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ABSTRACT 

Steel plates are supplied to shipyards without adhering to the processing schedule because they are ordered 
in bulk according to the steel market condition and the mid- to long-term production strategy. Hence, steel 
plates are stacked up in the steel stock yard until they are input to the processing system and then supplied 
sequentially according to the processing start date. Currently, a steel stock yard, is operated by the 
experience of field workers, and inefficiencies such as excessive crane use are occurring, so efficient 
management techniques are required. However, the conventional optimization algorithm has limitations 
because the input timing of the steel is random. In this study, a study was conducted to determine the order 
of steel input into steel stock yard using reinforcement learning algorithm. Effective algorithm(A3C) can 
be identified through tests, and it was validated that proposed method is effective for problems of actual 
size steel stock yard. 

1 INTRODUCTION   

Steel plates are supplied to shipyards without adhering to the processing schedule because they are ordered 
in bulk according to the steel market condition and the mid- to long-term production strategy. Hence, steel 
plates are stacked up in the steel stock yard until they are input to the processing system and then supplied 
sequentially according to the processing start date.  Because steel plates are input to the steel stock yard in 
the order of arrival at the port (more or less) regardless of the processing input sequence, they are managed 
in accordance with the processing input schedule through a separate sorting work. The steel plates in the 
steel stock yard are stacked up vertically. The steel plates placed above those that are to be shifted must be 
transferred to another place using a crane. At present, few shipyards manage the initial stacking order. Thus, 
they incorporate the first and second sorting work so that the steel plates can be input on the planned date. 
Steel stock yard management cost can be saved if the sorting work is reduced by considering the initial 
piling sequence.  Theoretically, this problem can be solved by stacking up the planned steel plates in the 
reverse order of input. However, in the actual steel stock yard environment, the order of receipt of steel 
plates to be planned cannot be determined because the steel plates are unloaded and received in bulk using 
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a barge or ship. That is, at the time when the stacking location of each steel plate must be determined, each 
steel plate has a random processing start date that cannot be standardized. Moreover, it is challenging to 
formulate this as an optimization problem because the stacking status for positioning the next steel plate is 
altered the instant the steel is deposited in a specific stack. In this study, we conducted an artificial 
intelligence research to reduce the number of crane movements by minimizing the sorting work in the steel 
stock yard. We introduce a reinforcement learning algorithm that determines the optimal location (of the 
file) considering the input date of the steel plates. 

2 LITERATURE REVIEW 

Lee et al. (2019) conducted a study on scheduling problems based on reinforcement learning for 
semiconductor manufacturing processes. In this study, SARSA algorithm was applied to learn the model to 
determine the work to be put into the process equipment among the jobs waiting in the buffer based on the 
scores for various dispatching rules. Kim (2019) conducted a study on reinforced learning-based scheduling 
with the aim of learning a planning model applicable to various production environments for semiconductor 
packaging lines. To this end, this study focused on the robustness of the learning model and studied the 
scheduling problem using the deep Q network-based reinforcement learning algorithm to which normalized 
learning was applied. Shin et al. (2010) conducted a study to learn the scheduling method that adaptively 
changes the dispatching rule as the probability of rework changes with respect to manufacturing systems 
that have an unstable rework probability. Zhang et al. (2017) conducted a study on sequencing problem of 
determining the input order of jobs waiting in queues by applying simulation-based value iteration and Q-
learning. In the subsequent study of Zhang et al. (2018), reinforcement learning method was applied to 
sequencing problem of batching in jobshop. Fateme et al. (2013) conducted a study to model the crane 
scheduling problem related to the selection of a transport truck that minimizes the waiting time of a 
container transport truck at a container terminal by applying a q-learning-based reinforcement learning 
algorithm. Hirashima (2008) applied the reinforcement learning algorithm based on q-learning to solve the 
marshalling plan problem of moving the initially randomly placed containers in an optimal layout for 
shipping containers in the order in which they are moored at the container terminal. A learning study was 
conducted. Specifically, the learning algorithm was applied to each marshalling plan by determining the 
order of containers for relocation and determining the location of the container. Shen et al. (2017) applied 
the DON reinforcement learning algorithm to the ship stowage planning problem to determine the slot of 
the ship to which the container will be stacked, so that the availability, reshuffling, and crane usage (yard 
crane) of the plan were applied. A study was conducted to learn the optimal plan from the perspective of 
shifting. Verma et al. (2019) conducted a study on applying reinforcement learning to scheduling problem 
of container loading to minimize the shuffling tasks using crane. In cases of steel stock yard, Kim et al. 
(2011) conducted a study to formulated the stacking problem in steel stock yard and analyzed several 
mathematical approaches to solve the problem. In the study of Fechter et al. (2018), Sarsa(λ) algorithm was 
applied to stacking problem in steel industry to minimize shuffling movements which are required to meet 
the delivery sequence of produced steel slabs. 

