
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

SIMULATION OPTIMIZATION BASED FEATURE SELECTION,
A STUDY ON DATA-DRIVEN OPTIMIZATION WITH INPUT UNCERTAINTY

Kimia Vahdat
Sara Shashaani

Edward P. Fitts Department of Industrial and Systems Engineering
North Carolina State University

915 Partners Way,
Raleigh, NC 27606, USA

ABSTRACT

In machine learning, removing uninformative or redundant features from a dataset can significantly improve
the construction, analysis, and interpretation of the prediction models, especially when the set of collected
features is extensive. We approach this challenge with simulation optimization over a high dimensional
binary space in place of the classic greedy search in forward or backward selection or regularization
methods. We use genetic algorithms to generate scenarios, bootstrapping to estimate the contribution
of the intrinsic and extrinsic noise and sampling strategies to expedite the procedure. By including the
uncertainty from the input data in the measurement of the estimators’ variability, the new framework obtains
robustness and efficiency. Our results on a simulated dataset exhibit improvement over state-of-the-art
accuracy, interpretability, and reliability. Our proposed framework provides insight for leveraging Monte
Carlo methodology in probabilistic data-driven modeling and analysis.

1 INTRODUCTION

Simulation Optimization (SO) entails optimizing problems based on stochastic simulations and requires
estimating the intrinsic or stochastic error for success. This error characterizes the deviation between the
mean and the simulated output using a finite sample size. Extrinsic error or input uncertainty is another
source of error that is often, especially when the search space is large, overlooked in the simulation
optimization solvers.

One class of high demand stochastic optimization problems is the data-driven models that are stochastic
due to the random distribution of data despite being treated statically within machine learning approaches.
Hence, accounting for intrinsic and extrinsic errors in estimating the models’ outcome is crucial for
rendering robustness in the optimization. This paper aims to investigate this concept for a feature selection
problem, which is a challenging topic in the machine learning domain. In the presence of a large number
of explanatory features in supervised learning algorithms, feature selection aims to find a subset of the
features that provide the best predictive results and interpretability power. This search is considered hard
due to the enormity of 2p − 1 possible subsets of p features.

Moreover, finding features that lead to robust predictions is not trivial. Cross-validation is a popular
way to measure external performance in machine learning. But to gain more robustness, one needs to
address the variance of all sources of error. Other commonly used methods are Jackknife sampling and
bootstrapping, where the former is equivalent to leave-one-out cross-validation while the latter is a more
generalized resampling technique. Of course, conditional distributions of data cannot be resampled with
either, when only joint distributions are available in the original dataset (sample). Existing sampling-based
approaches to feature selection do not leverage additional information in the optimization, such as variance
estimates of the original dataset’s performance. This motivates a study of bringing the model and input
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uncertainty into simulation optimization for a data-driven case within empirical high dimensional space
for the inputs with limited data availability.

1.1 Feature Selection

Feature selection (FS) is the task of removing uninformative and/or redundant features from a dataset.
This is an important task because contrary to what may be understood, more data does not lead to better
predictions. The inclusion of non-contributing features in the process of learning causes overfitting in the
training set, more computationally expensive development and updating of the model, and less inference
or interpretation power (Guyon and Elisseeff 2003). The main categories of feature selection methods are
filter methods, wrapper methods, and embedded methods. Filter methods are applied as a pre-processing
step and are generally considered an unsupervised approach (Kuhn and Johnson 2013).

Wrapper methods are considered a supervised approach in which, a search algorithm is wrapped around
the learning algorithm. The embedded methods are specific to some learning algorithms with FS as part
of the model construction. The two categories of embedded methods are built-in mechanisms such as
tree based models or support vector machines (Chen and Lin 2006), and regularization models such as
LASSO or Ridge regression (Singh et al. 2016; Tibshirani 1996). Filter methods are independent of the
response variables, and embedded methods are too dependent on the learning algorithm. Wrapper methods
are optimization problems mostly solved with greedy approaches. In addition to the three main methods,
there are hybrid methods that combine two or multiple categories together with the aim of achieving better
performances.

