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ABSTRACT

In this paper we address the problem of rare-event simulation for heavy-tailed Lévy processes with infinite
activities. We propose a strongly efficient importance sampling algorithm that builds upon the sample
path large deviations for heavy-tailed Lévy processes, stick-breaking approximation of extrema of Lévy
processes, and the randomized debiasing Monte Carlo scheme. The proposed importance sampling algorithm
can be applied to a broad class of Lévy processes and exhibits significant improvements in efficiency when
compared to crude Monte-Carlo method in our numerical experiments.

1 INTRODUCTION

In this paper, we propose a strongly efficient rare-event simulation algorithm for general Lévy processes
with heavy-tailed jump distributions characterized by regular variation. Specifically, our goal is to estimate
probabilities of the form P(An) for large n, where An = {X̄n ∈ A}, A is a subset of the Skorokhod path
space, and X̄n is a scaled Lévy process X with heavy-tailed jump distributions characterized by regular
variation. Such problems arise in many different applications such as ruin and risk theory (Asmussen and
Albrecher 2010), option pricing (Tankov 2003), and queuing networks (Debicki and Mandjes 2015).

Two major challenges arise when designing an efficient rare-event simulation algorithm for general
Lévy processes with heavy-tailed jumps. First, the nature of the rare events renders the crude Monte-Carlo
method extremely inefficient when n is large: assume the goal is to estimate P(An) with a given level of
confidence on its relative error, then the number of samples required would approach ∞ as n→ ∞ and
P(An) tends to 0. In the light-tailed case, one typical solution is to perform an exponential change of
measure and analyze a properly tilted process that induces a much higher probability of occurrence for the
desired event. The theory of large deviations can be used to determine the right amount of exponential
tilting. For instance, when viewing risk processes from the perspective of large deviations, the asymptotic
distribution of sample paths leading to ruination coincides with the distribution of the exponentially biased
risk process parametrized by the solution of the Lundberg equation (Asmussen and Albrecher 2010); and
under the guidance of large deviation principles, importance sampling algorithms have been proposed to
asymptotically optimally simulate rare events in a dynamic fashion (Dupuis and Wang 2004), or simulate
rare events in queuing networks with established bound on required computational efforts (Boxma et al.
2019). Similarly, for Lévy processes with heavy-tailed jumps, one would expect that the design of an
efficient rare-event simulation algorithm entails the knowledge of large deviation results for the associated
processes, since the large deviation principles not only characterize the decaying rate of P(An), but also
describe the most likely scenario for the event to occur. Indeed, as revealed in (Rhee et al. 2019), by solving
an optimization problem concerning the minimal number of jumps l∗ required for a step function to trigger
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the target event, we see that, asymptotically, the sample paths leading to occurrence of rare events An are
those with l∗ large jumps. By exploiting this result to design a proper importance sampling distribution,
(Chen et al. 2019) proposes a strongly efficient rare-event simulation algorithm for compound Poisson
processes and random walks with regularly varying jumps. The current paper extends this framework,
and presents an importance sampling algorithm for rare-event simulation of general Lévy processes with
regularly varying jump distributions, beyond the compound Poisson processes.

The second difficulty lies in exact simulation of the sample path for general Lévy processes. Unlike
compound Poisson processes or random walks, the sample path of a general Lévy process may not be
exactly simulatable due to its infinite activities from the presence of either a Brownian motion or the
infinitely many jumps within finite time intervals. Since many events An that arise in applications can be
characterized in terms of the extreme behavior of process X within given time interval, one possible remedy
is to simulate the extrema of the Lévy process instead of the entire sample path. However, an explicit
expression of the distribution of the extrema, or an exact simulation algorithm for extrema, is not available
for Lévy processes, except for a few specific cases such as spectrally one-sided processes (Michna et al.
2015)(Chaumont and Małecki 2018) or stable processes (Cázares et al. 2019).

In the current work, we address these issues by combining the stick-breaking approximation (SBA) idea
for extrema of general Lévy processes proposed in (Cázares et al. 2018) and the debiasing technique from
(Rhee and Glynn 2015) with the mixture importance sampling from (Chen et al. 2019). The foundation
of SBA is the detailed study of (Pitman and Bravo 2012) on the concave majorants of Lévy processes,
the distribution of which admits a Poisson-Dirichlet type of iterative structure, thus ensuring a geometrical
convergence rate in SBA when estimating expectation of functionals on extrema of Lévy processes. By
studying the distributional properties of Lévy processes, we show that our algorithm is strongly efficient
for a broad class of Lévy processes.

The rest of the paper is organized as follows. We provide preliminaries of the work in Section 2, and
detail the algorithm in Section 3. In Section 4 we establish a set of conditions under which the proposed
algorithm is strongly efficient, and discuss the proper choice of parameters in the algorithm. In Section 5
we demonstrate the efficiency of the proposed importance sampling strategy with numerical experiments.

2 PRELIMINARIES

The importance sampling algorithm proposed in this paper builds upon the large deviations results for Lévy
processes with regularly varying increments. The related notions and results are introduced below. We use
(D,d) to denote the Skorokhod metric space of real-valued càdlàg functions with domain [0,1]. For any
positive integer l, define

Dl =
∆ {ξ ∈ D : ξ is a non-decreasing step function with l jumps,ξ (0) = 0}.

