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ABSTRACT

The negative effects of traffic, such as air quality problems and road congestion, put a strain on the
infrastructure of cities and high-populated areas. A potential measure to reduce these negative effects are
grocery home deliveries (e-grocery), which can bundle driving activities and, hence, result in decreased
traffic and related emission outputs. Several studies have investigated the potential impact of e-grocery on
traffic in various last-mile contexts. However, no holistic view on the sustainability of e-grocery across the
entire supply chain has yet been proposed. Therefore, this paper presents an agent-based simulation to
assess the impact of the e-grocery supply chain compared to the stationary one in terms of mileage and
different emission outputs. The simulation shows that a high e-grocery utilization rate can aid in decreasing
total driving distances by up to 255 % relative to the optimal value as well as CO, emissions by up to 50 %.

1 INTRODUCTION

Sustainability is driven by innovation. Particularly in the logistics sector, increasing transportation activities
have a significant impact on the environment. Road traffic contributes a large share of emissions to
particulate matter (PM) concentrations, both in an urban as well as a rural and an interregional context (Pant
and Harrison 2013). Hence, an important key towards a more sustainable future is the emergence and
utilization of innovative business models that aid in reducing traffic and emission outputs. Especially in the
retail sector, new information technologies, changing customer preferences, and global supply chain
networks feature manifold opportunities to promote business growth, while at the same time fostering more
sustainable processes, routines, and systems (Naidoo and Gasparatos 2018). Over the last two decades,
home delivery of grocery items has emerged as comprehensive alternative to stationary grocery shopping
and can effectively aid in reducing traffic emissions. For instance, in 2017, 17.5 % of the entire traffic
volume from motorized private traffic in Germany originated from grocery shopping trips (Auf der
Landwehr et al. 2019). Similarly, 19.5 % of all daily vehicle trips in the United States of America are
performed for shopping reasons (Federal Highway Administration 2018). Therefore, by promoting
utilization as well as growth of e-grocery and consequently reducing or avoiding private errands and
shopping trips, traffic loads and traffic-related emissions can potentially be decreased, as delivery tours can
substitute customer shopping trips (Mkansi et al. 2018). However, while many studies have dealt with
assessing or evaluating the ecological impact of grocery home deliveries within the context of urban last-
mile logistics (e.g., Siikavirta et al. 2002; Hardi and Wagner 2019), a holistic view on the entire supply
chain is required to ensure reliable and valid propositions regarding the sustainable value of e-grocery
compared to stationary shopping.
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For reasons of efficiency and profitability, grocery supply chains generally differ according to the given
context and market as well as the capabilities and objectives of the retailer. To maximize process efficiency
and increase the operational performance, many organizations employ large-scale food fulfillment centers
(FFCs), specifically designed for supplying e-grocery orders. These FFCs are supplied with groceries from
nationwide or supra-regional warehouses on a regular basis and act as starting point for last-mile deliveries
(HUbner et al. 2016). In contrast, in the case of stationary retail activities, supermarkets and store outlets
are supplied from these warehouses and act as final point of sales, whereby last-mile traffic does not result
from deliveries, but from shopping trips of private individuals (Ge et al. 2019).

To assess the ecological value of e-grocery compared to stationary grocery shopping along the supply
chain, we propose a simulation approach to model both mileage as well as emission outputs accruing due
to supply, last-mile delivery and private grocery shopping trips. Thereby, we closely cooperate with an
industry partner to gain insights into relevant process flows and gather realistic input parameters for our
simulation experiments, so that the simulation framework is capable of reproducing and guantifying the
entire scope of relevant details (e.g., supply networks) as well as dynamic structures (e.g., behavioral
influences) within the respective system. While our proposed simulation results have been generated for a
selected pilot area in Hanover, Germany, and the business environment of our industry partner, the general
simulation approach can uniformly be employed to assess different peculiarities in various contexts.

Following the introduction, our paper is structured as follows: In Section 2, a synopsis on related
literature regarding the ecological assessment of grocery shopping is provided. Subsequently, we outline
our methodology in terms of overall research design, assumptions and parameters employed within the
course of this simulation study as well as the simulation model and its components (Section 3). Ultimately,
we present our simulation results (Section 4) and conclude with a discussion on our findings (Section 5).