3 OBJECTIVE 

The objective of this study is to develop a reinforcement learning algorithm and environment to determine 
the optimal stack location to minimize the sorting work (or number of crane movements) until the steel 
plates received from the outside are input to the process. To achieve this, the selectable actions and the 
states of the stock yard must be defined so that the problem of determining the steel location in the steel 
stock yard can be learned. Next, the steel stock yard environment that can be learned according to the 
defined problem must be configured. The selectable actions, state variation according to the action, and 
reward for the selected action must be defined for the steel stock yard environment. For the reinforcement 
learning algorithm, we select an algorithm that exhibits the highest probability of success by applying 
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established algorithms (e.g., Q-learning, Deep Q-Network (DQN), Advantage Actor-Critic (A2C), and 
Asynchronous Advantage Actor-Critic (A3C)). Problem Definition 

3.1 Operation of Steel Stock Yard 

First, we describe the analysis of the process of a steel stock yard, which is the objective of the actual 
problem. Figure 1 shows a steel stock yard in an actual shipyard. The steel plates are input through the 
following three-step process.  

3.1.1 Unloading Bay → Main stock 
When steel plates arrive in a random order at the unloading bay of the shipyard through a ship (or 

barge), the arrived steel plates are transported to the stock yard in the order of arrival and stacked up. This 
main stock is composed of approximately 20 stacks. 

3.1.2 Main Stock  → 1st Sorting Area 
When a weekly processing plan is established from the production plan, the corresponding steel plates 

are transported from the main stock to the first sorting area. 

3.1.3 1st Sorting Area  → 2nd Sorting Area 

The steel plates for a week in the first sorting area are sorted by day and piled in the second sorting 
area. The second sorting area is close to the conveyer transfer device for transportation to the processing 
plant. The steel plates stacked in the second sorting area are transported to the processing plant conveyor 
using a crane according to the input schedule of the processing plant.  

 
Figure 1: Steel stock yard of shipyard. 

3.2 Requirement Analysis 

The initial requirement of the shipyard manager is to develop a separate learning algorithm for the three 
processes described in Section 3.1. We examined the feasibility of separately developing the artificial neural 
network for determining the stacking location of the main stock and that for sorting in the first and second 
sorting areas. However, in the sorting in a previous study (reference), this approached yielded a good result 
for 4–6 stacks, where 10 stacks can be stacked, whereas the learning did not converge for larger stockyard 
sizes. Because we have not determined a solution for this problem, the artificial neural network learning 
for sorting was excluded from this study. 
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Meanwhile, the sorting work can be minimized if the stacking location is determined appropriately (so 
that the steel plates are stacked in the order of processing date) when steel plates are shifted from one area 
to the next, in which case sorting becomes a secondary problem. Therefore, to summarize the requirement, 
although the decision on stock location and sorting of steel plates are independent tasks, the sorting work 
can be minimized by optimizing the decision on stock location. Hence, we decided to focus on learning 
about the decision on stock location. The learning for each transport section can be performed by altering 
the state definition and steel plate input using the same algorithm. Therefore, we set the research direction 
to design the environment using parameters and develop an artificial neural network for decision on stock 
location for various states.  