For l = 0, let D0 = {0} where 0(t) = 0 ∀t ∈ [0,1]. Furthermore, for each l ∈N+, we define D<l =
∆
⋃l−1

j=0D j.
Any Lévy process {X(t) : t ≥ 0} is characterized by its generating triplet (c,σ2,ν), where c ∈ R is the
drift parameter, σ ≥ 0 is the magitude of the Brownian motion term in X(t), and ν is the Lévy measure
of the process such that

∫
(|x|2∧1)ν(dx)< ∞. See chapter 4 of (Sato et al. 1999) for details.

The heavy-tailed behavior of the positive jumps will be characterized by regular variation: recall that
a Borel measurable function ϕ : (0,∞) 7→ (0,∞) is said to be regularly varying with index ρ ∈ R at +∞

(denoted as ϕ ∈ RVρ ) if for any t > 0, limx→+∞
ϕ(tx)
ϕ(x) = tρ . For simplicity of the exposition, we focus on

heavy-tailed behavior of positive jumps: In terms of the function f (x) = ν [x,∞), we assume that f ∈ RV−α+

with α+ > 1.
For any positive integer n, define the centered and scaled version of X as X̄n(t) =

∆ 1
n Xn(t)−ct−µ1t where

µ1 =
∫
|x|≥1 xν(dx) and we assume µ1 < ∞. For any β > 0, let νβ be the measure concentrated on (0,∞) with

νβ (x,∞) = x−β . For any positive integer l, use ν l
β

to denote the l−fold product measure of νβ restricted onto
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{y ∈ (0,∞)l : y1 ≥ y2 ≥ ·· · ≥ yl}, and define the measure Cl
β
(·) =∆ E

[
ν l

β

{
y ∈ (0,∞)l : ∑

l
j=1 y j1[U j,1] ∈ ·

}]
where (U j) j≥1 is an i.i.d. sequence of Unif(0,1); while for l = 0, let C0

β
be the Dirac measure on 0. The

following results describes the sample path large deviations for the corresponding scaled process X̄n.
Result 1 (Theorem 3.1/3.4 of (Rhee et al. 2019)) For any set A that is Borel measurable in D and is
bounded away from D<l∗ where l∗ =∆ min{l ∈ N : Dl ∩A 6= /0}, we have

Cl∗
α+
(A◦)≤ liminf

n→∞

P(X̄n ∈ A)
(nν [n,∞))l∗ ≤ limsup

n→∞

P(X̄n ∈ A)
(nν [n,∞))l∗ ≤Cl∗

α+
(A−)

where A◦,A− are the interior and closure of A respectively.
The rare events we concern in this paper are characterized by the extrema of the Lévy process X . For

any t > 0, we define the running supremum and infimum processes of X as M̄(t) = sups∈[0,t] X(s). Results
in (Pitman and Bravo 2012) provide useful tools for studying M̄ using the iterative structure of the concave
majorant of Lévy processes. Specifically, given any t > 0 and a Lévy process X that is not a compound
Poisson process with drift, the distribution of the pair (M̄(t),X(t)) admits the following expression

(M̄t ,Xt) =
d (∑

j≥1
(ξ j)

+, ∑
j≥1

ξ j) (1)

where the symbol =d denotes equivalence in distribution and (·)+ =∆ max{·,0}, ξ j’s are independent random
variables such that ξ j =

d X(l j) where (l j) j≥1 is the stick-breaking sequence defined by (U j) j≥1, a sequence
of i.i.d. Unif(0,1), as follows:

l1 = tU1, l j =U j(t− l1− l2−·· · l j−1) ∀ j ≥ 2.

A similar expression applies to the running infimum. See Theorem 1 in (Pitman and Bravo 2012) for details,
and (Cázares et al. 2018) for the stick-breaking approximation (SBA) algorithm for efficient approximation
of extrema of Lévy processes.

To achieve unbiasedness for the proposed estimators, we apply the debiasing techniques used in (Rhee
and Glynn 2015):
Result 2 (Theorem 1 in (Rhee and Glynn 2015)) Given a random variable Y and a sequence of random
variables (Yn)n≥0 such that limn→∞EYn = EY , and a positive integer-valued random variable N with
unbounded support such that N is independent of (Yn)n≥0 and Y , if ∑n≥1E|Yn−1−Y |2

/
P(N ≥ n)< ∞, then

for

Z =
N

∑
n=1

(Yn−Yn−1)
/
P(N ≥ n),

(with the convention Y−1 = 0) Z is an element of L2, and

EZ = EY, EZ2 = ∑
n≥0

v̄n

/
P(N ≥ n),

where v̄n = E|Yn−1−Y |2−E|Yn−Y |2.
The goal of the work is to propose an importance sampling algorithm for rare-event simulation of

heavy-tailed Lévy processes that achieves strong efficiency. Specifically, for a sequence of events (An)n≥1
such that P(An)→ 0 as n→∞, we say that a sequence of estimators (Ln)n≥1 is unbiased and strongly efficient
if we have ELn = P(An) for any n ≥ 1, and EL2

n = O(P2(An)). Here, for two sequences of non-negative
real numbers (xn)n≥1 and (yn)n≥1, we say xn = O(yn) if limsupn→∞

xn
yn
< ∞. Besides, we write xn = o(yn)

for the two positive real sequences if limn→∞
xn
yn
= 0.
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3 THE ALGORITHM