2 RELATED WORK

Several studies and research projects have assessed the value of product deliveries compared to customer
pickup-scenarios in terms of various objectives. According to Browne et al. (2005), depending on the mode
of transport, distances, and shopping basket sizes, shopping trips of consumers can result in a higher energy
consumption than delivery activities along the entire supply chain from factory to store outlet.
Correspondingly, many studies focus on comparing driving distances between e-grocery and stationary
grocery shopping (e.g., Siikavirta et al. 2002). Van Loon et al. (2015) created a Life Cycle Analysis model
to quantify CO, emissions of various e-fulfillment methods concerning fast-moving consumer goods,
indicating that consumer behavior, choice of e-fulfillment method, and basket size are critical factors in
determining the environmental sustainability of e-commerce. Moreover, Kog et al. (2016) investigated the
combined impact of depot location, fleet composition, and routing decisions on vehicle emissions in city
logistics, whereas Kédmardinen et al. (2001) conducted a study to assess how the reception type in e-grocery
influences the efficiency of deliveries in terms of distances and costs. Similarly, Durand and Gonzalez-
Feliu (2012) evaluated three fulfillment scenarios, indicating that a combined approach consisting of home
deliveries and proximity reception points would be most beneficial in terms of reducing mileages.
Ultimately, following up the identified potential to reduce traffic and emissions by fostering e-grocery
utilization, Hardi and Wagner (2019) conducted a simulation study to determine break-even points for
grocery deliveries compared to private customer shopping trips in a given district in Munich, Germany.

Other contributions to the given research area include publications from Tadei et al. (2016), who have
simulated and evaluated the environmental and economic benefits of a local food supply chain in e-grocery,
as well as Pan et al. (2017), who have proposed a new approach to utilize customer-related data for
optimizing the delivery operations regarding grocery items based on absence probabilities derived from
electricity consumption information. Recently, Waitz et al. (2018) have developed an agent-based
simulation model to investigate the impact of delivery services on different fulfillment variables such as
order volumes and customer utility, adumbrating the importance to incorporate shelf life data and customer
preferences into e-grocery activities to ensure profitable and efficient operations.

1219



Trott, von Viebahn, and Auf der Landwehr

Table 1: Status quo of simulation-based e-grocery research.

Publication Method Main Topic s g §§ < % <LE g 5 32
=7 |9 sg |2

Ké&maéréinen et al. (2001) SM Fulfillment design (@) o () o () o
Punakivi and Saranen (2001) CS/ SM Profitability (o) o o o [ o
Siikavirta et al. (2002) LR Environmental impact | @ o o o [ o
Durand and Gonzalez-Feliu (2012) Cs Environmental impact | O o o o [ o
Seitz (2013) MM Customer behavior (o) o o) o Qo (@)
van Loon et al. (2015) MM Environmental impact | Q@ o o @) Qo o
Emec et al. (2016) SM Decision support o o Qo o [ o
Kog et al. (2016) MM Environmental impact | Q@ o o o Qo o
Tadei et a. (2016) CS Fulfillment design Qo (] Qo (] Qo ()
Pan et al. (2017) DS/SM Decision support [ o Qo [ [ o
Evers et al. (2018) DS/SM Decision support Qo ®) Qo (] (] ()
Fikar (2018) SM Decision support Qo o Qo o [ ()
Waitz et al. (2018) SU/SM Decision support Qo o (@) O () o
Cebollada et al. (2019) DS Pricing system Qo @) Qo o Qo Qo
Davies et al. (2019) CS Fulfillment design [ 0o Qo o Qo o
Hardi and Wagner (2019) SM Environmental impact | Q@ 0o o o [ o
Ulrich et al. (2019) MM Demand forecast () o () o Qo o
Caption: @ = full consideration; @ = partial consideration; O = no consideration
Abbreviation; SM = Simulation modelling; MM = Mathematical modelling; LR = Literature review;
SU = Survey; CS = Case Study; DS = Data screening

