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ABSTRACT 

Simulation is experimentation with a model.  The behavior of the model imitates some salient aspect of the 
behavior of the system under study and the user experiments with the model to infer this behavior.  This 
general framework has proven a powerful adjunct to learning, problem solving, design, and control.  In this 
tutorial, we focus principally on discrete-event simulation – its underlying concepts, structure, and 
application. 

1 MODELS AND SIMULATION 

A model is an entity that is used to represent some other entity for some defined purpose.  In general, models 
are simplified abstractions, which embrace only the scope and level of detail needed to satisfy specific study 
objectives.  Models are employed when investigation of the actual system is impractical or prohibitive.  
This might be because direct investigation is expensive, slow, disruptive, unsafe, or even illegal.  Indeed, 
models can be used to study systems that exist only in concept. 

Simulation is a particular approach to studying models, which is fundamentally experimental or 
experiential.  In principle, simulation is much like running field tests, except that the system of interest is 
replaced by a physical or computational model.  Simulation involves creating a model which imitates the 
behaviors of interest; experimenting with the model to generate observations of these behaviors; and 
attempting to understand, summarize, and generalize these behaviors.  In many applications, simulation 
also involves testing and comparing alternative designs and validating, explaining, and supporting 
simulation outcomes and study recommendations.   

2 APPLICATION DOMAINS 

We might divide applications of simulation broadly into two categories.  The first includes so-called human-
in-the-loop simulations used for training or entertainment.  Many professionals hone their skills and learn 
emergency procedures in simulated environments which are safe from the consequences of inexperience 
and failure.  Pilots train in flight simulators in order to experience the cockpit of a particular aircraft; nuclear 
power-plant operators routinely recertify in control-room simulators;  physicians learn new procedures 
employing simulated patients; warfighters learn tactics on simulated battlefields.  In the realm of 
entertainment, we have all played computer games that simulate everything from driving a train to 
navigating the fanciful unrealities of virtual worlds.  The emphasis here is experiential – learning (or just 
having fun) by doing. 

The second category includes the analysis and design of artifacts and processes.  This is the technical 
domain, which engineers, operations researchers, data scientists, and others most commonly associate with 
simulation.  Consider for example the design of a new aircraft.  The Wright brothers invented the wind 
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tunnel in order to simulate aerodynamic phenomena using scale models.  Wind tunnel tests are still used to 
calibrate highly-complex aerodynamic computer simulations.   

Simulation stands in contrast to analytical approaches to the solution of models. In an analytical 
approach, the model is expressed as a set of equations that describe how the system state changes over time. 
We solve these equations using standard mathematical methods – algebra and calculus – to determine the 
distribution of the state at any particular time.  The result is a general, closed-form solution, which gives 
the state at any time as a function of the initial state, the input, and the model parameters. When models can 
be solved analytically this is always the preferred approach.  However, for complex systems this is almost 
never the case. 

Simulations also may be categorized according to their implementation strategy.  Continuous system 
simulation, Monte Carlo simulation, discrete-event simulation (DES), hybrid simulation, and agent-based 
simulation all have their particular implementation strategies.  In this tutorial we restrict our focus to DES, 
while inviting readers to explore the many other strategies referenced at this conference.  Throughout this 
paper, we will be referencing ideas and thoughts from Shannon (1975), Ingalls and Eckersley (1992), 
Ingalls (1998), Ingalls and Kasales (1999), White (2007), White and Ingalls (2009; 2015), Banks et al. 
(2010), Nelson (2013), Law (2015), and Kelton et al. (2015). 

3 CALL CENTER EXAMPLE 

In order to illustrate the concepts developed in the remainder of this paper, we will refer to a simple example 
– the processing of phone calls at an inbound call center for a major retailer of home electronics products.  
To keep it simple, we limit the scope and ignore the details and complexities of actual call-center operations 
(for an industrial-strength treatment, see, for example, Chung and White 2008).  In this and the following 
sections, we follow the presentation of ideas developed by White and Ingalls (2009, 2015).  

The process logic for this simulation model is shown in Figure 1.  Arriving calls first connect to a 
telephone switch.  If the number of calls currently on hold is greater than ten, the caller receives a busy 
signal and immediately hangs up.  Otherwise, the call is delivered to an automated interactive voice 
response (IVR) unit.  The caller is asked to “dial one for car-stereo products; dial two for all other products”; 
and the call is routed accordingly.  The call then waits in the appropriate queue (listening to classic rock) 
until the first sales representative servicing the identified product type becomes available.  Finally, the call 
is processed and the caller hangs up.  For midday peak periods during the upcoming Christmas season, the 
call-center manager would like to know the minimum number of each type of sales representative needed 
to insure that (i) fewer than 2% of call waiting times for either product are greater than 1 min and (ii) fewer 
than 3% of all incoming calls are refused at the switch.   