In this section, we describe the structure of the rare events we are interested in, and propose an importance-
sampling algorithm for efficient estimation of their probability. For clarity, this section focuses on one
running example which will be introduce shortly, and describes the algorithm tailored for the specific
example. Nevertheless, it is worth mentioning that the principle underlying the algorithm proposed below
enjoys greater flexibility and can be extended to more general cases.

3.1 The Rare Events (An)n≥1 and the Process X(t)

Define the set

A = {ξ ∈ D : sup
t∈[0,1]

ξ (t)≥ a; sup
t∈(0,1]

ξ (t)−ξ (t−)< b}. (2)

In other words, ξ ∈ A if the supremum of ξ has reached a, but no jump in ξ is larger than b. Furthermore,
we make the following assumption about set A:
Assumption 1 a,b > 0, a/b /∈ Z.

Consider l∗ =∆ min{l ∈ N : Dl ∩A 6= /0}. In this case, we have l∗ = da/be, and l∗ ≥ 1. Recall that for
a step function ξ to belong to set A, ξ needs to have at least l∗ jumps. Moreover, it is easy to see that,
under Assumption 1, the set A is bounded away from D<l∗ , and Cl∗

β
(A◦)> 0 for any β > 0.

We study a Lévy process {Xt : t ≥ 0} with generating triplet (cX ,σ
2,ν). Since the case of compound

Poisson processes were already treated in (Chen et al. 2019), we assume in this paper that X is not a
compound Poisson process with linear drift, which implies that either σ > 0 or ν(−1,1) = ∞. Furthermore,
we reiterate several assumptions: (1)

∫
|x|>1 |x|ν(dx)< ∞ so Xt ∈ L1 for any t ≥ 0; (2) as for the heavy-tail

behavior of the positive jumps, the function f (x) = ν [x,∞) is regularly varying at ∞ with index −α+ <−1;
(3) the drift coefficient cX is chosen specifically so that the process is already centered: EXt = 0, ∀t > 0.
In this case, the scaled and centered version of X is X̄n = {X(nt)/n : t ∈ [0,1]} for any n ∈ Z+.

Let An =
∆ {X̄n ∈ A}. The goal is to propose an algorithm for estimating P(An). To achieve unbiasedness

and strong efficiency of the algorithm, we need the following assumption regarding distributions of X(t). For
a measure space (X ,F ,µ) and any A∈F , denote the restriction of the measure µ on A as µ|A(·) =∆ µ(A∩·).
Assumption 2 For any z0 > 0, there exist C > 0,α > 0,θ ∈ (0,1] such that for any t > 0,z≥ z0,x ∈R,δ ∈
[0,1], we have

P(X<z(t) ∈ [x,x+δ ])≤ C
tα ∧1

δ
θ ;

where the process X<z is the Lévy process with the generating triplet (cX ,σ
2,ν |(−∞,z)).

A process that has the same distribution as X<z can be obtained by removing all jumps larger than z
from X . Similarly, we define X>z as the compound Poisson process with the generating triplet (0,0,ν[z,∞)),
and X>z is understood as the compound Poisson process generated merely by all jumps larger than z in X .
Note that in Section 4, we show that Assumption 2 is a moderate condition.

3.2 Importance Sampling Strategy and Construction of the Unbiased Estimator

Our algorithm builds on the construction of the importance sampling distribution in (Chen et al. 2019).
Consider the rare event simulation problem for some fixed scaling level n ∈ Z+. For any γ > 0, define sets
Bγ

n =
∆ {X̄n ∈ Bγ} where

Bγ =∆ {ξ ∈ D : #{t ∈ [0,1] : ξ (t)−ξ (t−)≥ γ} ≥ l∗};
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namely, ξ ∈ Bγ if and only if ξ has at least l∗ jumps with size larger than γ . Now fix any w ∈ (0,1), and
define the following importance sampling distribution

Q(·) = wP(·)+(1−w)P(·|Bγ
n). (3)

In the meantime, consider the following decomposition of X at point nγ: X = X̃ + Jn where the two
independent processes X̃ = X<nγ ,Jn = X>nγ can be though of as the small-jump and large-jump processes
of X , with generating triplets (cX ,σ ,ν |(−∞,nγ)) and (0,0,ν |[nγ,∞)) respectively.