4 REINFORCEMENT LEARNING FOR DECISION ON STOCK LOCATION 

Figure 2 shows a diagram of reinforcement learning for decision on steel location and summarizes the 
content of this paper. Reinforcement learning at the top is the algorithm for learning. For this, we used 
DQN, A2C, and A3C in this study. This learning algorithm delivers the selected action information to the 
environment in the middle, receives the state and reward feedback from the environment, and updates the 
weight of the neural network. The environment in the middle is implemented to interoperate with the 
learning algorithm by extracting only the part (stacking location) required for learning from a real steel 
stock yard. 

 

 

Figure 2: Diagram of reinforcement learning for decision of steel location. 

4.1 Reinforcement Learning Algorithm 

Next, the reinforcement learning algorithms used in this study are introduced. In this study, we compared 
the results of learning using DQN, A2C, and A3C.  

4.1.1 DQN 

The DQN algorithm was developed from the Deep SARSA(State-Action-Reward-State-Action) algorithm. 
It approximates the Q function for action to a neural network called Q-Network and updates the weight of 
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the Q-Network to receive the maximum reward as learning progresses. Here, undertaking an action (a) in 
the current state (s), receiving the reward (r) and the next state (s’) from the environment, and undertaking 
the next action (a’) are used as one sample (s, a, r, s’, a’). Then, the weight(𝜃) of the Q-Network is updated 
using a loss function for the mean square error (MSE) defined by the following (1) (𝛾 is a discounting ratio): 
   

𝑀𝑆𝐸 =  (𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃) − 𝑄(𝑠, 𝑎; 𝜃))2                                  (1) 
 

4.1.2 A2C/A3C 
The A3C algorithm (which was developed from the existing A2C algorithm) updates the global network 
with the independent learning result of each of several agents for learning using A2C. A2C approximates 
the value function to a value neural network called Critic and also approximates the policy to a policy neural 
network called Actor. In A2C, the differential value of the policy neural network loss function is determined 
by multiplying the cross entropy function by the Q-function. Owing to the large fluctuations in the Q-
function values, the value obtained by subtracting the value function from the Q-function, with the value 
function as the baseline, is defined as an advantage function (as shown in (2)). The advantage function is 
used rather than the Q-function. (𝑆𝑡 and 𝐴𝑡 respectively mean state and action at time step 𝑡) 
 

𝐴(𝑆𝑡, 𝐴𝑡) = 𝑄𝑤(𝑆𝑡, 𝐴𝑡) − 𝑉𝑉(𝑆𝑡)                                                (2) 
 

However, in actual learning, for more efficient calculation, the Q-Network for approximating the Q-
function is not defined separately. In addition, the value approximated from the value neural network is 
used for the Q-function. The Q-function for the action undertaken in the current state is approximated by 
adding the reward to the value function of the next state, to which the discounting ratio(𝛾) was multiplied, 
as shown in (3). (𝑅𝑡 means a reward at time step 𝑡) 

 
𝛿𝑉 = 𝑅𝑡+1 + 𝛾𝑉𝑉(𝑆𝑡+1) − 𝑉𝑉(𝑆𝑡)                                              (3) 

 
Finally, the equation for updating the parameters(𝜃𝑡) of the policy neural network(𝜋𝜃(𝑎|𝑠)), including 

the approximate advantage function, is expressed as follows by the following (4) (𝛼 is a learning rate for 
updating weights): 

 
𝜃𝑡 ← 𝜃𝑡 + 𝛼[∇𝜃 log 𝜋𝜃(𝑎|𝑠)𝛿𝑉]                                                (4) 

 
Furthermore, for the value neural network, the weight is updated by using the MSE as a loss function 

(as in (5)). This is performed in a manner similar to that of updating the Q-Network in the DQN. 
 

𝑀𝑆𝐸 =  (𝑅𝑡+1 + 𝛾𝑉𝑉(𝑆𝑡+1) − 𝑉𝑉(𝑆𝑡))2                                           (5) 
 

4.2 Environment modeling 

The environment plays the role of feeding back the new state and reward obtained through simulation after 
receiving the selected action from the learning algorithm. The environment for this study was configured 
as follows.  