4 DISCRETE-EVENT SIMULATION STRUCTURE 

Although there are various paradigms for discrete-event simulation, a basic structure has evolved that is 
used by many (but certainly not all) simulation software packages.  In this section, we describe the basic 
structural components of what is called process-oriented DES. 

4.1 Inputs, Outputs, and State 

Events in the environment which act on a system are called the inputs to the system.  These inputs cause 
changes in the internal condition of the system, called the system state.  The outputs of the system are those 
measured quantities that can be derived from the system state and which we need to know in order to answer 
the questions posed for the simulation study.  In other words, the inputs cause changes in the system state 
and these are reflected by changes in the output. 

4.2 Entities and Attributes 

In a process-oriented discrete-event simulation, inputs are realized by the arrival of dynamic entities.  These 
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entities flow through the system and are the structural elements which effect the changes in the system state 
variables. Without entities, nothing would happen.  Indeed, one stopping condition for a simulation run is 
when there are no active entities in the system.  

 
Figure 1: Call center example logic flow. 

In our example, the entities are telephone calls – customers seeking information and perhaps wanting 
to place an order for a product.  The state of the system at any point in time can be defined by three state 
variables – the number of calls in process on the IVR unit and the number of calls of each type in process 
or waiting for service.  Obviously, the state changes every time a call of either type arrives or departs one 
of the processing units.  While for convenience we will monitor a large number of variables during the 
simulation (the system image), in principle each of these variables can be derived if we know the inputs to 
the system and the system state at all points in time during the simulation run. 

Entities have attributes–characteristics of a given entity the values of which are specific to that entity.  
Attributes are critical to understanding the performance and function of entities in the simulation.  In our 
example, each entity has three attributes. The first (Product_Type) is the class of product requested by the 
caller.  We need this attribute in order to determine the routing of the call through the system.  The second 
(Start_Time) is the time that the entity arrives and either receives a busy signal or joins the appropriate 
queue to begin waiting for service. The third (Begin_Wait) is the time the call leaves the IVR unit and joins 
one of the queues.  We need these two attributes in order to determine the system time and the duration of 
waiting time for each entity.   

In more complex simulations, there can be many different entity types.  These can represent transactions 
(as in our example), physical objects, people, information – anything that can cause a state change.  Indeed, 
artificial entities are used to implement control logic (such as the time the simulation ends) in the model.  

4.3 Resources  

Resources represent anything in a simulation that has a constrained capacity.  Resources are time-shared 
by entities, entities must queue for busy resources (or be diverted elsewhere), and entities typically are 
delayed after these have seized a resource and begin processing.  Common examples of resources include 
workers, machines, nodes in a communication network, and traffic intersections.   

In our example, we have two resources, each representing the sales force for a given product type.  The 
study question is to determine the capacity of each of these resources needed to satisfy the manager’s 
operating policy objectives.  Note that, since we assume that there is nothing individuating about the sales 
representatives, we represent each pool of representatives as a single resource with the potential capacity 
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to process multiple calls simultaneously.  This assumption easily could be relaxed by modeling each pool 
as a set of individuated resources with different processing capabilities.   

Note also that after a call is processed, the caller hangs up and the resource is free to process any call 
waiting in the corresponding pool.  Therefore, all of the time an entity is control of a unit of this resource 
capacity is productive.  This need not be the case in general, if an entity is blocked from releasing the 
resource by some downstream condition.  For this reason, it is common to account for both the productive 
and unproductive time that a resource is held.  

Note finally that in our example, we assume that the switch acts instantaneously.  Therefore, there is 
no need to model the switch as a resource – it is a logical activity.  We also assume that the IVR unit has 
sufficient capacity to handle as many calls as it receives simultaneously.  We need to account for the delay 
time associated with the IVR processing, but do not need to model the IVR as a resource.  The IVR is a 
pure delay activity. 

Very complex resources can be modeled in a simulation.  In a manufacturing simulation, for example, 
conveyors are a complex resource type that many simulation packages offer.  Also, transportation options 
such as trucks are offered as resources.  A third complex resource is a vat or container that has a (continuous) 
flow of material both in an out of the resource.  Depending on the target market of the simulation package, 
many complex resources are available to use. 

4.4 Activities and Events  

Activities are processes and logic in the simulation.  Events are conditions that occur at a point in time, 
which cause a change in the state of the system.  An entity interacts with activities to create events. There 
are three major types of activities in a simulation: delays, queues, and logic.   

A delay activity occurs when the flow of an entity is suspended for a definite period of time.  In our 
example, there are two delays, each occurring while a given type of call receives service from the 
corresponding type of sales representative.  In general, the length of time for a delay is either constant or is 
randomly generated. At the point that the entity starts the delay, an event occurs.  This event puts the entity 
on a list called the calendar (which we will get to later).  If the delay is for d time units, then the entity is 
scheduled to complete the delay d time units after the current time of the simulation.  At that time, the delay 
expires and another event is generated.  