Now let us observe two facts: first, Q is absolutely continuous w.r.t. P and vise versa; second, using
the decomposition above, we see that X<nγ admits the same marginal distribution under P and Q, as Q
only alters the distribution of the large-jump process Jn. Therefore, to generate a sample path of X under
Q, we can sample the large jump process Jn from Q, and then generate X̃ under P. To be more precise,
we define set E = {ξ ∈ D : supt∈[0,1] ξ (t)−ξ (t−)< b}, and propose the following importance sampling
estimator

Ln = Zn(Jn)1E(Jn/n)
dP
dQ

=
Zn(Jn)1E(Jn/n)
w+ 1−w

P(Bγ
n)
1Bγ

n
(Jn)

(4)

where Jn is sampled from Q and Zn is a stochastic function such that for any step function ζ on [0,n],

EZn(ζ ) = P
(

sup
t∈[0,n]

X̃(t)+ζ (t)≥ na
)
.

Now it remains to describe: (a) the construction of Zn; (b) the procedure of sampling Jn from Q
(in particular, sampling Jn from P(·|Bγ

n)). For the first task, we combine the SBA algorithm with the
debiasing technique as follows. To begin with, the nature of a jump process indicates the existence of some
k ∈ {0,1,2, · · ·} and sequences of real numbers (zi)

k
i=1,(ui)

k
i=1 with ui ∈ [0,n] and (ui)

k
i=1 being distinct,

such that ζk = ∑
k
i=1 zi1[ui,n]. From now on we use the subscript k to indicate the number of jumps in ζ .

Given the representation ζk = ∑
k
i=1 zi1[ui,n], the interval (0,n] can be partitioned into {(ui,ui+1]}k

i=0 with
the convention that u0 = 0,uk+1 = n. For each i = 0,1, · · · ,k, we conduct the following stick-breaking
procedure on (ui,ui+1]:

l(i)1 =U (i)
1 (ui+1−ui); (5)

l(i)j =U (i)
j (ui+1−ui− l(i)1 − l(i)2 −·· ·− l(i)j−1) ∀ j = 2,3, · · · (6)

where (U (i)
j ) j≥1 is an i.i.d. sequence of Unif(0,1). Next, for any given 0 ≤ i ≤ k, j ≥ 1, independently

sample ξ
(i)
j ∼ FX̃(·, l

(i)
j ) where we use FY (·, t) to denote the law of Yt for any Lévy process Y . Let us

define (for any i = 0,1, · · · ,k) M̃(i) =∆ ∑
i−1
l=0 ∑ j≥1 ξ

(l)
j +∑ j≥1(ξ

(i)
j )+ with the convention that ∑

−1
i=0 ·= 0 and

(·)+ = max{0, ·}. Due to the coupling in (1), one can see that(
sup

t∈(u0,u1]

X̃t , sup
t∈(u1,u2]

X̃t , · · · , sup
t∈(uk,uk+1]

X̃t

)
=d
(

M̃(0),M̃(1), · · · ,M̃(k)
)
.

Recall our current task: unbiased estimation for expectation of the indicator random variable

Y ∗n (ζk) = 1

{
max

i=0,1,··· ,k
M̃(i)+ζk(ui)≥ na

}
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given ζk. To apply the debiasing technique, the next step is to define a sequence of random variables
(Yn,m(ζk))m≥1 and approximate Y ∗n (ζk), where the subscript m indicates the approximation level of SBA
employed by Yn,m. Specifically, for any m≥ 0, define

M̃(i)
m =

i−1

∑
l=0

∑
j≥0

ξ
(l)
j +

dlog2(n
2)e+m

∑
j=1

(ξ
(i)
j )+

where dxe denotes the smallest integer that is larger than or equal to x.
Several remarks about the term M̃(i)

m : (a) As an approximation to M̃(i) =d supt∈(ui,ui+1]
X̃t , M̃(i)

m differs
from M̃(i) as it only inspects the increments of X̃ on finitely many sticks; (b) Term dlog2(n

2)e dictates that:
as far as SBA is concerned, the algorithm always performs at least dlog2(n

2)e SBA steps at the scaling
level n; this choice serves to ensure the strong efficiency of the algorithm, and would not increase the
expected computational time significantly.

Now, by defining Yn,m(ζk) = 1

{
maxi=0,1,··· ,k M̃(i)

m + ζk(ui) ≥ na
}

for any m ≥ 0 and let Yn,−1(·) = 0,
we construct the desired unbiased estimator as follows:

Zn(ζk) =
τ

∑
m=0

(
Yn,m(ζk)−Yn,m−1(ζk)

)/
P(τ ≥ m), (7)

where the randomized truncation index τ , independent of everything else, is chosen to be geometrically
distributed with law P(τ > m) = ρm for some ρ ∈ (0,1) in our algorithm. Due to τ being finite almost
surely, the number of ξ

(i)
j we need to generate for evaluation of Zn(ζk) is finite and depends on the value

of τ . The said parametrization will be justified in Section 4 as we see that (Ln)n≥1 is strongly efficient.

3.3 Sampling from P(·|Bγ
n)

Below we revisit the problem of sampling the large-jump process Jn from the conditional distribution
P(·|Bγ

n), and propose Algorithm 2. The rationale of the algorithm can be made clear once we observe the
following facts, and the argument therein is a direct application of point transform and augmentation for
Poisson random measures; for details, see Chapter 5 of (Resnick 2007).

