. We can

set τ(k) =O(k−2) to guarantee lim
k,B→∞

γk,B(τ) = 0 in light of (6). This choice implies that βk(τ) =O(log(k))

due to (5). Given that there exists a ζ > 0 such that σk,B(x) = O(log(k)−
1
2−ζ ) at ∀x ∈X . The proof is

complete by noticing that
√

βk(τ)σk,B(x) = O(log(k)−ζ ) at ∀x ∈X .

We remark on Theorem 2 and its proof with respect to a desirable simulation experiment design for SK.
First and foremost, given a fixed total budget B to allocate at k distinct design points, the budget allocation
scheme adopted impacts the width of the uniform error bound through σk,B(x) and γk,B(τ) as manifested by
(4) and (6). In particular, efficient unequal budget allocation schemes are expected to reduce the magnitudes
of σk,B(x) and γk,B(τ) as compared to an equal allocation scheme hence lead to a smaller uniform error
bound. Second, we see from (5) that the smaller the grid constant τ(k), the greater the coefficient βk(τ);
furthermore, to guarantee a vanishing approximation error at ∀x ∈X , the choice of τ(k) must satisfy
τ(k)βk(τ)k→ 0 as k→ ∞ and supx∈X

√
βk(τ)σk,B(x)→ 0 as k,B→ 0. Third, the number of replications

allocated to all design points, ni’s, must not be too small to ensure that the multivariate normality of ε̄k

holds approximately. Lastly, the assumption on the convergence rate σk,B(x) =O(log(k)−
1
2−ζ ) for ∀x∈X

is mild, which can be shown to hold when the commonly used Lipschitz continuous covariance functions
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such as Gaussian and Matérn (with the parameter controlling the smoothness of sample paths ν > 2) are
adopted for metamodeling; see details from Xie (2020).

The last result sheds some light on conditions with respect to simulation experimental designs that
ensure a vanishing pointwise prediction variance (or equivalently, standard deviation) as the number of
design points k and the total simulation budget B approach infinity.
Theorem 3 Suppose that the assumptions of Theorem 1 are satisfied. Denote a simulation dataset obtained
as a result of allocating a total of B simulation replications at k design points byDk,B = {{xi,{Y j(xi)}ni

j=1}, i=
1,2, . . . ,k : ∑

k
i=1 ni = B}. Let Dx

k denote the set of design points and Bρ(x) = {x′ ∈ Dx
k : ‖x′−x‖ ≤ ρ}

denote the set of design points restricted to a ball around x with radius ρ > 0. Then, for each x ∈X and
ρ ≤ ΣM(x,x)/LΣ, an upper bound for the predictive variance at x can be given as

σ
2
k,B(x)≤

(
ΣM(x,x) max

xi∈Bρ (x)

V(xi)

ni
+ |Bρ(x)|

(
4LΣρΣM(x,x)−L2

Σρ
2))(|Bρ(x)|(ΣM(x,x)+2LΣρ)+ max

xi∈Bρ (x)

V(xi)

ni

)−1

,

where |Bρ(x)| denotes the cardinality of Bρ(x).

Proof. The proof is along the lines of Theorem 3.1 of Lederer et al. (2019). Since ΣM(X,X)+Σε is
positive definite, it follows that

σ
2
k,B(x) = ΣM(x,x)−ΣM(x,X)> (ΣM(X,X)+Σε)

−1
ΣM(x,X) (7)

≤ ΣM(x,x)−‖ΣM(x,X)‖2/λmax(ΣM(X,X)+Σε)

≤ ΣM(x,x)−‖ΣM(x,X)‖2/(λmax(ΣM(X,X))+λmax(Σε)) ,

as a>H−1a≤ λmin(H−1)‖a‖2 and λmin(H−1) = 1/λmax(H), with λmin(H) and λmax(H) respectively denoting
the minimum and maximum eigenvalues of a square symmetric matrix H.