The goal of wrapper methods, as in the classic statistical learning, is to choose a subset of features
that the learning algorithm utilizes to build a model such that its generated predictions are closest to the
unknown response for a given set of feature values. In formulating FS as an optimization, we search
for a feature subset that distinguishes uninformative or redundant features from relevant and contributing
features. The search space is finite but large in size and expensive when the data is large as well. We
extend this foundation with a probabilistic and Monte Carlo approach described in Section 2.

1.2 Relation to Robustness

Selection bias or overfitting is an issue if we evaluate our selected feature subset’s performance on the
same set of data points that train the prediction model. Therefore, one must perform a correct validation
on a separate dataset from the modeling dataset. However, using a single modeling and validation dataset
does not resolve the issue, considering the likelihood that a subset of features can perform well on one
validation data set but poorly on many others. Thus, FS’s more important goal is to find a robust subset
of features that generalizes the predictions. As mentioned earlier, a common way in practice to handle the
robustness objective is cross-validation, where the available dataset is divided into k folds and in k steps,
the performance of a model trained with k − 1 folds is tested on the remaining fold for validation. Other
methods, such as boosting and bagging, can take resamples of the data into two folds of train and test sets
to make the training sets less dependent. Both of these approaches speak to the importance of choosing the
correct estimation of the optimized objective function. Robustness is direr when the available data is not
large, but larger datasets are also prone to overfitting. With the advancement of sampling and uncertainty
estimation techniques, we find this area to have significant improvement potential with more probabilistic
approaches.

1.3 Solver

The mapping between the inputs and outputs builds a surrogate model for optimization. In other words
we are dealing with a derivative-free model-based solution methods for this SO. Given the nature of the
problem that entails high dimensional binary decision variables, random search solvers appear to be more
suitable than others. Recent ranking and selection enhancements allow up to 106 design points, which
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equivalently can solve an FS for up to p = 20 features. In real applications, p is much larger. In addition,
mixed integer programming is not reliable for simulation optimization and integer lattice SO solvers are not
applicable here because, defining structure in high dimensional binary spaces has not been visited before.
For the reason of easy implementation, Genetic Algorithms are chosen for this study but employing more
guided search algorithms that take advantage of the history of the trajectory may reduce the computational
burden and are left for future research. In other words, if we divide the FS into subset generation, subset
evaluation and result validation, we mainly focus on subset evaluation and result validation in SOFS and
leave the subset generation to GA. With GA there is assurance from previous studies (Derrac et al. 2012;
Li et al. 2010; Cano et al. 2003; Kudo and Sklansky 2000) that better results than many other solvers,
especially in large-scale FS problems, can be obtained. Additionally there is less chance to arrive at a local
optimal solution than other solvers.

In the remainder of this paper, we formulate FS as a simulation optimization and state the problem and
notations (Section 2), incorporate input uncertainty with bootstrapping from the empirical data distribution
and propose a new SO-based algorithm (Section 3), provide the supporting performance results in comparison
with the alternative feature selection methods (Section 4), and conclude (Section 5).

2 Simulation Optimization Formulation and Notations

We let every dataset in this paper have the form D = {< zi, yi >}i, where zi is a p-dimensional variable
containing the values of features and yi is the response or target value. For a newly collected set of feature
values z, we denote the predicted response by rD(z,x), where rD(·,x) is the prediction model that a learning
algorithm, such as linear regression, has constructed from an available datasetD by utilizing only a subset of
featuresx. x is a p-dimensional binary vector, each of its components taking a value of 1 if the corresponding
feature is used in training and 0 otherwise. Suppose D is the dataset available for modeling, and D0 is the
unknown dataset that we wish to predict. Let QD0(rD(z,x), y) := Q(rD({zj ,x}j∈D0), {yj}j∈D0) be a
generic error measure summarizing the deviation of predicted and observed responses over another set of
data D0. Therefore, Q is a closed-form deterministic function; in the case of a mean square error (MSE)
Q is simply an `2 norm, i.e. Q(a, b) = m−1‖a− b‖22 for two m-dimensional vectors a and b.