A queues activity occurs when the flow of an entity is suspended for an unspecified period of time.  
Entities can be waiting for resources (which we also will get to later) to become available or for a given 
system condition to occur.  Queues are most commonly used for waiting in line for a resource or storing 
material that will be taken out of the queue when the right conditions exist.  In our example, there are two 
queues, each occurring while a given type of call waits for service from the corresponding type of sales 
representative (because all of these representatives are currently busy serving other calls).  Both of these 
queues contain entities waiting for resources to become available.   

Logic activities simply allow the entity to effect the state of the system through the manipulation of 
state variables or decision logic.  The first of several logic activities in our example is the decision whether 
or not to accept an arriving call into the system.  This decision is determined based on the total number of 
entities currently waiting in queue for service. 

4.5 Global Variables  

If you are a programmer, then the idea of having global variables is nothing new.  The values of a global 
variable are available to the entire simulation at all times and can track just about anything of interest.  In 
our model we have eight global variables.  One variable helps to configure the problem.  This is the limit 
on the number of calls on hold permissible (Max_On_Hold). While this value is given as ten in the problem 
statement, changing this value would permit us to explore the effect of this policy decision.  This limit is 
not really a hard constraint on operations, because the trunk line can accommodate vastly more than ten 
waiting calls. Two variables are needed in the model logic.  These are the number of calls currently waiting 
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in each of the queues (NQ_Car-Stereo and NQ_Other).  The sum of these variables is compared to 
Max_On_Hold in making the decision whether or not to issue a busy signal.  Finally, four variables are 
needed to collect information about system performance.  These include the total number of calls received 
(Total Arrivals) and the number of these calls that receive a busy signal (Number_Busy) and, hence, are 
rejected at the switch. The ratio of the number of rejected calls to the number of calls received gives us the 
fraction of calls rejected.  We also will count the number of calls of each type that exceed the limit of 1 min 
in queue (Car-Stereo_Too_Long and Other_Too_Long).  If either of these (or both) are greater than zero, 
we have not met the manager’s requirement. 

4.6 Random Number Generator  

Every simulation package has a random number generator.  The random number generator (technically 
called a pseudo-random number generator) is a software routine that generates an independent random 
number uniformly distributed between 0 and 1.  This number is then used in sampling other random 
distributions.  For example, let us assume that you have determined that a given process delay is uniformly 
distributed between 10 minutes and 20 minutes.  Then every time an entity goes through this process, the 
random number generator would generate a number between 0 and 1 and evaluate the uniform distribution 
formula that has a minimum of 10 and a maximum of 20 time units.  In this example, let us assume that the 
generated random number is 0.7312.  The delay time then would be 10+(0.7312)*(20-10) = 17.312 units.  
Thus, the entity would delay for 17.312 units in the simulation.  Everything that is random in the simulation 
uses the random number generator as an input to determine values.  

In our example model, we will use a physical random number generator – the roll of two dice.  The 
probability mass function for the roll of two dice is seen in Figure 2.  In our model, the roll will be the basis 
for every random delay and every randomly assigned value in the model.  We have four random relays and 
one randomly assigned value in the model: 

 
1. Time between arrivals of cars at the call center = (DICE * 0.333) mins. 
2. The delay at the IVR unit = (DICE * 0.3) mins.  
3. The delay for car-stereo call processing = (DICE * 2) mins.  
4. The delay for other-product call processing= (DICE) mins. 
5. The product type requested by the caller call (assuming on average of 16.7 % all calls are for car-

stereo products) 
 

                              Product_Type_Attribute  

4.7 The Clock and Calendar 

The clock is a global variable (Current _Time) that carries the value of the current time in the simulation.  
The calendar is a list of events that are scheduled to occur in the future, i.e., at clock times later than the 
current clock time.  In every simulation, there is only one calendar and it is ordered by the earliest 
scheduled-time first.  In Section 5, it will become clear how the calendar works and why it is important in 
the simulation.  At this point, just remember that, at any given point in time, every event that has already 
been scheduled to occur in the future is held on the calendar.  

4.8 Statistics Collectors 

Statistics collectors are a part of the simulation that collects statistics on conditions (such as the number of 
units of the capacity of a resource in use), or the value of global variables, or certain performance statistics 
based on attributes of the entity. Three different types of statistics can be collected – counts, time-persistent, 
and tallies.  Counts are very straightforward, they count.  In our model, we defined four counts as global 

 

=
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variables and we will collect statistics on these. Time-persistent statistical collectors give the time-weighted 
values of different variables in the simulation.  A common variable to track is the utilization of a resource.  
In our model, we collect four different time-persistent statistics – the number of busy resources of the two 
resources that we have in the model and the number of entities in each of the corresponding queues.  These 
are not strictly needed to assess the manager’s criteria, but provide additional insight regarding the 
performance of the call center, which might be useful if the manager’s requirements are not met.  Tally 
statistics are collected one observation at a time without regard to the amount of time between observations.  
In our model, we collect a very common statistic, which is the amount of time that an entity stays in the 
system.  Since we assign the value of the entity attribute Start_Time=Current _Time when it enters the call 
center, the value (Current_Time – Start_Time) when this entity departs the system is the total amount of 
time this entity is in the system.  Again, this statistic provides additional insight on performance. 