By Geršhgorin’s theorem (Geršhgorin 1931), we have

λmax(ΣM(X,X))≤ k max
x′,x′′∈Dx

k

ΣM(x′,x′′)

Furthermore, we have λmax(Σε) = max
1≤i≤k

V(xi)/ni. Due to the definition of ΣM(x,X), we have

‖ΣM(x,X)‖2 ≥ k min
x′∈Dx

k

Σ
2
M(x′,x). (8)

Hence, it follows from (7)–(8) that

σ
2
k,B(x)≤ ΣM(x,x)− k min

x′∈Dx
k

Σ
2
M(x′,x)

(
k max

x′,x′′∈Dx
k

ΣM(x′,x′′)+ max
1≤i≤k

V(xi)/ni

)−1

. (9)

The bound in (9) can be further simplified by using the monotonicity of the predictive variance as a function
of the number of design points (Wang and Hu 2018), i.e., σ2

k (x)≤ σ2
k′(x) at ∀x ∈X if k > k′ and hence

considering only data inside the ball Bρ(x) with radius ρ > 0.
Using this reduced set of design points inside the ball Bρ(x) instead of Dx

k and writing the right-hand
side of (9) into a single fraction yields

σ
2
k,B(x)≤

(
ΣM(x,x) max

xi∈Bρ (x)

V(xi)

ni
+ |Bρ(x)|ξ (x,ρ)

)(
|Bρ(x)| max

x′,x′′∈Bρ (x)
ΣM(x′,x′′)+ max

xi∈Bρ (x)

V(xi)

ni

)−1

, (10)

where

ξ (x,ρ) = ΣM(x,x) max
x′,x′′∈Bρ (x)

ΣM(x′,x′′)− min
x′∈Bρ (x)

Σ
2
M(x′,x). (11)
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Under the assumption that ρ ≤ ΣM(x,x)/LΣ, it follows from the Lipschitz continuity of ΣM(·, ·) that

min
x′∈Bρ (x)

Σ
2
M(x′,x)≥ (ΣM(x,x)−LΣρ)2.

Furthermore,

max
x′,x′′∈Bρ (x)

ΣM(x′,x′′)≤ ΣM(x,x)+2LΣρ, (12)

which follows from the fact that

|ΣM(x′,x′′)−ΣM(x,x)| ≤ |ΣM(x′,x′′)−ΣM(x′,x)|+ |ΣM(x′,x)−ΣM(x,x)| ≤ 2LΣρ, ∀x′,x′′ ∈ Bρ(x).

Hence, by (11)–(12), we have

ξ (x,ρ) ≤ ΣM(x,x)(ΣM(x,x)+2LΣρ)− (ΣM(x,x)−LΣρ)2 (13)
= 4LΣρΣM(x,x)−L2

Σρ
2.

The proof is complete upon plugging (13) into (10).

We make some remarks on Theorem 3. First, the radius parameter ρ defines how far away from a
prediction point x the design points are considered to be informative. Second, it is easy to show that
the upper bound for σ2

k,B(x) in Theorem 3 is an increasing function of max
xi∈Bρ (x)

V(xi)/ni. Hence, reducing

the local maximum noise variance around the prediction point x helps reduce σ2
k,B(x). Moreover, it is

easy to see upon some algebraic manipulation of the upper bound that given any fixed ρ > 0, as long as
|Bρ(x)| → ∞, the impact of simulation noise can be mitigated. To guarantee σ2

k,B(x)→ 0 as k,B→ 0, it
is sufficient to require that the radius ρ : k→ R+, as a function of the number of design points k, satisfy
ρ(k)≤ ΣM(x,x)/LΣ for ∀k≥ 0, lim

k→∞

ρ(k) = 0 and lim
k→∞

|Bρ(k)(x)|= ∞. The above implies that compared to

efficient unequal budget allocation schemes, an experimental design consisted of ever more densely located
design points plays a more important role in ensuring a vanishing prediction variance, given a sufficiently
large simulation budget.