Table 1 provides a granular overview about the status quo of current research related to simulation-
based e-grocery assessment. The majority of publications deals with assessing, quantifying, and
benchmarking potential impacts of an increasing e-grocery utilization (Siikavirta et al. 2002), analyzing the
consumer behavior (van Loon et al. 2015; Pan et al. 2017), providing a status quo on grocery home delivery
(Kog et al. 2016; Waitz et al. 2018), or evaluating the environmental impact of diverse fulfillment concepts
(Hardi and Wagner 2019). Concerning logistics concepts for grocery deliveries, several studies propose,
conceptualize, or examine different concepts, whereby manifold studies are directly related to assessing or
comparing the impact of different concepts (K&maérdinen et al. 2001). The publications are classified
depending on the individual scope of the research regarding the provision of an explorative research
overview (Research Overview), the evaluation of different e-grocery concepts (Concept Evaluation), the
assessment of sustainability attributes related to e-grocery (Sustainability), the evaluation of the economic
viability und profitability of various e-grocery business models (Profitability), the approach to assess,
benchmark and quantify e-grocery by means of simulation (Simulation Approach), as well as the aim to
determine logistical influences caused by different delivery models and strategies (Logistical Influence).
While the environmental value of e-grocery fulfillment has been assessed in several studies, we could not
find any publication dealing with the environmental impacts of both order fulfillment as well as supply
chain operations, taking into account individual peculiarities required for e-grocery and stationary grocery.
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3 METHODOLOGY

3.1  Research Design

To develop a comprehensive simulation model capable of producing reliable as well as valid results, we
have followed an interlaced research process, as shown in Figure 1.

: ) Input
Literature Review “ Industry Data
I vav
» Determination of parameters <
. J
l Modelling
—>  Model Conceptualisation l l Design of Experiments Emission model }4—
Model Design Verification
Model Implementation ! ‘ Validation
|
] Output v
—‘ Replication ll > Simulation results -

‘ Publication of results l + l

Figure 1: Research approach for the simulation study.

To collect valid input data for the simulation modelling process, we conducted a systematic literature
review on relevant parameters based on the rigorous guidelines of Webster and Watson (2002). Therefore,
we searched major library catalogues and databases for search terms related to e-grocery fulfillment as well
as supply chains and analyzed the resulting literature sources in terms of their title, abstract, and keywords.
The review was conducted between March 2019 and January 2020 and comprised five search and analysis
iterations. In addition to the direct literature search, we also conducted a backward search by assessing
citations from the literature results as well as a forward search, where we identified publications quoting
relevant articles descried during the search phase. Ultimately, we also reviewed literature introduced in the
related work section. An overview about the structure, content, and outcomes of the literature review is
given in Table 2. Moreover, we gathered information on the existing stationary as well as e-grocery supply
chain, behavioral patterns of customers, as well as system-relevant influence factors (e.g., provider
capabilities) by collecting expert feedback and operational data from our industry partner, a major German
bricks and clicks retailer. This information was used to validate the insights from the literature review and
collectively act as input parameters for the simulation study. Subsequently, based on the derived parameters,
we initiated the modelling process by conceptualizing, designing and implementing the formal simulation
model. An overview about the specific data sources influencing model assumptions as well parameters is
provided in Section 3.2. While structural data, such as population density, number of registered vehicles,
and household composition, were directly obtained from the city of Hanover, additional insights on model
input parameters and system assumptions were derived by consulting scientific data sources.

In line with the objectives of this paper, we developed several simulation experiments to investigate
and benchmark the role of e-grocery compared to stationary shopping in a holistic supply chain context.
Ultimately, we verified and validated (V&V) our simulation model, results, and experiments by calibrating
them against information from our industry partner. Replications that did not meet the calibration criteria
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in the course of the V&V process were employed to adapt the model conceptualization and lead to an
iterative design process. Furthermore, we developed an emission model capable of transferring mileage
into emission outputs to assess the environmental value of the simulated concepts.

Table 2: Systematic literature review.

Database Search Term Search Fields Hits Relevant
Google Scholar (“e-grocery” OR “home delivery” OR 12.134 112
AlSeL p o . 142 8
online food retailing”) AND Title,
JSTOR T e 1e: 76 3
(“delivery” OR “fulfillment) AND Abstract and
IEEEXxplore . . i ” 2.012 32
. - (“simulation” OR *“decision support Keywords
Science Direct OR “supply chain” OR “impact”) 98 S
Taylor & Francis PRty P 122 7
Backward/Forward search/ Related Work ~ 22/14/17
Total 220

3.2

Model Assumptions, Data, and Parameters

To simulate the real environmental impact, changes in consumer behavior and travel need to be assessed
holistically (e.g., shopping frequency, trip chaining). Hence, the following assumptions have been made:

Model scope: The scope of the model is restricted to the areas “Mitte”, “Oststadt”, “List” and
“Grofl3-Buchholz” in Hanover, Germany. The entire population in the given pilot area consists of
9,400 households (Landeshauptstadt Hannover 2019). To improve computation times and increase
the experimental value of the simulation model, we have selected a 15 % sample (1,410
households).