 
Figure 2: Probability mass function for the outcome of rolling two dice. 

5 A WALK THROUGH THESE CONCEPTS  

What we are going to do now is walk through a couple of steps in our simulation model.  As you will see, 
we will track the state of the system, the entities on the calendar, the values of attributes and state variables, 
and the statistics we are collecting.  

5.1 The State of the System at Noon  

We assume initially that there are one car-stereo agent and two agents for other products.  Figure 3 shows 
the image of the system at noon, where the circles with numbers represent entities and the squares represent 
delays.  The calendar of this system is made up of the entities that are scheduled to complete an activity 
with a specific time duration, as shown in Table 1.  The two queues are shown with the entities in rank 
order in Tables 2 and 3 (we assume the calls are processed FIFO, i.e., in the order of arrival at the queue).  
Note that the event times are undefined.  Each event record on the three lists also includes the values of the 
entities attributes when these are defined. 

Other important information concerns the clock, Current_Time, which is set to 12:00:00 PM. The 
statistics that we are tracking in the simulation have the values listed in Table 4 as of noon. The “Time/Obs” 
column gives the amount of time that we have been collecting the statistic (which is since 11:00 AM) for 
time-persistent statistics or the number of observations for tally statistics.  
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Figure 3: State of the system at noon.  

Table 1: The calendar at noon.  

Entity Event Event Time Product_Type Start_Time Begin_Wait 
34 Arrive at Call Center 12:01:40 PM --- --- --- 
33 Complete Service IVR 12:02:40 PM  car-stereo 11:59:00 AM --- 
10 Complete Service Car-

Stereo 
12:04:00 PM car stereo 11:04:20 AM 11:07:20 AM 

26 Complete Service Other 12:06:00 PM other 11:43:20 AM 11:45:04 AM 
27 Complete Service Other 12:07:00 PM other 11:45:20 AM 11:46:16 AM 
1 End replication 02:00:00 PM --- --- --- 

 

Table 2: Car-stereo queue at noon. 

Entity Event Event Time Product_Type   Start_Time Begin_Wait 
11 Begin Service --- car-stereo 11:17:30 AM 11:16:00 AM 
24 Begin Service --- car-stereo 11:37:20 AM 11:39:07 AM 

 

Table 3: Other-product queue at noon. 

Entity Event Event Time Product_Type  Start_Time Begin_Wait 
28 Begin Service --- other 11:47:40 AM 11:50:59 AM 
30 Begin Service --- other 11:51:40 AM 11:53: 12 AM 
29 Begin Service --- other 11:50:00 AM 11:53:47 AM 
31 Begin Service --- other 11:53:40 AM 11:55:28 AM 
32 Begin Service --- other 11:57: 46 AM 11:59:46 AM 

 

5.2 The State of the System at 12:01:40 PM  

Here is where we get one of the key ideas about a discrete-event simulation.  A discrete-event simulation 
progresses by advancing the clock to the time of the next event, instead of by uniform time-intervals.  In 
this sense the simulation is said to be event driven.  If in our example we had distinct time intervals of 1 
second, we would go through 140 time intervals before anything would happen.  Instead we go straight to 
the next scheduled event, which is the first event on the calendar, scheduled to occur at 12:01:40 PM.  That 
event is the arrival of entity 34 at the call center.  

This is how the event plays out.  The clock is advanced to 12:01:40, entity 34 becomes the active entity, 
and the record for entity 34 is removed from the calendar.  When this entity arrives at the call center, the 
first activity in the simulation is to set its attributes.  Obviously, Start_Time is set to 12:01:40 PM.  

34 33
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In Process
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Product_Type is set by rolling the dice and using the result of the roll in the appropriate formula given in 
Section 4.6.  We roll a 10, which is greater than 4, so the attribute value is set to “Other”.  

Table 4:  Statistics at noon. 