It is understood that D0 ∩D = ∅ is essential in avoiding implicit bias on the error measure. Letting P
and P0 be the distributions of the data used for training (D) and prediction (D0), a general optimization
problem, akin to an early suggestion by Efron and Tibshirani (1997), then follows

min
x∈{0,1}

f(x) := ED∼P [ED0∼P0 [QD0 (rD(z,x), y)]] . (1)

Given that P and P0 are unknown (often with the assumption that P = P0 = P c), the objective function
in (1) is a computationally expensive stochastic black box on a binary space of p dimensions. Each of the
expectations in the equation (1) needs to be estimated only using the on-hand dataset. In (1), there are
two sources of uncertainty: the probability distribution of the data on hand and test dataset denoted as P
and P0, respectively. The combination of both is then estimated using the sample average approximation
(SAA) (Kim et al. 2015).

In the SO context, validation is done through post-processing, where the solution of each solver at the
end or at the point of exhausting a predefined simulation budget is re-evaluated with a fixed number of fresh
simulation replications. This step avoids the optimization bias that is present in the estimated values from
the solver (Mak et al. 1999). In the data-driven context this higher separation of modeling and validation
step can be considered a macro-replication under which the micro-replications are drawn for objective
function estimation. Through the macro-replications we compare the results of different FS methods in
terms of reliability and robustness by looking at how the performance of each FS method varies across
macro-replications. While macro-replications can be used for comparing any group of FS methods and a
given dataset, the micro-replications are unique to SOFS. By using the bootstrapped D̂b, b = 1, 2, · · · , B
one replicates different training sets from M, and from their complements (M\D̂b) the test sets D̂b,r,
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r = 1, 2, · · · , R are drawn. This is to mimic having each input of this stochastic system as a whole dataset
instead of a single data point. Figure 1 clarifies the sampling approach for a data-driven SO framework.

Figure 1: Akin SO framework is the sampling from the available dataset D. The micro-replications enable
subset evaluations, measuring accuracy, and contain training sets D̂b and test sets D̂b,r bootstrapped from D
andM\D̂b respectively. The macro-replicationsM and V produce result validations, measuring robustness.

3 Input Uncertainty with Empirical Data Distribution

We wish for our prediction model to predict response values close to the observed response y for feature
values z coming from an unknown dataset D0. In other words we seek argminx∈{0,1}p QD0 (rD(z,x), y),
which is unattainable. But if D̂0 (an estimate of D0) comes from the correct data distribution P c, one can
search for

x∗ = argminx∈{0,1}p f(x|P c) := ED̂0∼P c

[
QD̂0

(rD(z,x), y)
]
.

This is again not possible because P c is also unknown. The best we can do is to use the empirical
distribution of the available dataset D, and estimate

x̂∗ = argminx∈{0,1}p f(x|P ) := ED̂,D̂0∼P

[
QD̂0

(
rD̂(z,x), y

)]
, (2)

where P is the empirical distribution of the available dataset D. In (2), consider the random dataset D̂0

represents the simulation error and D̂ represents the extrinsic error. The interesting observation is that both
are using the same distribution and are also interdependent, as we need to ensure D̂0 does not overlap with
D̂ to avoid an overfit. Following the structure illustrated in Figure 1, given a macro-replication we denote
D̂b for every bootstrap of the input modeling data, and D̂b,r for every sample of the output generation.
Also note their dependence with the shared subscript b. Hence, Fr(x|Pb) := QD̂b,r

(rD̂b
(z,x)) will be a

single stochastic output using the bootstrapped input model Pb and can be written as

Fr(x|Pb) = f(x|Pb) + εr(x|Pb) + δr(x|Pb)

= f(x|P c) + (f(x|Pb)− f(x|P c)) + εr(x|Pb) + δr(x|Pb). (3)

In (3), f(x|Pb) − f(x|P c) is the uncertainty that is forced due to deviance of the inputs coming
from the empirical distribution Pb instead of P c or the extrinsic error, εr(x|Pb) represents the stochastic
error due to the finiteness of outputs and δr(x|Pb) represents the discrepancy due to the departure of the
choice of training algorithm (simulation) from the real association of the features and the response variable.
Discrepancy is often represented by a Gaussian Process for physical models (Kennedy and O’Hagan 2001)
but not data-driven models and we will not explore it in this paper.
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The sample average approximation of the objective function in (2) is

F̄R(x|Pb) =
1

R

R∑
r=1

Fr(x|Pb).