Time windows: Delivery time windows have been determined by analyzing the mobility and
shopping behavior of consumers in the given pilot districts and vary from one to six hours between
8 am and 8 pm (Nobis and Kuhnimhof 2018).

Vehicle type: In line with common grocery industry practices (Hibner et al. 2019), it is assumed
that heavy duty trucks (HDT) are employed for deliveries between the central warehouse (CW) and
regional warehouse (RW) as well as the RW and the FFC, while medium duty trucks (MDT) are
utilized for transportation activities from RW to supermarket outlets (SO) and FFCs to distribution
spokes (DS). Ultimately, last-mile deliveries are conducted via light-duty vehicles (LDV).

Fleet: If a delivery vehicle is unable to fulfill an order within a given time window due to time or
capacity constraints, additional vehicles are utilized to fulfill the respective orders. In line with
information from our partner organization, a maximum of 12 vehicles can be made available.
Supermarkets: As we focus on the operations of one particular grocery chain, we assume that
stationary shopping activities are concluded with one SO. In total, the pilot area features 14 SOs.
Shopping type: Stationary shopping trip types are clustered into trips for small and bulk purchases
(Nobis and Kuhnimhof 2018). Depending on the shopping type, modal split and SO selection differ.
For bulk shopping trips, car utilization is higher (66 %) than for small purchases (56 %) and
customers select supermarkets based on a distance-based preference function (e.g., high probability
for close-range SOs in the case of small purchases). Moreover, average basket values (€ 22 offline
and € 80 online) are included in the shopping frequency by means of an adjustment factor (3,63).
Shipment quantities: Shipment frequencies from CW to RW as well as from RW to FFC and SO
have been pre-determined, whereas shipping frequencies from FFC to DS, shopping trip
frequencies from household to DS and order fulfillment frequencies from DS to household
dynamically depend on the purchase behavior of consumers at simulation runtime.

Trip distance: Trip distances are calculated with a bidirectional A* point-to-point algorithm based
on an OpenStreetMap network and validated with actual geographic data for the pilot areas.
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Table 3 provides a synopsis on the parameters of the simulation.

Table 3: Simulation parameter values and classification.

Category Value Unit/Type Final Source
Capacity HDT 700 Orders/Fixed Industry Partner
Capacity LDV (Min/Mean/Max) 16/18/19 Orders/Variable Industry Partner
Capacity MDT (Min/Mean/Max) 160/180/190 Orders/Stochastic Industry Partner
Car Utilization Bulk/ Small Purchases 66/56 Percentage/Fixed Nobis and Kuhnimhof 2018
Daily Delivery Frequency CW-RW 0-1 Trucks/Variable Ge et al. 2019
Daily Delivery Frequency RW-FFC 0-1 Trucks/Variable Ge et al. 2019
Daily Delivery Frequency RW-SO 1-3 Trucks/Variable Ge et al. 2019
Daily Shopping Frequency 50 Percentage/Fixed Papastefanou and Zajchowski, 2016
Delivery Capacity MDT 3 Supermarkets/Fixed Hibner et al. 2016
E-grocery utilization (Min/Max) 0/100 Percentage/Discrete Assumption

Location of CW
Location of FFC
Location of RW

50.051605, 8.658582
52.447304, 9.697542
52.358022, 10.120982

Coordinates/Fixed
Coordinates/Fixed
Coordinates/Fixed

Industry Partner
Industry Partner
Industry Partner

Selection Cluster (Bulk Purchases) 4 Kilometers/Fixed Nobis and Kuhnimhof 2018
Selection Cluster (Small Purchases) 2 Kilometers/Fixed Nobis and Kuhnimhof 2018
Service Time HDT (Mean/SD) 60/10 Minutes/Stochastic Industry Partner
Service Time LDV (Mean/SD) 712 Minutes/Stochastic Industry Partner
Service Time MDT (Mean/SD) 60/10 Minutes/Stochastic Industry Partner
Share of Bulk/Small Purchases 56/44 Percentage/Fixed Nobis and Kuhnimhof 2018
Vehicle Speed Inner City (Mean/SD) 30/5 Km/h/Stochastic Seitz 2013

Vehicle Speed Outer City (Mean/SD) 70/10 Km/h/Stochastic Seitz 2013
Working Days 6 Days/Fixed Hubner et al. 2018
Working Hours 7.8 Hours/Fixed Hibner et al. 2018