Statistic  Value Time/Obs 
Busy Signal Count 0 --- 
Completions (Car-Stereo) Count 3 --- 
Completions (Other-Product) Count 18 --- 
Excessive Wait (Car-Stereo) Count 3 --- 
Excessive Wait (Other-Product) Count 8 --- 
Representative Utilization (Car-Stereo) 1.00 1:00:00 
Representative Utilization (Other-Product) 1.00 1:00:00 
Average Number Waiting (Car-Stereo) 2.447 1:00:00 
Average Number Waiting (Other-Product) 2.847 1:00:00 
Average Waiting Time (Both Types) 7.711 1:00:00 
Average System Time 17.35 1:00:00 

 
After the attributes are assigned, entity 34 encounters the switch.  Since there are currently a total of 

seven calls waiting (two in the Car-Stereo queue and five in the Other-Product queue), the entity is directed 
to the IVR unit (remember that the IVR unit has sufficient capacity to handle as many calls as it receives 
simultaneously, so that entity 34 does not have to queue until entity 33 completes service here).  We 
determine the duration of the delay at the IVR unit by rolling the dice and using the result the roll in the 
appropriate formula given in Section 4.6.  We roll a 5, so the delay is 0.3(5)=1.5 min (1 min and 0.5*60=30 
sec).  Thus, entity 34 is delayed until 12:01:40+00:01:30=12:03:10.  Its record is returned to the calendar 
(after entity 33 and before entity 10) with this event time and the updated attributes.  Neither of the queues 
is altered by this event. 

To complete this arrival event, we need finally to create the entity for the next arrival event and put its 
record on the calendar.  This will be entity 35.  We roll a 5, so the interarrival time is 5/3=1.333 min 
(1.333*60=20 sec) and the record for this entity is inserted into the calendar with event time 
12:01:40+00:00:20=12:03:00 (after entity 33 and before entity 34).  The updated calendar at the completion 
of the arrival event is shown in Table 5. 

The statistics can be updated at this point as well, however most simulation packages only update 
statistics when the value that is being tracked changes.  None of the counts have changed.  However, the 
clock has advanced, so all of the time-dependent statistics have changed (modestly) as well.  To give you 
an idea how this is accomplished, consider the average number waiting in queue for the car-stereo sales 
representative.  At noon, the simulation had been running for one hour and the average value was 2.447.  
From noon to 12:01:40 PM, the number of calls waiting in line for the car stereo representative has been 2.  
So, the new time-weighted average is ((2.447* 1:00:00) + (2 * 0:01:40)) / 1:01:40 .  If we convert this 
formula to seconds, it becomes ((2.447* 3600) + (2 * 100)) / 3700 = 2.435.  All time-dependent statistics 
are calculated by recursion in this way. 

5.3 The State of the System at 12:02:40 PM  

Let’s process one more event, just so we’ve got the idea.  Looking at the calendar in Table 5, the next event 
record has entity 33 completing service at the IVR unit. The clock is advanced to 12:02:40, entity 33 
becomes the active entity, and the record for entity 33 is removed from the calendar.  Next, the Begin_Wait 
attribute for this entity is set to the current clock time.  The Product_Type attribute is “Car-Stereo”, so the 
entity is sent to receive service from the car-stereo sales representative.  Finding the sales representative 
busy with another call and two calls already waiting, entity 33 joins the queue at rank 3.  The statistics are 
updated to reflect the passage of time and that’s it. 
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Table 5: The calendar at 12:01:40. 

Entity Event Event Time Product_Type Start_Time Begin_Wait 
33 Complete Service IVR 12:02:40 PM  car-stereo 11:59:00 AM --- 
35 Arrive at Call Center 12:03:00 PM --- --- --- 
34 Complete Service IVR 12:03:10 PM other 12:01:40 PM --- 
10 Complete Service Car-Stereo 12:04:00 PM car stereo 11:04:20 AM 11:07:20 AM 
26 Complete Service Other 12:06:00 PM other 11:43:20 AM 11:45:04 AM 
27 Complete Service Other 12:07:00 PM other 11:45:20 AM 11:46:16 AM 
1 End replication 02:00:00 PM --- --- --- 

 

6 INTERPRETING OUTPUT STATISTICS  

Let us assume that our model has run from 11:00 AM to 2:00 PM.  At 2:00 PM, we stop the simulation and 
we have all of our statistics calculated.  The “answer” for the simulation is in Table 6.  

Table 6:  Statistics at 2:00:00 PM. 

Statistic  Value Time/Obs 
Busy Signal Count 7 --- 
Completions (Car-Stereo) Count 10 --- 
Completions (Other-Product) Count 53 --- 
Excessive Wait (Car-Stereo) Count 8 --- 
Excessive Wait (Other-Product) Count 53 --- 
Representative Utilization (Car-Stereo) 0.882 3:00:00 
Representative Utilization (Other-Product) 1.000 3:00:00 
Average Number Waiting (Car-Stereo) 1.231 3:00:00 
Average Number Waiting (Other-Product) 6.654 3:00:00 
Average Waiting Time (Both Types) 16.955 3:00:00 
Average System Time 26.056 3:00:00 

 
It is tempting to conclude immediately that the call center is grossly understaffed and does not nearly 

approximate the manager’s requirements.  Seven out of (7+10+53)=70 (or 10%) of arriving phone calls are 
rejected at the switch;  8 of 10 (or 80%) of car-stereo calls and 100% of other-product calls experience waits 
longer that 1 min; and the average waiting time is nearly 17 minutes – far too long for customer satisfaction.  
Indeed, I know that I would hang up long before this, unhappy, and would perhaps even try another retailer.  
We can see that the resources are stressed – the car-stereo representative is busy 88% of the time and neither 
of the other-product representatives draw a breathe while not on the phone.  The situation on this day is so 
very bad that the conclusion may be warranted.   