To clarify, in classic machine learning the training is done over a training set which is equivalent to
above with one bootstrap and estimates the prediction accuracy on one test set, that is usually the exact
complement of the training set, i.e., ÊD̂,D̂0∼Pb

[
QD̂0

(
rD̂(z,x), y

)]
. Here, we allow the random outputs

to vary for a single training set and additionally will enable the input uncertainty to be quantified using
multiple bootstraps b = 1, 2, · · · , B for the input model.

To measure the robustness of the performance of a selected decision variable x to the input model, we
can then use a specific summary of

F̄R(x|P1), F̄R(x|P2), · · · , F̄R(x|PB), (4)

as the estimated objective function. Note that this summary is simply the worst case or the maximum value
of (4) in robust optimization, which is a conservative approach. We denote this summary value by φB,R(x)
and use that as the objective function. Consider two summary cases of bootstrapped results in (4):

(i) average: φB,R(x) = B−1
∑B

b=1 F̄R(x|Pb),
(ii) q% quantile: φB,R(x) = F̄R(x|PdB×q%e).

The average reflects the mean performance over bootstraps while the quantile reflects the tail of the
distribution, which arguably also clues to the variability across bootstraps. In (ii), observe that

F̄R(x|PdB×q%e) = inf{t : B−1
B∑
b=1

{F̄R(x|Pb) ≤ t} ≥ q},

where B−1
∑B

b=1{F̄R(x|Pb) ≤ t} is the empirical cdf of the distribution in (4). The quantile summary is
equivalently used in risk analysis and referred to as Value at Risk.

3.1 Estimation with Reduced Variance

In this section we utilize a variance reduction strategy following (Barton et al. 2018), where a variant of
the objective function

F̂R(x|Pb) = c× 1

B

B∑
i=1

F̄R(x|Pb) + (1− c)× F̄R(x|Pb),

is computed instead by choosing the constant c such that its variance is small; the smallest variance it can
have is one due to the input uncertainty since that variance is irreducible. Hence, we derive

Var
(
F̂R(x|Pb)

)
=

(
c2

B2
(B − 1) + (

c

B
+ 1− c)2

)
Var
(
F̄R(x|Pb)

)
=

(
(1− c)2B − 1

B
+

1

B

)
Var
(
F̄R(x|Pb)

)
set
= Var (f(x|Pb)) . (5)

2153



Vahdat and Shashaani

Solving for c we can write

c = 1−

√(
Var(f(x|Pb))

Var(F̄R(x|Pb))
− 1

B

)
B

B − 1
. (6)

Note that in (5), c is defined for a given training bootstrap b that we generalize by replacing Pb with P .
Following the law of total variance, an unbiased estimator for Var(F̄R(x|P )) is

V̂ar(F̄R(x|P )) = ÊP

[
Var(F̄R(x|P ))

]
+ V̂arP

(
E[F̄R(x|P )]

)
,

=
1

B

B∑
b=1

1

R(R− 1)

R∑
r=1

(
Fr(x|Pb)− F̄R(x|Pb)

)2
+

1

B − 1

B∑
b=1

(
F̄R(x|Pb)−

1

B

B∑
b=1

F̄R(x|Pb)

)2

, (7)

which includes variance across training bootstraps and variance within the test bootstraps. Note that in (7),
we assume that the covariances among the training and test sets are negligible. Furthermore,

V̂ar(f(x|P )) = V̂ar(F̄R(x|P ))− 1

B

B∑
b=1

(
1

R(R− 1)

R∑
r=1

(
Fr(x|Pb)− F̄R(x|Pb)

)2)
, (8)

where the second right-hand side term is σ̂2/R which is the average variance estimate within the test
bootstraps. Consequently ĉ can be computed by substituting the variances in equation (6) with their
estimates in (7) and (8).