4.2.1 State 
The states of environment input to the artificial neural network for reinforcement learning were defined, as 
shown in Figure 3. The left single column in Figure 3 indicates the loaded steel plates. Each number 
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represents the time remaining until the steel plate is supplied to the processing system. The grid on the right 
side is the environment of the steel stock yard. The horizontal direction indicates the number of piles that 
can be piled up, and the vertical direction indicates the maximum number of steel plates that can be piled 
in each stack. In this study, an identical maximum height was defined for all the piles. The number inside 
each grid is initially zero. The grid is filled with the residual period of steel input as the stacking-up 
simulation progresses. Furthermore, the process was simplified so that the steel plates are deleted when the 
loading time arrives as time progresses (time progresses step-by-step in the algorithm) without movement 
of the stacked steel plates. In addition, the state updated by the neural network was implemented to include 
the loaded steel plate and the stacking information of the steel stock yard.  

4.2.2 Functions for generating input into environment 

Table 1 presents the information of the steel plates used in the learning. The plate number, loading date, 
and fabrication date are loaded to the environment as steel plate information, as illustrated in Table 1. The 
number of steel plates included in the learning was adjusted according to the problem size. The learning 
scope was adjusted according to the learning strategy. The example of input functions used in this study are 
listed in Table 2. 

4.2.3 Reward 
To explain the reward applied in this study, we assume a steel stock yard problem that has 4 × 4 state spaces 
with four steel plates that can be stacked in each one of four piles. In each pile, the stacks were numbered 
sequentially from the bottom. That is, it was assumed that the stack agent no. 0 undertook action to stack a 
steel plate at the bottom stack in the first pile.  

Table 1: Input data (partially selected). 
Plate number Loading date Fabrication date 

2467ALP611NG002 2019.3.8 2019.5.16 

2469ALP182NG025 2018.12.27 2019.2.21 

2477ALP629FZ028 2019.2.21 2019.3.22 

 

 

Figure 3: Environmental parameters and example of states of environment. 
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Table 2: Functions for generating input. 
Generation function Description 

import_plates_schedule_re
v(file) 

• Input function that receives data on all the steel plates and applies them to learning.  
• Removes the missing value in the input data and converts the date information 

(loading date and release date) of all the steel plates into an integer format based 
on the loading date. 

• Generates objects for each steel plate, sorts them in the order of process loading 
date, and returns them as a list. 

generate_schedule(num_pl
ate) 

• Input function that generates random steel plate data for all the steel plates. 
• The loading date and release date of steel plates are generated based on the statistics 

obtained by analyzing the input data. The loading date interval between steel plates 
and the piling period are assumed to follow exponential and beta distributions, 
respectively.  

• Generate steel plate objects for each steel plate in the order of loading date and 
returns them as a list. 

 
• The reward is zero when the number of steel plate on the pile is one. 

When only one steel plate is tacked on a pile, as shown in Figure 4, it is not necessary to use a crane 
for sorting. There is no standard for assessing whether to use an additional crane because there is no steel 
plate stacked in the lower part. In this study, we defined the reward for this case as 0. 

 

  
Figure 4: Case of reward is 0. Figure 5: Case of maximum number of crane transportation is 0. 

 
• Stocking two or more steel plates in one pile: the number of additional crane movement is zero.  

The release date for the steel plates in stack 0 is 3, as shown in Figure 5. The number of steel plates 
above it that have a later release date is zero. Therefore, the number of additional crane transportations 
required to release the steel plate in stack 0 on the release date is zero. Next, the release date of the steel 
plate in stack 1 is 2, and the number of steel plates above it that have a later release date is zero. Thus, the 
number of additional crane transportations required to remove the steel plate in stack 1 on the release date 
is also zero. Consequently, the number of additional crane transportations required to release the steel plates 
from the corresponding pile becomes zero. This scenario corresponded to a desirable case, and the highest 
reward value (2) was assigned. 
• Stocking two or more steel plates in a pile: the number of additional crane movement is not zero. 