But caution is advised.  Suppose that this is just an exceptionally bad day?  Shouldn’t we really look at 
the call center on more than one day before we jump to this conclusion?  Indeed, we should, and this is 
always the case in discrete event simulation.  The numbers given in Table 6 are a random answer to the 
performance of the system.  This is because there are random inputs to the system that give us this answer.  
The answer generated by only one run is not really an answer at all.   

To make the point, let us take the following 100 rolls of the dice.  You would think that 100 rolls of the 
dice would tell us the average.  But if you take the 100 rolls in Table 7, the average is only 6.72 (not the 
true mean of 7).  Is that close enough?  Would you be willing to bet that the next 100 rolls would come up 
with an average of 6.72?  Probably not.  

So, what is the answer to this problem?  If we really want to estimate the average value of the roll of 
the dice if we roll the dice 100 times, we need to run the simulation more times.  Each time that we run a 
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simulation is called an iteration or replication.  So, as an example, let us say that we have run our dice-
throwing simulation for 30 iterations and Table 8 has the average values for each of those iterations.  

If we are simply trying to estimate the average of 100 rolls of the dice, we do not need to worry about 
the standard deviation for each iteration.  However, we do need to worry about the standard deviation of 
the averages from each iteration.  As is shown in Table 8, the average of the averages (so to speak) is 6.967.  
The standard deviation of those 30 averages is 0.22992.  With that information, we can calculate a 
confidence interval.  

Table 7: 100 rolls of the dice. 

6 5 8 6 5 4 10 6 7 8 
5 9 8 7 8 6 3 8 7 6 
9 9 8 8 6 8 9 7 10 5 
2 10 11 8 6 8 7 3 8 8 
4 6 8 11 2 4 8 9 8 5 
9 3 8 7 2 3 9 10 7 7 
3 9 5 7 7 7 9 4 8 7 
4 10 7 4 10 8 4 8 9 7 
3 6 6 3 6 3 10 9 7 4 
6 8 5 9 12 6 8 6 4 2 

Average: 6.72   

Table 8: 30 Iterations of throwing dice 100 times. 

6.72 6.95 6.78 7.14 6.62 6.81 
6.75 7.17 6.62 7.3 6.92 7.04 
6.79 7.13 7.17 7.12 6.82 7.29 
7.13 7.26 7.19 6.52 6.8 7.3 
6.95 6.96 6.78 7.17 7.13 6.68 
Average: 6.967     Standard Deviation: 0.22992     95% Confidence Interval: [6.8847,7.0493] 

 
A confidence interval is a statistical measure we use to bound some statistic.  The level of confidence 

(95% in our example) is the statistical probability that the statistic that we are considering lies in the interval.  
So, the interpretation of the 95% confidence interval of [6.8847,7.0493] would be, “If we repeatedly roll 
the dice 100 times, on average across repetitions 95 rolls will result in a mean which lies between 6.8847 
and 7.0493”.  Most statistical and simulation packages automatically calculate confidence intervals for you.  
Even Microsoft Excel has a function to calculate confidence intervals.  

So, in our example, we want to run 30 iterations so that we can have good (small) confidence intervals 
for each of our statistics. (Although we will not get into the topic in this paper, one should run 30 iterations 
(or more) if you can in order to get good confidence intervals.)  Table 9 shows the confidence intervals for 
each of our statistics.  Although these do not fundamentally alter our conclusions based on a single run, we 
know now with some certainty that this wasn’t just a bad day. 

7 FINDING WAYS TO IMPROVE A SYSTEM  

What we have accomplished up to this point is the analysis of a system based on an initial design calling 
for one car-stereo and two other-product sales representatives.  We have learned that this design falls far 
short the manager’s performance requirements.  Since there are excessive waits for both call types, we also 
have learned that we will need to add at least one new representative to each of the corresponding resource 
pools. So, let us run some alternative scenarios to determine how many.  Let’s continue to experiment with 
the model! 
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Table 9: Confidence intervals after 30 iterations. 