First, to simulate Jn (under the original law P), it suffices to simulate a Poisson random measure Nn
on [0,n]×R+ with intensity measure Leb[0,n]× νn where νn(·) = ν

(
· ∩[nγ,∞)

)
. The Poisson random

measure Nn admits the expression

Nn(·) =
Ñn

∑
i=1

1{(Si,Wi) ∈ · }

where Ñn ∼ Poisson(n · ν [nγ,∞)) is the number of simulated points in Nn, (Si)i≥1 is an iid sequence of
Unif(0,n), and (Wi)i≥1 is an iid sequence from the distribution νn(·)/νn[nγ,∞); here we interpret Si as
the arrival time of the i−th large jump, Wi as its height, and Ñn as the number of jumps in Jn on [0.n].
Next, consider the simulation of a Poisson random measure with intensity measure νn using the inversion
function:

Q←n (y) =∆ inf{s > 0 : νn[s,∞)< y}.
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Algorithm 1 Efficient Estimation of P(An)

Require: w ∈ (0,1),γ > 0,ρ ∈ (0,1)
1: if Unif(0,1)< w then . Sample Jn from Q
2: Sample Jn = ∑

k
i=1 zi1[ui,n] from P

3: else
4: Sample Jn = ∑

k
i=1 zi1[ui,n] from P(·|Bγ

n) using Algorithm 2
5: end if
6: Let u0 = 0,uk+1 = n.
7: Sample τ ∼ Geom(ρ) . Decide Truncation Index τ

8: for i = 0,1, · · · ,k do . Generate Stick Lengths, and Decide Increments
9: Sample U (i)

1 ∼ Unif(0,1). Let l(i)1 =U (i)
1 (ui+1−ui)

10: Sample ξi,1 ∼ FX̃(·, l
(i)
1 )

11: for j = 2,3, · · · ,dlog2(n
2)e+ τ do

12: Sample U (i)
j ∼ Unif(0,1). Let l(i)j =U (i)

j (ui+1−ui− l(i)1 − l(i)2 −·· ·− l(i)j−1)

13: Sample ξi, j ∼ FX̃(·, l
(i)
j )

14: end for
15: Let l(i)dlog(n2)e+τ+1 = ui+1−ui− l(i)1 − l(i)2 −·· ·− l(i)dlog(n2)e+τ

16: Sample ξi,dlog2(n2)e+τ+1 ∼ FX̃(·, l
(i)
dlog2(n2)e+τ+1)

17: end for
18: for m = 0,1, · · · ,τ do . Evaluate Yn,m

19: for i = 0,1,2, · · · ,k do
20: Let M̃(i)

m = ∑
i−1
l=0 ∑

dlog2(n
2)e+τ+1

j=1 ξ m
l, j +∑

dlog2(n
2)e+τ

j=1 (ξ m
i, j)

+

21: end for
22: Let Yn,m = 1

{
maxi=0,1,··· ,k M̃(i)

m + Jn(ui)≥ na
}

23: end for
24: Let Zn = Yn,0 +∑

τ
m=1(Yn,m−Yn,m−1)

/
ρm−1 . Return the Estimator Ln

25: if maxi=1,··· ,k zi > b then
26: Return Ln = 0.
27: else
28: Let λn = nν [nγ,∞), pn = 1−∑

l∗−1
l=0 e−λn λ l

n
l! , In = 1{Jn ∈ Bγ

n}
29: Return Ln = Zn/(w+ 1−w

pn
In)

30: end if

Algorithm 2 Simulation of Jn under P(·|Bγ
n)

Require: n ∈ N, l∗ ∈ N,γ > 0, the Lévy measure ν .
1: Sample k ∼ Poisson(n ·ν [nγ,∞)) conditioned on {k ≥ l∗}
2: Sample Γ1, · · · ,Γk

i.i.d.∼ Unif[0,ν [nγ,∞)]

3: Sample U1, · · · ,Uk
i.i.d.∼ Unif[0,n]

4: Return Jn = ∑
k
i=1 Q←n (Γi)1[Ui,n]

This inverse function has the property that y≤ νn[s,∞)⇔ Q←n (y)≥ s. Therefore, for iid Exponential
(with rate 1) random variables {Ei}i∈Z+ and the corresponding running sum Γi = ∑

i
j=1 E j, it is known that

∑
i:Γi≤νn[nγ,∞)

δQ←n (Γi)
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is the desired Poisson random measure, where δx denotes Dirac measure at x. Now, by augmenting
{Q←n (Γi)}i≥1 with uniformly distributed random marks on [0,n], we have that

Nn =
d

∑
Γi≤νn[nγ,∞)

δ(
Ui,Q←n (Γi)

); Jn =
d

∑
Γi≤νn[nγ,∞)

Q←n (Γi)1[Ui,n]

where (Ui)i≥1 is a sequence of iid Unif(0,n) random variables that are independent of {Γi}i≥1. Lastly, the
condition X̄n ∈ Bγ is equivalent to sup{i : Γi ≤ νn[nγ,∞)} ≥ l∗. For any k ≥ l∗, by further conditioning on
the event

{
sup{i : Γi ≤ νn[nγ,∞)} = k

}
, the distribution of (Γ1, · · · ,Γk) is the same as that of the order

statistics of k iid random variables from Unif[0,νn[nγ,∞)]. With the difficulty of sampling from P(·|Bγ
n)

resolved, we yield an importance sampling strategy that is readily implementable, and we detail the steps
in Algorithm 1,

4 ANALYSIS OF THE ALGORITHM

This section is devoted to theoretical aspects of the proposed algorithm. We present Theorem 1 and 2 with
proof sketches, and focus our discussion in this paper on their implications, the choice of parameters in the
implementation, and the applicability of the proposed algorithm. The full details can be found in (Wang
and Rhee 2020).