Note that if we work with the average across input models as the objective function,B−1
∑B

i=1 F̂R(x|Pb) =

B−1
∑B

i=1 F̄R(x|Pb). Then the effect of the variance reduction does not play out. In the quantile of the
input models as the objective function, we expect to see the reduced variance improving the efficiency and
requiring fewer micro-replications to reach a confidence interval half-width that is reasonable. Moreover,
for the case of R = 1, that is, a sample of size 1 is used for estimation of an input model’s performance,
we let c = 0.

3.2 Common Random Numbers (CRN)

Several data-driven settings are different from the stochastic simulation settings with input uncertainty.
First, the test sets are sampled from the training set’s complement and hence dependent on them. The
R outputs are estimated on distinct test sets for each bootstrapped input model Pb. As a result, common
random numbers across input models to draw the same test sets for random output generation is unavailable.

As listed in Algorithm 1, we maintain CRN for the macro-replications using {ωj}. This allows for
an external validation for a variety of scenarios for available dataset M and supposedly unknown V . For
every generated subset x within each macro-replication we draw bootstraps using {ξb} and test samples
using {ζr} hierarchically. Despite these random seeds being fixed, their resulting resamples on distinct
modeling datasets Mj mimics having uniquely defined substreams and sub-substreams of random seeds.
The CRN assists the optimization by enabling efficient comparison between two features subsets x1 and
x2:

Var (φB,R(x1)− φB,R(x2)) = Var (φB,R(x1)) + Var (φB,R(x2))− 2Cov (φB,R(x1), φB,R(x2)) ,

where the covariance is maximized, knowing φB,R(x) := φ(x, {ξb}Bb=1, {ζr}Rr=1) have the same random
seeds for all x in one macro-replication.
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With the solution reported from each macro-replication, denoted by x∗j , the performance measures of
interest for the feature selection are computed by training the whole available dataset Mj and externally
validating on Vj that remains unused in obtaining x∗j . The performance measures in this study include the
average and variance of (i) deviation measure Q, (ii) the size of the optimal feature subset, and (iii) the
percentage of detected true features.

Algorithm 1 SOFS(B,R)
Given optimization alg., training alg. r(·), dataset D, fractions κ1, κ0, random streams {ωj}, {ξb}, {ζr}.
Tune the hyper-parameters of the optimization and training algorithms, if any.
for macro-replication j = 1, 2, · · · , J do

Draw Mj and Vj = D\Mj using {ωj}.
Optimization starts:
for iteration k = 1, 2, · · · do

Generate feature subset(s) xk via the optimization algorithm.
for Training bootstrap b = 1, · · · , B do

Draw D̂b from Mj of the size κ1 × |Mj |, using {ξb}.
Train the model rD̂b

(.|xk).
for Test bootstrap r = 1, 2, · · · , R do

Draw D̂b,r from Mj\D̂b of the size κ0 × |Mj\D̂b|, using {ζr}.
Compute Fr (xk|Pb) = QD̂b,r

(rD̂b
(z,xk),y).

end
Compute F̄R(xk|Pb) = 1

R

∑R
i=1 Fr (xk|Pb).

end
For all b ∈ {1, 2, · · · , B}, and using computed ĉ from (6) set the b-th micro-replication output as

F̂R(xk|Pb) = ĉ

(
1

BR

B∑
b=1

R∑
r=1

Fr(xk|Pb)

)
+ (1− ĉ)F̄R(xk|Pb).