3.3

The simulation model has been built with AnyLogic (Version 8.5.2) and combines agent-based simulation
(ABS) properties with discrete-event simulation (DES), building upon an event-based time advancing me-
chanism related to the behavioral state changes of agents and the respective agent networks. Due to the high
amount of autonomous and heterogeneous components as well as the dynamic interdependencies between
system units, ABS can effectively be used to model environmental uncertainties and the resulting non-
linear, discontinuous, and asynchronous agent interactions (Gomez-Cruz et al. 2017). Moreover, in line
with the bottom-up approach, the agent-based simulation approach allows for studying both structural as
well as functional aspects of complex networks (such as grocery supply chains) and alter simulation prop-
erties for experimentation purposes. The simulation time of one run equals one day. To model the prob-
ability of different outcomes resulting from probabilistic variables and stochastic demand fluctuations, we
have employed a Monte Carlo approach with a total of 1,361 simulation runs. Figure 2 conceptualizes the
simulation model and provides a detailed overview about agents, agent networks, and interdependencies.

Within the scope of our simulation system, we take into account the grocery supply chain operations
of our industry partner from the central warehouse to the final customer. Accordingly, product sourcing
operations like raw material distribution and manufacturing are not considered. HDT agents deliver goods
with a given frequency from CW to RW (see Table 3), where they are temporarily stored for future transport
operations. The daily delivery frequencies depend on the respective e-grocery utilization rate, whereby
frequencies for the e-grocery supply chain increase with rising e-grocery utilization, while delivery
frequencies along the supply chain for stationary grocery shopping decrease (and vice versa). Accordingly,
in the equilibrium state (50 % e-grocery and 50 % stationary shopping), delivery frequencies for each
channel equal 0.5. Subsequently, depending on the sales channel (stationary or online), products are either
shipped directly to the supermarket outlets by MDTs or to the FFC by an HDT, whereby the daily delivery
frequencies depend on the individual demand.

Simulation Model and Components
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In turn, the FFC collects customer orders from the household agents and generates a shipment list for
the given vehicle fleet. The shipment agent is passed on to the MDT agent, which transports the ordered
items to a DS, where these are cross-docked and finally distributed to the order recipients by LDV agents.
Due to the fact that the capacities of MDTs and LDVs in terms of order quantities heavily depend on the
respective order contents, based on information from our industry partner, we have stochastically varied
the individual capacities. In contrast, supply chain operations requiring HDTs are less sensitive to individual
order peculiarities, which is why HDT capacities have been fixed. Concerning stationary grocery shopping,
households generate a purchase agent representing a shopping list, which is, depending on the car utilization
rate, passed on to a car agent. Based on the individual shopping trip type of each household, the car agent
evaluates suitable supermarkets and selects the closest available SO as destination. The behavior model
determining the shopping activities of household agents is not instantiated in the simulation model, but
integrated by means of behavioral parameter values (e.g., delivery time windows, car utilization).

Physical agents (e.g., HDT, MDT, FFC) are placed in a geospatial environment, where distance-based
navigation and routing procedures are conducted in line with an adapted cluster- and time-window-based k
Nearest Neighbor (KNN) algorithm (Dudani 1976). Initially, a limited range is determined to assess the
availability of customers within the delivery area. The nearest customer (i) from the DS within a given time
window is selected as starting point and added to the delivery network. Subsequently, customer (i) is set as
starting point for identifying the nearest remaining customer (i) in the given range. If no remaining customer
is available in the selected range, the algorithm automatically increases the boundaries until a customer that
is still to be delivered in a respective time window has been found or all customers are served within one
delivery network. Routes between household agents are chosen by means of a distance-based cost function.
CW, RW, FFC, and SOs are considered as unlimited supply and storage sources. Finally, all distances
covered by moving agents are recorded in a database and converted into associated emission outputs.
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3.4 Emission Model

Our emission model has been designed to convert distance metrics from the simulation study into emissions.
Emissions caused by private and commercial traffic (E;j) are calculated by the number of vehicles in a
nation’s fleet of category j and technology k (N;jx), the average annual distance driven per vehicle of category
j and technology k in kilometers (M) and the technology-specific emission factor of pollutant i for vehicle
category j (EFi;u):

EPj = Yx(Njx X Mjy X EFy j1).