The release date of the steel plate in stack 0 is 1, as shown in Figure 6. The number of steel plates above 
stack 0 that have a later release date is three. Therefore, the number of additional crane transportations 
required to remove the steel plate in stack 0 on the release date is three. Next, the release date of the steel 
plate in stack 1 is 2. Thus, there are two steel plates above stack 1 that have a later release date: the steel 
plate in stack 2 (release date: 4) and that in stack 3 (release date: 3). Therefore, the number of crane 
transportations required to remove the steel plates in stack 1 (release date: 2) on the released date is two. 
Concerning the steel plate in stack 2, there is no steel plate above stack 2 which have a later release date, 
so that the number of unnecessary crane transportations required to remove the steel plates in stack 2 on the 
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release date is 0. Finally, the reciprocal of the maximum number of additional crane transportations (i.e., of 
three) was assigned as the reward.  

 
Figure 6: Case when the maximum number of required crane transportation is not zero.  

5 LEARNING RESULTS 

In this study, the DQN, A2C, and A3C algorithms were selected based on validation and performance. 
These algorithms are well-known algorithms that have been verified through various problems, and . DQN 
weakens the correlation between samples and enhances the stability of convergence by using reply memory 
and target network. A2C, a policy-based algorithm, overcomes the limitations of REINFORCE algorithm 
that learning can be only done at the end of episodes, and allows the agent to learn at each step rather than 
episode. A3C runs A2C algorithm asynchronously, not only weakening the correlation between samples 
but also being able to use the latest data for updating neural network. These algorithms were applied to 
sorting problem in steel stock yard using environment, state, and reward, which were introduced in Chapter 
4. In addition, the results were analyzed.  

5.1 DQN 

Starting with an artificial neural network that has a small number of layers, the model was modified in the 
direction that was effective for learning, by adding layers as follows: 

- Case 1: Artificial neural network consisting of a hidden layer with 10 nodes 
- Case 2: Two convolution layers added (4 × 4 filter, 2 × 2 filter) 
- Case 3: Same artificial neural network as case 2 with an increased number of steel plate data  
The reward did not converge even for small-sized problems while learning with the neural network 

consisting of a hidden layer as in case 1 (Figure 7). To improve this problem, two CNN layers were added 
as in Case 2. The reward converged, and learning was feasible for the same model as in case 1 (Figure 8). 
However, the reward did not converge when the problem size increased as in case 3 (Figure 9). This means 
that agent could not find the optimal solution as the complexity of state space increased. This rendered the 
DQN learning algorithm inappropriate for the steel stock yard problem.  

5.2 A2C 

Next, we applied the A2C learning algorithm. As with DQN, starting with an artificial neural network 
having two layers, the model was modified in the direction of addition of the layers.   

 
- Case 1: Artificial neural network consisting of two hidden layers with 15 nodes each 
- Case 2: Two convolution layers added (4 × 4 filter, 2 × 2 filter) with an increased number of steel  

 
As with the reward result of case 1 in Figure 10, the learning progressed in the desired direction for 

A2C as in DQN when the number of steel plates was small. However, as shown in the reward result for 
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case 2 in Figure 12, the reward did not converge when the problem size increased (increased number of 
loaded steel plates). Thus, it was determined that A2C also could not be applied to real problems.  

 

   
Figure 7: Reward result of case 

1 (DQN learning) 
Figure 8: Reward result of case 

2 (DQN learning) 
Figure 9: Reward result of case 3 

(DQN learning) 

5.3 A3C 

In the case of A3C, learning was performed effectively for the case of many loaded steel plates. It had failed 
for DQN and A2C. Therefore, the case of learning for a fixed sequence of input and that of learning for a 
random sequence of input were compared for A3C learning. The results from A3C were output and 
compared in graphic interchange format (GIF). It facilitates the visual observation of the behaviors for each 
episode of the learning process of the environment. 
 