Report the objective function φB,R(xk) as some summary of F̂R(x|Pb), b = 1, 2, · · · , B.
end
Report the optimal subset x∗j (B,R) and performance measures representing the mean squared error,
number of features in the optimal subset, and the true positive rate (TPR) as

fj = QMj

(
rVj (z,x

∗
j (B,R), y

)
; gj = ‖x∗j (B,R)‖1; hj = ‖x∗‖1

(
x∗j (B,R)

)T
x∗,

respectively where x∗ is the true solution.
end
Output: mean and standard deviations of the three performance measures (f̄ , σ̂f ), (ḡ, σ̂g), and (~, σ̂h).

4 NUMERICAL EXPERIMENTS

In this section, we experiment with the proposed SOFS and compare it with alternative FS methods.

4.1 Implementation

The choice of training algorithm (r) is kept open; here for simplicity, we utilize Generalized Linear Models
or GLM (Nelder and Wedderburn 1972). GLM models assume the response variable follows one of many
distributions in the exponential family (represented by link function `), and its conditional mean has a linear
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relationship with the features; i.e., `(µy|z) = βz. Coefficients β are computed by fitting the model using
the least-squares method. GLM models also assume that the error y − `−1(βz) is normally distributed,
has a constant variance, and is independent per data points. Despite the limiting assumptions, the GLM
structure’s departure from that of the real system can be modeled by a bias generated from the discrepancy
term δ in (3). To the best of our knowledge, empirical δ is not explored; we leave characterizing that for
future research as well.

The simulated regression dataset that we generated for this study has 12 independent Gamma distributed
features with both shape and scale parameters equal 2:

y = z1 × z2 + z210 − z3 × z17 − z15 × z4 + z9 × z5 + z19 − z220 + z9 × z8,

following (Van der Laan et al. 2007), available in caret package in R under “LPH07 2”, with added 108
standard normally distributed noise features and 100 correlated (auto-regressive) features with correlation
value of 0.75. Use of the simulated dataset allows us to know beforehand which of the features are
contributing in the prediction of the response, and detect the correctly and falsely selected features through
each FS method.

We compare SOFS method with three other FS method, RFE or Recursive Feature Elimination (Guyon
et al. 2002), GAFS (Kuhn and Johnson 2013), and LASSO (Tibshirani 1996). All of these methods
are widely used in practice. The main characteristics in these methods are bagging in RFE, and GA
based optimization in GAFS, which are combined in SOFS. LASSO is the benchmark for its known high
performance. RFE finds the best subset size by ranking the features, whereas SOFS does this directly by
solving the optimization problem. In most cases (we will show this in the results), RFE leads to smaller
subsets due to this difference in the decision variables, but with significant variability in the best subsets.
GAFS finds the best solution over different iterations of the GA. Hence it does not solve the problem
directly. However, it evaluates the performance over internal and external levels using cross-validation or
bootstrapping. LASSO is a regularization method that puts a penalty on the `1 norm of the coefficients.
Usually, in this method, cross-validation is performed to fit the penalty coefficient. We compare the FS
algorithms in Algorithm 1, by executing in the inner block marked with “Optimization starts” in place of
SOFS. Hyper-parameters for each FS method is tuned using cross-validation and full factorial experimental
design. These hyper-parameters include the probability of mutation, cross-over and population size for GA,
and the penalty coefficient for LASSO. For all the cases recorded, the GA runs until either 5000 iterations
complete, or no updates in the best fitness value is obtained in the last 150 iterations. The results of the
two choices for the objective function, as described in Section 3 are shown in Table 1.

4.2 Role of Sample Size

B, and R are the two sample size choices for running an SOFS algorithm, which represents the micro-
replications at a particular decision choice x. We are interested in knowing whether these values achieve
better results as they increase, comparable with any SAA method. We face a critical challenge here: the
number of available data points is limited, and at some point, increasing B may only make the sample
average look more and more like if the entireMwas used instead, which leads to the old issue of overfitting.
So finding the correct B is non-trivial. Additionally, each modeling bootstrap’s size is κ1 times the size
of the available data. In contrast, the size of the test sets that computes the internal performance of x as
stochastic outputs is κ0 times the remainder of the available data. Although these decisions are somewhat
heuristic, we would like to point out the trade-off between them: Larger κ1 forces having fewer test sets
and keeping R high imposes smaller test sets (κ0) to prevent them from overlapping. But small test sets
can hurt the estimation variance and bias. Smaller training sets enable more test sets and more extensive
training sets.