4 NUMERICAL EXPERIMENTS

In this section we numerically evaluate the performance of the proposed uniform error bound/confidence
interval (referred to as CIu) in comparison with the simultaneous confidence interval obtained with Bonferroni
correction (referred to as CIb).

Two numerical examples are considered. The first one is related to an M/M/1 queue and the second
one is a 2-dimensional synthetic example. We start with describing the common experimental setup used
in both examples. A simulation experiment is performed with a total budget of B observations to collect
at k distinct design points, with ni observations to obtain at design point xi, for i = 1,2, . . . ,k. Three
budget allocation schemes, i.e., the equal allocation, unequal allocation 1, and unequal allocation 2, are
considered. Specifically, the equal budget allocation scheme sets ni = dB/ke, where dae denotes the least
integer not less than a. Assuming that the noise variance function is known, the unequal allocation 1 sets

ni =
⌈

V(xi)

∑
k
i=1 V(xi)

B
⌉

, while the unequal allocation 2 sets ni =
⌈ √

V(xi)

∑
k
i=1

√
V(xi)

B
⌉

. We consider distinct experimental

settings comprising various combinations of the total budget B, the number of design points k, and the
budget allocation scheme adopted. The nominal confidence level is set to 0.95.

Specifically, we repeat the simulation experiment under each experimental setting for M = 100 indepen-
dent macro-replications and calculate the simultaneous coverage probability (SCP) of a given confidence
interval defined as follows:

SCP =
1
M

M

∑
m=1

1{ f (x0,i) ∈ CI(x0,i) for each i = 1,2, . . . ,N on the mth macro-replication},
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where CI(x0,i) refers to either CIu or CIb obtained at prediction point x0,i, i = 1,2, . . . ,N; and 1{A} is 1 if
event A is true and 0 otherwise. Moreover, we compare the half-widths of CIu and CIb constructed for the N
prediction points based on their respective maximum half-widths Hmax achieved on each macro-replication.

4.1 An M/M/1 Queueing Example

Consider simulating an M/M/1 queue with service rate 1 and arrival rate x with x ∈X = [0.3,0.9]. It
is well known from queueing theory that the steady-state mean number of customers in the queue is
f (x) = 1/(1− x). This is the function we intend to estimate. The general experiment setup is as given at
the beginning of Section 4, and the specific setup for this example is given as follows. The grid constant τ

is set to 10−10/k2 to ensure that
√

βk(τ)σk,B(x) dominates γ(τ) in (3). We consider using a total budget
B ∈ {2560,25600} and varying the number of distinct design points k ∈ {16,32,128,512} when B = 2560
and k ∈ {32,128,512,2048} when B = 25600. The three budget allocation schemes mentioned at the
beginning of Section 4 are applied given each combination of B and k. Notice that the true noise variance
function is V(x)≈ 2x(1+ x)/(T (1− x)4) for large T and we set T = 1000 in this example. The k design
points are evenly spaced in X , and a grid of N = 1000 equispaced prediction points is selected from X .

Summary of results. Table 1 shows the SCPs of the uniform confidence intervals (CIu) and the confidence
intervals obtained with Bonferroni correction (CIb) under various experimental settings. We have the
following observations. First, given a fixed budget B, CIu can typically achieve SCPs that are higher than
the nominal level 0.95, whereas the SCPs of CIb are close to 0.95 only when the number of design points k
is relatively small. Second, the simultaneous coverage performance of CIu stays satisfactory as the number
of design points k increases until it reaches a point that only a few replications are allocated to the design
points according to a given budget allocation scheme; see, e.g., the SCPs of CIu obtained under the equal
allocation scheme given B = 2560. The simultaneous coverage performance of CIb, however, deteriorates
rapidly as k increases given a fixed budget B; this is observed under all three budget allocation schemes.
Third, the SCPs of CIu and CIb increase with the budget B when the budget is applied to a fixed number
of design points k according to a given budget allocation scheme. Lastly, applying an unequal budget
allocation scheme helps improve the simultaneous coverage performance of CIb when the number of design
points k is not too large relative to the budget B given. The impact on SCPs of CIu is not as obvious though.