Statistic  Value LowerCI Upper CI 
Busy Signal Count 9.933 8.183 11.683 
Completions (Car-Stereo) Count 11.1 10.43 11.77 
Completions (Other-Product) Count 50.3 49.12 51.48 
Excessive Wait (Car-Stereo) Count 9.467 8.267 10.667 
Excessive Wait (Other-Product) Count 50.2 49.03 51.37 
Representative Utilization (Car-Stereo) 0.897 0.847 0.947 
Representative Utilization (Other-Product) 0.999 0.999 0.999 
Average Number Waiting (Car-Stereo) 1.782 1.312 2.252 
Average Number Waiting (Other-Product) 6.518 5.908 7.128 
Average Waiting Time (Both Types) 17.57 16.85 18.29 
Average System Time 26.367 25.667 27.057 

7.1 Scenario 1: Increasing the Number of Sales Representatives 

We tried increasing each server pool by one sales representative and found that this reduced the number of 
rejected calls to zero, but still yielded excessive waiting times for each type of call.  So we tried increasing 
each server pool by two representatives.  This again improved performance, but still fell short of the 
manager’s stringent requirements.  Continuing to increase the number of representatives incrementally, the 
requirements were met with a minimum of 4 car-stereo representatives and 6 other-product representatives.  
The results of this simulation are shown Table 10.  

The statistics show that this design is the Cadillac of call centers – all calls are received and there is 
essentially no waiting.  Callers receive superb service and this certainly translates into increased sales and 
goodwill.  But, the price is steep in terms of the resources required – a total sales force of ten representatives.  
The utilization of the representatives is low (there is almost always someone available to take your call 
immediately), with the car-stereo representative busy only about 16 min out of each hour and the other-
product representatives busy only about 26 min out of each hour.   

The decision on whether or not the improved performance is worth the increased cost is complex and 
well beyond the scope of this paper.  We would need to consider the hourly wages of the sales 
representatives, retention rates, and the expense associated with recruiting and training (the Cadillac center 
certainly represents a less stressful work environment), the expected revenue from accepting an additional 
ten calls into the center in a three-hour period (noting also that an average waiting time of over 17 min in 
the original case is unrealistic and many of these callers simply will hang up before receiving service), the 
call-back rate both of folks receiving a busy signal and folks balking because of excessive waiting, and the 
value of goodwill lost or gained through superior service (and how this translates into product pricing, 
future sales, and market share). 

Moreover, the idle time in the Cadillac system may or may not be used productively in performing 
other tasks.  Indeed, when the center is not congested, the duration of calls is likely to increase as sales 
representatives have the time to engage in cross selling (“if you are looking for that particular car stereo, 
we have the perfect set of speakers you might also want to consider…”).  With adequate knowledge, many 
of these considerations could be incorporated into a more complex simulation and improved economic 
analysis.  Indeed, one of the great benefits of modeling and simulation is improved understanding of the 
system, what’s important and what’s not, and what questions (however complex) we should be asking. 

7.2 Scenario 2: Cross-training Sales Representatives 

It is well known that having a single queue feeding multiple resources is more efficient than having each 
individual resource fed exclusively by its own dedicated queue.  Think of the difference between waiting 
at an airline check-in counter, where everyone (flying economy class) waits in a single line for the next 
available agent, versus waiting in line to checkout at a grocery store, where you need to make the (often 
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maddening) choice about which line you should join.  The reason is obvious when you think about it – at 
the airline counter there is never an idle agent while there is anyone in line;  at the grocery store, there are 
times when one check-out register is available, but you are in the wrong line waiting. 

Table 10: Confidence intervals for scenario 1. 

Statistic  Value Lower CI Upper CI 
Busy Signal Count 0 0 0 
Completions (Car-Stereo) Count 13.433 12.273 14.593 
Completions (Other-Product) Count 65.667 64.777 66.857 
Excessive Wait (Car-Stereo) Count 0.067 0 0.207 
Excessive Wait (Other-Product) Count 0.067 0 0.157 
Representative Utilization (Car-Stereo) 0.267 0.247 0.287 
Representative Utilization (Other-Product) 0.437 0.427 0.447 
Average Number Waiting (Car-Stereo) 0 0 0 
Average Number Waiting (Other-Product) 0.001 0.001 0.001 
Average Waiting Time (Both Types) 0 0 0 
Average System Time 10.127 9.977 10.277 

 
In our example, we have two lines, one for each type of call.  The sales representatives are specialists.  

If instead we were to “cross train” all representatives to process both call types, all calls could wait in a 
single queue for the next available representative.  In our simulation, we implemented this scenario by 
simply making all arriving calls other-product type, while retaining the same volume of inbound calls.  After 
some experimentation we found that we could cut the total workforce in half (from ten specialist to five 
generalist representatives) and still achieve the manager’s requirements.  The results of this simulation are 
shown in Table 11. 