Our experimental designs on κ1 ∈ {0.5, 0.8} and κ0 ∈ {0.5, 1} suggest κ1 = 0.5 and κ0 = 0.5 results
in better performance measures. Intuitively, this setting leaves enough data points for the internal validation
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and R > 1 stochastic outputs, although we realize that this may not be generalizable to other real-world
datasets. We do not present the results of the comparison due to space limitations.

Table 1: Summary results for SR dataset where the average and standard deviation of the performance
measures, representing MSE, subset size, and % of correct features detected, as described in Algorithm
1 are computed over 10 macro-replications. The f̄ is ×10−2. The number of bootstraps, B, takes values
10, 20, and 30 and the number of testing resamples, R, is set to 1, 5 and 10. κ1 = 0.5 and κ0 = 0.5 for
all rows. The objective function in the optimization is either the 90% quantile of the micro-replications or
the sample average. Time is reported in minutes.

Obj. Func. FS B R f̄ ± σ̂f ḡ ± σ̂g ~ ±σ̂h Time

- RFE - - 53.23 ± 22.42 11.20 ± 25.32 0.03 ± 0.10 0.13
- GAFS - - 16.17 ± 8.76 49.80 ± 5.59 0.79 ± 0.44 167.56
- LASSO - - 12.56 ± 6.01 44.30 ± 7.04 0.92 ± 0.00 0.10

Average SOFS

10
1 14.05 ± 5.99 43.50 ± 4.53 0.92 ± 0.00 12.69
5 13.78 ± 4.79 39.50 ± 5.91 0.93 ± 0.03 28.37
10 14.99 ± 6.44 36.20 ± 3.42 0.93 ± 0.03 38.16

20
1 14.39 ± 6.05 35.10 ± 4.31 0.92 ± 0.02 15.95
5 14.33 ± 5.23 30.30 ± 4.22 0.93 ± 0.03 34.84
10 14.73 ± 5.41 30.30 ± 6.73 0.92 ± 0.00 74.50

30
1 14.00 ± 6.00 28.80 ± 2.70 0.93 ± 0.03 24.61
5 13.84 ± 5.71 27.40 ± 3.63 0.92 ± 0.00 45.92
10 13.34 ± 5.17 29.30 ± 4.00 0.92 ± 0.00 97.91

90%
Quantile

SOFS

10
1 15.34 ± 7.35 49.40 ± 6.15 0.90 ± 0.05 14.52
5 14.80 ± 5.31 41.00 ± 3.19 0.92 ± 0.00 23.41
10 13.70 ± 5.97 38.40 ± 5.72 0.92 ± 0.00 39.63

20
1 13.80 ± 6.21 42.00 ± 6.03 0.93 ± 0.04 21.72
5 14.14 ± 5.26 35.90 ± 5.89 0.93 ± 0.04 32.73
10 14.28 ± 5.59 33.80 ± 3.79 0.91 ±0.03 61.78

30
1 14.69 ± 6.08 37.90 ± 3.51 0.93 ± 0.03 27.07
5 13.99 ± 6.55 34.70 ± 4.24 0.93 ± 0.03 42.62
10 14.02 ± 5.66 33.10 ± 4.33 0.92 ±0.00 66.76

4.3 Discussion on Results

We emphasize that with the simulated dataset in our experiments, we can track the type of each features that
is selected by different algorithms and know the exact performance irrespective of the accuracy estimates
from MSE, henceforth measure of deviance, that can be misleading in reality. A few observations are
noteworthy in Table 1.