Table 1: SCPs of CIu and CIb obtained for the M/M/1 example under different experimental settings.

B k
Equal allocation Unequal allocation 1 Unequal allocation 2
CIu CIb CIu CIb CIu CIb

2560

16 1 0.80 1 0.97 1 0.98
32 1 0.68 1 0.93 1 0.90

128 0.98 0.46 1 0.52 1 0.70
512 0.92 0.33 0.88 0.14 1 0.57

25600

32 1 0.98 1 1 1 1
128 1 0.69 1 0.96 1 0.93
512 1 0.54 1 0.81 1 0.78
2048 1 0.50 0.99 0.33 1 0.72

We next examine the maximum half-widths of CIu and CIb. Figure 1 (a) and (b) respectively summarize
the magnitudes of Hmax’s (in a logarithmic scale) of CIu and CIb with B= 25600 obtained on 100 independent
macro-replications. As similar conclusions can be reached regarding the Hmax’s obtained with B = 2560,
we omit the details to economize on space. The following observations can be made from Figure 1 (a) and
(b). First, the Hmax’s of CIu significantly dominate those of CIb under each experimental setting studied.
Second, for both CIu and CIb, the magnitude of Hmax’s tends to decrease with the number of design points
k when a fixed budget B is applied according to a given budget allocation scheme. Third, for both CIu
and CIb, when a given budget B is allocated to a fixed number of design points, the magnitude of Hmax’s
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Figure 1: Boxplots of log(Hmax) of CIu and CIb for the M/M/1 example obtained on 100 independent
macro-replications with B = 25600.

produced under the equal allocation scheme is the highest; the magnitudes of Hmax’s produced under the
two unequal allocation schemes are similar, with unequal allocation scheme 2 leading to higher Hmax’s
than unequal allocation scheme 1. The above helps explain the slightly higher SCPs of CIu observed under
unequal allocation scheme 2 as compared to unequal allocation scheme 1 as shown in Table 1. It is worth
noting that, regarding CIu, the two unequal budget allocation schemes lead to much shorter half-widths
than the equal budget allocation scheme without compromising the simultaneous coverage performance as
observed in Table 1.

To illustrate the differences between CIu and CIb, in Figure 2 we show the true mean function f (x)
together with CIu and CIb obtained on an arbitrarily chosen macro-replication by allocating a budget of
B = 2560 to k = 128 design points according to the three budget allocation schemes. We observe that
under all three budget allocation schemes, the CIu obtained can cover the true mean function f (x) at all
prediction points. In strong contrast, the CIb obtained fails to cover f (x) where the M/M/1 queue is in
“heavy traffic” (i.e., where x is close to 0.9). Furthermore, it is interesting to see that for both CIu and CIb,
the two unequal allocation schemes can significantly reduce the predictive uncertainty in the “heavy traffic”
region and lead to confidence bounds with more even widths throughout the input space X . In contrast,
the equal allocation scheme results in much wider confidence bounds in the “heavy traffic” region.
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Figure 2: An illustration of the CIu and CIb obtained for the M/M/1 example on an arbitrarily chosen
macro-replication with B = 2560 and k = 128; f (x) denotes the true mean function to estimate.