  
Figure 10: Reward result of case 1 (A2C learning) Figure 11: Reward result of case 2 (A2C learning) 

  

5.3.1 Learning for Fixed Sequence of Input 
We performed learning for the case of stacking 38 steel plates in a stock yard in six piles and a maximum 
stack height of 10 (first sorting area of the targeted shipyard). The data used in this learning scenario is real 
data of weekly supply of steel plates obtained from shipyards. Then, thousand episodes were performed, 
with the stacking of 38 steel plates as one episode. The sequence of the 38 steel plates was fixed. When 
learning was performed under these conditions, the reward almost converged after approximately 6,000 
episodes. Furthermore, the GIF image of each episode revealed that the steel plates with a long stock 
period1 were stacked in the lower positions of the pile (Figure 12–Figure 13). 

 
1 A darker GIF image indicates a steel plate with a longer time until the loading date. 
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5.3.2 Learning random sequence of input 
Next, we performed learning for the same environment in previous section. However, in this case, the input 
sequence for the 38 steel plates was varied randomly in each episode to achieve the universality of the 
artificial neural network. The data used in this learning scenario is generated data of weekly supply of steel 
plates based on analysis of actual data. In this case, 50,000 episodes of learning were performed because 
the problem had become more complex than the one in 5.3.1 owing to the random sequence of input. 
 

 
Figure 12: Locating result after 1,000 episodes (fixed sequence of input). 

 
Figure 13: Locating result after 10,000 episodes (fixed sequence of input). 

As a result of the learning, the reward converged after approximately 40,000 episodes. This implies 
that it requires  computation approximately six or seven times that required to perform learning for the fixed 
sequence of input. As with the case in 5.3.1, the GIF image of each episode revealed that the steel plates 
with a longer stock period were stacked in the lower part of the pile (Figure 14). 

  
Figure 14: Locating result after 5,000 episodes and 50,000 episodes each (random sequence of input).  

5.3.3 Learning for random sequence of input in main stock 
Finally, we tested learning for stacking 254 steel plates in the main stock yard (20 piles, maximum stack 
height: 15). The number of input steel plates was increased to 254 (number of input steel plates for 
approximately 15~16 week). The data used in this learning scenario is data of steel plates generated based 
on real data. Furthermore, 50,000 episodes were performed, with the stocking of 254 steel plates as one 
episode. The reward continued to increase even after approximately 50,000 episodes were performed. 
However, as shown in Figure 15, the steel plates were arranged in the desired sequence to a certain degree. 
However, it was not optimum until step 100 (100th steel plate input) in the 50,000th episode. However, 
when it was close to the final step, the steel plates with a long time until the loading date were positioned 
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above the middle. This is an undesirable result. This result can be analyzed as follows. First, sufficient 
learning in the height direction was not achieved because the stack height was insufficient. Furthermore, 
because the reward curve continues to rise without converging, it can be presumed that sufficient learning 
is achieved only if over 50,000 episodes are performed. However, in this case, the calculation will consume 
over 30 min when the calculation time is divided in units of 250 episodes. Hence, additional calculations 
could not be performed in this study because of the limitation on calculations using a general desktop 
computer (it requires 5 days for 50,000 episodes of learning).  

 
Figure 15: Snapshot of step 100 in episode 50,000 (random sequence of input). 

6 CONCLUSION 

We developed an artificial neural network that can determine the optimal positions of steel plates (to 
minimize the number of additional crane transportations) loaded in a steel stock yard of a shipyard, using 
reinforcement learning. The result revealed that A3C exhibits a higher performance than A2C and DQN. 
Although the neural network learning methods of A3C and DQN are different, they use various empirical 
data. However, the samples in the replay memory of DQN also include old data on the previous states. This 
is because they were collected by an agent while following the steps. However, A3C exhibited better 
learning results because it receives data from agents that perform steps simultaneously and displays the 
advantage of learning with more recent data. However, we intend to introduce a dedicated computer or use 
external services for calculation in future research because the computational capacity of general computers 
becomes inadequate when the problem size increases.  
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