First, comparing SOFS with other FS methods in terms of computation time, TPR, average performance
measures, and their variability shows that it performs better in one or multiple aspects than others. RFE is
faster and may seem to be more successful in selecting fewer features at first, but its near 0 TPR suggests
that it fails to select the correct features. Also, its high variability reflects its random behavior across
macro-replications. GAFS has a similar f̄ or deviance measure to SOFS, but with higher risk (standard
deviation) and less TPR. SOFS is more efficient than GAFS, although they both use Genetic Algorithms.
Additionally, GAFS chooses more features on average than SOFS. LASSO has comparable time with RFE,
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and a comparable TPR and deviance measure to SOFS. However, SOFS selects significantly fewer features
than LASSO, without sacrificing accuracy.

Second, comparing SOFS with different values for R and B shows that the deviance measure does not
significantly change with more bootstraps. Still, the number of selected features improves, implying that
a better solution subset is obtained without losing accuracy. Note that based on ĉ estimation in (6), R = 1
implies ĉ = 0, therefore, we cannot see the effect of the variance reduction in this case.

Third, with the objective function as average, we can observe that more bootstraps result in smaller
subsets in some cases and larger or unchanged subsets in others. With the 90% quantile objective function,
not only the subset size consistently decreases with more bootstraps, the computation time of almost all
cases is less than the corresponding cases with the average objective function. This observation proves
that the variance reduction adjustment effectively reduces the noise around the solutions and speeds the
convergence. Although with the 90% quantile objective, optimal subsets are larger on average than those
from the average objective function, the difference is not statistically significant. More notably, as B grows
with a fixed R, variability across macro-replications lowers, implying more robustness in the results and
more trust in the algorithm. A direct cost of more micro-replications is larger computation time; however,
that does not increase linearly, suggesting that the optimization becomes more efficient due to better
estimations. These results confirm that including input uncertainty and making appropriate adjustments
achieves the goal of this study.

In another experiment, we focus on comparing LASSO and SOFS more closely. In a randomly singled
out macro-replication using identical data subsets for both methods, we summarize the types of features
selected by each in Table 2. While the number of contributing features selected by each is the same in
this macro-replication, SOFS selects at most half as many noise features (features that are completely
uninformative in reality) or redundant features (those only correlated with one or few of the main real
features) selected by LASSO. Another interesting observation across all macro-replications reveals that one
of the 12 contributing features, z19, is the most challenging to identify. Across all methods, this feature only
appears in a few macro-replications that suggests the high value of detecting it that is only achieved by SOFS
(in cases with TPR above 0.92). Moreover, LASSO has higher variability across macro-replications, which
is evident in its larger subset size standard deviation and deviance standard deviation. Lastly, LASSO’s
linearity assumption is a limitation of this method. At the same time, SOFS does not necessarily assume
a linear relationship between the features and the response when r(·) is any learning algorithms other
than linear regression. In other words, SOFS allows any parametric or nonparametric fitting that can be
separately determined for the dataset of interest.

Table 2: Comparison between selected features by an instance of SOFS and LASSO in a macro-replication.

FS Method real + redundant + noise = Total

LASSO 11 4 29 44
SOFS(20,5) 11 2 12 25

5 CONCLUSION

In this paper, we propose an SO based FS algorithm, which searches for the best and most set of features by
incorporating the input uncertainty that describes how the variability in the data propagates in the outcome
of the prediction models. This problem, which commonly appears in practice and with the emergence of big
data, is a data-driven stochastic optimization, currently formulated with binary decision variables. Genetic
Algorithm is an easily implementable derivative-free solver, while any other search algorithm can replace
it in the SOFS framework. Furthermore, it can infer about the robustness and reliability of the results.
The adjusted variance reduction technique increases efficiency, although more extensive research on the
proposed estimators’ effect on the solution quality and reliability remains for future research. The results of

2158



Vahdat and Shashaani

experimentation on a simulated dataset reveal a significant advantage over the existing optimization-based
FS methods. A valuable investigation seeks adaptive sampling rules with incorporated input uncertainty
that reduce the total number of micro-replications and attain comparatively good results within a shorter
computation time and without sacrificing the robustness. Moreover, a deeper dive in model discrepancy
and characterization of bias and variance of each source of uncertainty in the analysis is an area with little
previous research.
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