4.2 A Two-Dimensional Example

Consider the following 2-D example where we try to estimate the mean function f (x) = sin(9x2
1)+sin(9x2

2)
with x = (x1,x2)

> ∈X = [−1,1]× [−1,1]. Specifically, the simulation output at design point x on the
jth replication is generated according to model (1), with the noise variance function given by V(x) =
(2+ cos(π +(x1 + x2)/2))2, x ∈X . The contour plots of the true mean and noise variance functions are
shown in Figure 3 (a) and (b), respectively. We give the specific setup for this example next and refer
the reader for the general experiment setup to the beginning of Section 4. The grid constant τ is set to
10−4/k2 in this example to ensure that

√
βk(τ)σk,B(x) dominates γ(τ) in (3). We consider using a total

budget B ∈ {2560,10240} and varying the number of distinct design points k ∈ {32,64,128,256,512}
when B = 2560 and k ∈ {32,64,128,256,512,1024,2048} when B = 10240. The three budget allocation
schemes mentioned at the beginning of Section 4 are applied given each combination of B and k. A set
of k design points is selected from X via Latin hypercube sampling and a grid of N = 2500 equispaced
points in X is used as the prediction points.
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Figure 3: Contour plots of the true mean and noise variance functions for the 2-D example.

Summary of results. Table 2 presents the SCPs of the uniform confidence intervals (CIu) and the
confidence intervals obtained with Bonferroni correction (CIb) under various experimental settings. We
have the following observations. First, given a fixed budget B, CIu can achieve SCPs that are higher than
the nominal level 0.95 in most of the cases, whereas all SCPs of CIb are lower than the nominal level.
Second, the simultaneous coverage performance of CIu obtained under all three budget allocation schemes
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is satisfactory unless the number of design points k is relatively small—an insufficient number of design
points is inadequate to capture the rapidly changing behavior of f (·) across X hence results in relatively
poor predictive performance. The simultaneous coverage performance of CIb improves slightly with k given
a fixed budget B but drops again when k becomes too large; the above is observed under all three budget
allocation rules. Lastly, applying an unequal budget allocation scheme helps improve the simultaneous
coverage performance of CIb in most of the cases when the number of design points k is not too large
relative to the budget B given. The impact on SCPs of CIu is not as obvious.

Table 2: SCPs of CIu and CIb obtained for the 2-D example under different experimental settings.

B k
Equal allocation Unequal allocation 1 Unequal allocation 2
CIu CIb CIu CIb CIu CIb

2560

32 0.58 0.22 0.61 0.24 0.62 0.23
64 1 0.63 1 0.70 1 0.66

128 1 0.69 1 0.66 1 0.63
256 1 0.64 1 0.69 1 0.60
512 1 0.09 1 0.08 1 0.11

10240

32 0.58 0.31 0.62 0.30 0.63 0.31
64 0.97 0.59 0.98 0.58 0.99 0.56

128 1 0.56 1 0.59 1 0.51
256 1 0.55 1 0.69 1 0.59
512 1 0.75 1 0.77 1 0.75
1024 1 0.66 1 0.61 1 0.65
2048 1 0.04 0.99 0.03 1 0.03

Figure 4 (a) and (b) respectively summarize the magnitudes of Hmax’s (in a logarithmic scale) of CIu
and CIb with B = 10240 obtained on 100 independent macro-replications. The following observations
can be made from 4 (a) and (b). First, the Hmax’s of CIu significantly dominate those of CIb under each
experimental setting studied. Second, for both CIu and CIb, the magnitude of Hmax’s tends to decrease with
the number of design points k when a fixed budget B being applied according to a given budget allocation
scheme. Third, for both CIu and CIb, when a given budget B is allocated to a fixed number of design
points, the magnitude of Hmax’s produced under the equal allocation scheme is the highest; the magnitudes
of Hmax’s produced under the two unequal allocation schemes are similar, with unequal allocation scheme
2 leading to higher Hmax’s than those obtained under unequal allocation scheme 1. It is worth noting
that, regarding CIu, the two unequal budget allocation schemes lead to shorter half-widths as compared
to the equal budget allocation scheme without compromising the simultaneous coverage performance as
evidenced by Table 2.
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Figure 4: Boxplots of log(Hmax) of CIu and CIb for the 2-D example obtained on 100 independent
macro-replications with B = 10240.
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