4.1 Strong Efficiency of (Ln)n≥1

We state the main result regarding the efficiency of the importance sampling algorithm.
Theorem 1 Suppose that Assumption 1 and Assumption 2 are in force, and γ (which characterizes the set
Bγ ) and ρ (which determines the distribution of τ ∼ Geom(ρ)) are as follows.

• Choose γ ∈ (0, a−(l∗−1)b
l∗ ) such that a−(l∗−1)b

γ
is not an integer.

• Let α,θ be the values stated in Assumption 2, and choose

δ ∈ (1/
√

2,1), α3 ∈ (0,
θ

α
), α4 ∈ (0,

θ

2α
), α2 ∈ (0,(α3/2)∧1), α1 ∈ (0,

θ

αα2
).

Pick ρ such that

1 > ρ >

√
max{δ α ,

1
δ
√

2
,δ θα2−αα1 ,δ θ−αα3 ,δ−α2+

α3
2 }.

Then, (Ln)n≥1 is unbiased and strongly efficient for (An)n≥1; namely;

EQ[Ln] = P(An), EQ[L2
n] = O(P2(An)).

4.2 Distributional Property of Small-Jump Processes X<z

Below we provide a sufficient condition for Assumption 2, and show that a broad class of Lévy processes
therefore can be addressed by the proposed algorithm. In particular, the conditions below verifies Assumption
2 with θ = 1, which is equivalent to showing Lipschitz continuity of the law of X<z.

First of all, if σ > 0, then for a fixed γ0 > 0 and any γ ≥ γ0, we have the decomposition X<γ(t) =
σB(t)+Y<γ(t) where B is a standard Brownian motion, Y<γ is a Levy process with generating triplet
(0,0,ν |(−γ,γ)), and the two processes are independent. Now for any x ∈ R and δ ∈ (0,1), we have

P(X<γ(t) ∈ [x,x+δ ]) =
∫
R
P(σB(t) ∈ [x− y,x− y+δ ]) ·P(Y<γ(t) = dy)

≤ 1
σ
√

2π
· δ√

t
.
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Therefore, Assumption 2 holds with θ = 1,α = 1/2. From now on, we focus on the case where σ = 0. In
addition, we also assume that ν(R) = ∞, because otherwise X is a compound Poisson process and this case
has already been addressed by (Chen et al. 2019). We say that any measurable function h : (0,∞) 7→ (0,∞)
is regularly varying at 0 with index ρ if, for ϕ(x) = h(1/x), we have ϕ ∈ RV−ρ .
Theorem 2 For a fixed γ0 > 0 and a Lévy process {X(t) : t ≥ 0} with generating triplet (0,0,ν), suppose
that we have some Borel measure µ such that

• (ν−µ)|(−γ0,γ0) is a positive measure;
• the function f : (0,∞) 7→ (0,∞) defined as f (x) = µ

(
(−∞,−x]∪ [x,∞)

)
is regularly varying at 0

with index −(α + ε) where α ∈ (0,2),ε ∈ (0,2−α).

Then there exists some C < ∞ such that for any γ ≥ γ0∥∥ fX<γ (t)
∥∥

∞
≤ C

t1/α ∧1
∀t > 0

where {X<γ(t) : t > 0} is the Lévy process with generating triplet (0,0,ν |(−γ,γ)) and fX<γ (t) is the density
of distribution of X<γ(t).

An immediate consequence is as follows. Define a function g(x) = ν
(
(∞,−x)∪(x,∞)

)
. If g is regularly

varying at 0 with index β > 0, then Assumption 2 holds, and the proposed algorithm is strongly efficient.
Intuitively, since we are excluding the simpler cases where σ > 0 or ν(R)<∞, we must have limx↓0 g(x) =∞.
As long as g(·) approaches ∞ at a faster rate than some 1/xβ with β > 0, Assumption 2 is valid.

4.3 Sketch of Proof for Theorem 1

By performing a change of measure and plugging in the exact value of dQ/dP (see (3)):

EQ[L2
n] =

∫
Z2

n(Jn)1E(Jn/n)
dP
dQ

dP
dQ

dQ=
∫

Z2
n(Jn)1E(Jn/n)

dP
dQ

dP

=
∫

Z2
n(Jn)1E∩Bγ

n
(Jn/n)

dP
dQ

dP+
∫

Z2
n(Jn)1E∩(Bγ

n)c(Jn/n)
dP
dQ

dP≤ P(Bγ
n)