Performance is comparable to the specialist case, with no calls rejected at the switch and something 
like 2% of all calls experiencing waiting times greater than 1 min (an estimated 1 to 2 calls out of the 
estimated total of 79 to 80 calls arriving).  The utilization of the generalist pool is about 62-65%, which 
should allow time for cross-selling without a great deal of stress.   

Table 11: Confidence intervals for scenario 2. 

Statistic  Value Lower CI Upper CI 
Busy Signal Count 0 0 0 
Completions (Car-Stereo) Count --- --- --- 
Completions (Other-Product) Count 78.833 77.373 80.293 
Excessive Wait (Car-Stereo) Count --- --- --- 
Excessive Wait (Other-Product) Count 1.600 0.92 2.28 
Representative Utilization (Car-Stereo) --- --- --- 
Representative Utilization (Other-Product) 0.625 0.605 0.645 
Average Number Waiting (Car-Stereo) --- --- --- 
Average Number Waiting (Other-Product) 0.053 0.033 0.073 
Average Waiting Time (Both Types) 0.053 0.033 0.073 
Average System Time 9.058 8.949 9.168 

 
At first, it may seem like we are getting something for nothing – the total number of representatives 

required is actually less than the number needed to serve just the other-product calls in the first scenario!  
A little reflection explains why, however.  The largely idle car-stereo representatives are now taking other 
product calls when needed, and vice versa. Moreover, cross-training is not free and may not afford the 
uniformly knowledgeable service available through specialization. As before, the decision on whether or 

1098



White and Ingalls  
 

 

not to cross train some or all representatives is well beyond the scope of this paper.  But, the dramatic 
reduction in workforce suggested by the simulation makes this an option well worth investigating. 

7.3 Generating Other Scenarios  

This simulation and any other simulation can be used to evaluate many different scenarios if the person 
creating the model allows some flexibility in the model structure.  One also has to consider the amount of 
time it takes to run a new scenario.  In a large-scale simulation, to run and evaluate a new scenario could 
take several days.  

In our example, there are other scenarios we could play out in the simulation.  For example, we noticed 
early on that the manager’s requirement bounding the number of calls rejected at the switch is satisfied with 
a sales force of just two car-stereo and three other-product representatives.  By forcing rejection at the 
switch at a lower degree of congestion, we might be able to meet all requirements with a smaller staff.  
We’ll leave exploration of this and other options for a rainy day. 

8 WHAT HAVE WE LEARNED?  EPILOGUE 

Now that we have run through our example, you should understand the mechanics of how a discrete-event 
simulation works.  You also should sense that many different types of activities are required to perform a 
simulation study;  that each of these activities requires knowledge of the art and science of simulation, as 
well as the system being simulated; and that each of these activities must be performed competently in order 
to wrench understanding from what is otherwise just information and data.  The scope of these  activities is 
suggested broadly in Figure 4. 

What else have we learned?  This exercise points out several things about simulation in general.  First, 
simulation can mimic the dynamic behavior of a system.  That is what it is built to do.  Regardless of how 
complex a system may be, it is likely that a simulation expert will be able to create a model that will evaluate 
it.  However, the more complex a system is, the longer it takes to model, run, and evaluate.  But, do not be 
discouraged, there are very good simulation people available to model large systems.   

Second, you (or the person analyzing the system) must have a good understanding of simulation 
statistics.  It is important during the creation of the model so that input distributions are used properly.  It 
is important during the analysis of the output statistics so that the output is not misinterpreted.  Mistakes 
regarding either the inputs or the outputs will invalidate the simulation.   

Third, to analyze a system, simulation is used to evaluate different scenarios.  It does not choose the 
best scenario for you.  This may seem to be a problem, but most managers have no shortage of scenarios to 
evaluate.  The tradeoff for this is that you can analyze the dynamics of the system and not just the average 
behavior.  

Fourth, the scenarios that you do choose are generated by you and not the system.  This is where 
familiarity with the system under study and a familiarity with system dynamics concepts are indispensable.  

Lastly, we note that without data and experience regarding the specific system simulated (which is often 
the case to a greater or lesser degree), the simulation can only be understood as an educated guess.  
Moreover, decision makers almost always have multiple performance criteria to consider and it is rare that 
all of these criteria can be addressed within the scope of the simulation.  Such limitations are well known 
within the simulation discipline.  As renown statistician George Box (1979) famously opined (speaking of 
statistical models generally), “Essentially, all models are wrong, but some are useful… The only question 
of interest is, ‘Is the model illuminating and useful?’" 

This is, of course, simply an introduction. Through this conference and interaction with simulation 
professionals, you can get a deeper understanding of simulation and what it can do for you.  To build your 
understanding and skills, we encourage you to attend sessions  of interest (especially the tutorials), as well 
as to consult past issues of the WSC Proceedings, which include papers from 1996 forward and are available 
online, without charge, via the Winter Simulation Archive.  
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Figure 4: Activities in a simulation study. 
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