1−w
E[Z2

n,1]+
1
w
E[Z2

n,2],

where Zn,1 = Zn(Jn)1E∩Bγ (Jn/n),Zn,2 = Zn(Jn)1E∩(Bγ )c(Jn/n). Using Result 1, we have P(Bγ
n) = O(P(An))

as both Bγ and A are bounded away from D<l∗ . Then strong efficiency follows immediately once we have

EZ2
n,1 = O(P(An)); (8)

EZ2
n,2 = O(P2(An)). (9)

Fix some notations: we use ζ denote a step function, and save the index k to indicate the number of large
jumps. For instance, the event {Jn = ζk} is equivalent to the event that Jn has k jumps. Note that on this set,
Jn admits the representation Jn =

d
ζk = ∑

k
i=1 zi1[ui,n] where z1, · · · ,zk are i.i.d. samples from the distribution

ν(·∩ [nγ,∞))
/

ν [nγ,∞), and u1 ≤ u2 ≤ ·· · ≤ uk are order statistics of k i.i.d. Unif(0,n). Now note that

EZ2
n,1 ≤ ∑

k≥l∗
E[Z2

n(Jn) | Jn = ζk]P(Jn has k jumps) = ∑
k≥l∗

E[Z2
n(ζk)]e−λnλ

k
n/k! (10)

with λn = nν [nγ,∞). Therefore, to show (8), it suffices to show the existence of a constant C such that
EZ2

n(ζk)≤Ck for any k = 1,2, · · · . To see this, by plugging this bound into R.H.S. of (10) we will get

EZ2
n,1 ≤C ∑

k≥l∗
ke−λnλ

k
n/k!≤Cλ

l∗
n ∑

k≥l∗
e−λn

λ k−l∗
n

(k− l∗)!
=C · (nν [nγ,∞))l∗ (11)
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and (8) follows immediately from large deviation principles (Result 1) and the fact that ν is regularly
varying. To bound EZ2

n(ζk), recall that Zn is an unbiased estimator, so from Result 2 we have EZ2
n(ζk)≤

∑m≥0P
(

Yn,m(ζk) 6= Y ∗n (ζk)
)/

P(τ ≥ m), where Yn,m and Y ∗n are indicator functions defined in Section 3.2.

Then it remains to bound P
(

Yn,m(ζk) 6= Y ∗n (ζk)
)

, the probability that the supreme of a (non-compound-
Poisson) Lévy process crossed a certain barrier while its m step SBA estimation did not.

To illustrate the idea, we henceforth focus on a simplified scenario. Fix a constant c > 0 and recall
that small-jump process X̃ is a (non-compound-Poisson) Lévy process with bounded jumps and satisfies
Assumption 2. Define M = sup0≤t≤1 X̃(t). Using the coupling in (1), we have M =d ∑i≥1(ξi)

+ where
(ξi =

d X̃(li))i≥1 are independent conditioned on the stick length sequence (li)i≥1 with ∑i li = 1. Furthermore,
we use Y ∗ = 1{M ≥ c} to indicate whether the supreme of X̃ on [0,1] exceeds c, while Ym = 1{Mm =∆

∑
m
i=1(ξi)

+ ≥ c} as its counterpart for the m−step SBA estimation. To bound P(Y ∗ 6=Ym), fix some ε ∈ (0,c)
and notice that if {Y ∗ 6=Ym} occurs, then so does at least one of the following two events: (a) |M−Mm| ≥ ε;
(b) M ∈ [c−ε,c+ε]. For the former, the geometric convergence rate of SBA gives an effective bound (in
particular, see Lemma 10 in (Cázares et al. 2018)). Now the proof hinges on bounding the latter, which
boils down to analyzing probability of the form P(M j ∈ [c,c+δ ]) for c,δ > 0.

To this end, recall that M j =
d (ξ1)

+ ∗ (ξ2)
+ ∗ · · ·∗ (ξ j)

+ where ∗ is the convolution operator, and observe
the following facts. First, convolution operation preserves the smoothness of any distribution involved; for
instance X ∗Y is continuous if either X or Y is continuous, and X ∗Y has a density bounded by a constant
K if so does either X or Y . Besides, given (li)i≥1, the law of ξi =

d X̃(li) satisfies Assumption 2, and as long
as ξi > 0, we will have ξi = (ξi)

+ so the same smoothness property can be passed to (ξi)
+, hence M j. To

apply these facts, fix some h > 0 as a threshold value and note that: if there exists i = 1, · · · , j such that
li > 0 and ξi > 0, then by further conditioning on this event we can use Assumption 2 to provide a bound
with t ≥ h; otherwise, the supreme M is equal to sum of increments only on sticks shorter than h, the total
length of which is less than jh. If h (and hence jh) is indeed a small value, then it is unlikely that Lévy
process X̃ reached the barrier c within such a short period of time jh (again, see Lemma 10 in (Cázares
et al. 2018)), let along crossing the barrier c and staying in [c,c+δ ]. By carefully choosing j and h, we
can establish a useful upper bound for P(M ∈ [c,c+δ ]), and eventually for EZ2

n(ζk).
The argument for (9) will be analogous, except that we need to notice the following fact: since Y ∗n ≥Yn,m,

for Y ∗n 6= Yn,m to occur we need to at least ensure Y ∗n = 1, which is equivalent to the condition {X̄n ∈ A}.
Combining this with Hölder’s inequality when using Result 2 and the bound EZ2

n(ζk)≤Ck above, we will
have EZ2

n,2 ≤C1
√

P(X̄n ∈ A∩ (Bγ)c) where C1 < ∞ is some constant. Thus, by picking γ small enough
and invoking large deviation principles (Result 1) again, we then have (9) and conclude the proof.

5 SIMULATION EXPERIMENTS

In this section, we apply the proposed importance sampling strategy in Algorithm 1 to the following setting
and use numerical experiments to demonstrate: (1) the performance of the importance sampling estimator
over a range of different scaling factor n for a number of tail distributions; (2) the efficiency of the algorithm
when compared to crude Monte-Carlo methods.

Consider a Lévy process X(t) = B(t)+∑
N(t)
i=1 Wi where B(t) is the standard Brownian motion, N is

a Poisson process with arrival rate λ = 0.1, and {Wi}i≥1 is a sequence of i.i.d. samples from Pareto
distribution with P(W1 > x) = 1/max{x,1}α where the tail index α > 1. For each n≥ 1, define the scaled
process Xn(t) =

X(nt)
n , and we are interested in the probability of the event An = {Xn ∈ A} where

A = {ξ ∈ D : sup
t∈[0,1]

ξ (t)−ξ (t−)< b, sup
t∈[0,1]

ξ (t)≥ a}

with a = 2,b = 1.15. As stressed above, we aim to showcase the performance of the importance sampling
estimator under different n and α . Specifically, in our experiments we use α = 1.45,1.6,1.75, and
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n = 1000,2000, · · · ,10000. To quantify the efficiency of an estimator, we report the relative error: the
ratio between the standard deviation estimated by all samples of the estimator and the estimated mean.

In implementing the importance sampling estimator, we used γ = 0.2,w = 0.05,ρ = 0.95 (and note
that l∗ = 2 in this case). For each α ∈ {1.45,1.6,1.75} and n ∈ {1000,2000, · · · ,10000}, we generated
500,000 independent samples. To compare the efficiency of the proposed importance sampling estimator
against the crude Monte-Carlo methods, we generated at least 64/ p̂α,n crude Monte-Carlo samples where
p̂α,n is the estimated value of P(An) using Algorithm 1 as described above.

The results of the experiment are summarized in Table 1 and Figure 1. In Table 1, we see that, for a
fixed α , the relative error of the importance sampling estimator stays at a constant level regardless of how
large n is. This is as expected in view of the strong efficiency of the estimator established in Theorem 1.
Therefore, if the goal is to achieve a certain level of standard error, the number of samples required for
Algorithm 1 is bounded and does not increase with n.

Figure 1 plots the relative errors of the importance sampling estimators and the crude Monte Carlo
estimators. This illustrates the benefit of the proposed importance sampling strategy. For crude Monte-Carlo
scheme, the relative error grows polynomialy with n (to be more precise, roughly O(nl∗(α−1))). In contrast,
the relative error of the Algorithm 1 is nearly constant. Note that the expected cost to generate a single
sample is O(n) (in terms of the expected number of jumps required to simulate) for both methods. The
proposed importance sampling method always outperforms crude Monte-Carlo scheme for sufficiently rare
events An (i.e., large n), and the difference in the performance grows as n grows.

6 CONCLUSIONS

We proposed a strongly efficient importance sampling algorithm for rare-event simulation of Lévy processes
with heavy-tailed jump distributions and infinite activities, where the events are triggered by multiple jumps.
The numerical experiments confirm the strong efficiency of the proposed algorithm, which outperforms
crude Monte-Carlo method by orders of magnitude as the event of interest gets rarer. In our future works,
we aim to extend the current framework to a more general class of rare events and stochastic processes.

2000 4000 6000 8000 10000
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100
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10000
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α = 1.45

α = 1.6

α = 1.75

Figure 1: Comparison of relative errors between the proposed importance sampling estimator and crude
Monte Carlo estimator. Solid lines: Crude Monte-Carlo estimator; Dashed lines: Importance-sampling
estimator.
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Table 1: Rare-event simulation results using Algorithm 1. First row: estimated probability of P(An); Second
row: the relative error.

n 2000 4000 6000 8000 10000

α = 1.45
3.53×10−6 1.85×10−6 1.28×10−6 9.76×10−7 7.96×10−7

12.84 13.02 13.06 13.16 13.19

α = 1.6
3.34×10−7 1.45×10−7 8.84×10−8 5.89×10−8 4.60×10−8

17.13 17.16 17.26 17.80 17.63

α = 1.75
3.46×10−8 1.14×10−8 6.21×10−9 4.17×10−9 2.92×10−9

21.74 22.50 22.53 22.16 22.40

REFERENCES
Asmussen, S., and H. Albrecher. 2010. Ruin Probabilities. Singapore: World Scientific.
Boxma, O., E. Cahen, D. Koops, and M. Mandjes. 2019. “Linear Stochastic Fluid Networks: Rare-Event Simulation and

Markov Modulation”. Methodology and Computing in Applied Probability 21(1):125–153.
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