Vehicle categories include passenger cars, LDVs, MDVs, and HDVs, while technologies range from
Euro 1 to Euro 6. Regarding private traffic, the fleet has been specified by structural data for the given pilot
districts (Landeshauptstadt Hannover 2019). The referenced commercial vehicle categories are outlined in
Table 4. Ammoniac (NHs), nitrous oxides (N20), and nitrogen oxides (NOy) are calculated by the given
emission factors, whereas carbon dioxide (CO;) emissions of vehicles k combusting fuel m, are derived by:

FC,f‘,anC
12.011+1.0087y.c.m+16.00070.com

E¢or m = 44.011 x

where FCCALC s the fuel consumption of the vehicles for the respective time period and ry.c as well as ro.c
being the ratios of hydrogen to carbon and oxygen to carbon in the fuel. Input values on emission factors,
vehicle categories, pollutants, and technologies have been extracted from Ntziachristos and Samaras (2018).

Table 4: Referenced commercial vehicles.

Category Abbr. Reference Vehicle Properties
Light Duty LDV Renault Master L2H1 with 96 kW /130 PS; ENERGY dCi 145 engine; Diesel; Euro 6b;
Vehicle Kiesling Flat Runner Box Body 2.29 tons tare weight
Medium Duty MDT MAN TGL 7.180 with MAN 140 kW /190 PS; MAN DO0834 engine; Diesel; Euro 6;
Truck thermal case 5.3 tons tare weight
Heavy Duty HDT MAN TGS 41.330 with Krone 264 kW / 360 PS; MAN D2066LF80 engine; Diesel; Euro 6;
Truck Profi Liner SDP 27 eLB4-CS 15.9 + 6.2 tons tare weight

The proposed methods can effectively be used to calculate total emission outputs based on emission
factors and driving distances to a good approximation. The factors combine various influencing factors
such as driving speeds in different environments (motorway, highway, urban area), acceleration and decal-
eration, or ambient temperature and, therefore, present average values. Hence, the model is generally better
suitable for comparing relative effects of individual scenarios than calculating absolutes with high accuracy.

4 RESULTS OF THE SIMULATION STUDY

With each simulation run representing one particular day, the evaluation of the results is based on e-grocery
utilization rates, showing the potential benefits or drawbacks of grocery home deliveries in terms of traffic
influences and emission outputs. Initially, we study the attractiveness of increasing e-grocery utilization in
terms of sustainability from a social point of view, which can be related to vehicle mileages and conse-
quently traffic loads in our study. Subsequently, we examine the emission outputs and outline important
characteristics.

On average, kilometers covered for a single shopping trip equal 3.9 for small and 5.7 for bulk purchases.
Overall, 97.60 % of all e-grocery orders could be fulfilled within the required time window. As shown in
Figure 3, stationary shopping without e-grocery operations results in a total distance of 5,766 kilometers
across the entire supply chain per day. In turn, an increase in e-grocery utilization results in a decrease of
total kilometers, ultimately leading to a mileage reduction potential (measured relative to the optimal value)
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of up to 255 % in the case of 100 % e-grocery. For e-grocery utilization rates of 10 %-90 %, stationary
shopping and e-grocery supplement each other, which needs to be noticed when comparing e-grocery
scenarios with the baseline scenario (0 % e-grocery utilization). The local maximum for mileages occurs
for a an e-grocery utilization rate of 2 %.

Share of E-Grocery in %

7000,00 300%
Local max.: 5.855km | 2% E-Grocery
6000,00 250%
5000,00 200%
4000,00 150%
3000,00 £ 100%
.
2000,00 50%
1000,00 . 0%
0,00 . 50%
0 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Deviation 0% -2% 8% 20% 39% 59% 79% 93% 108% 128% 153% | 255%
Stationary 5766 5662 5013 4288 3485 2830 2284 1922 1558 1180 790 0
E-Grocery 0 193 347 515 654 800 937 1070 1208 1352 1486 1626
Combined 5766 5856 5360 4803 4138 3630 3222 2991 2766 2532 2276 1626
mmm Deviation  seses Stationary - = E-Grocery = Combined

Figure 3: Average kilometers per day and deviation (in percent of the optimum value) depending on
e-grocery utilization.

In terms of environmental impact, which we outline by means of emissions outputs, our study results
show that both CO, and NH3; emissions significantly decrease with an increasing e-grocery utilization.
However, contrary to the development of mileages, NOx emissions only decrease to a minor extent, while
nitrous oxide N2O emissions even add up compared to the baseline scenario (Figure 4).

<
2
¥

0.20

0.15

0.10

0.05

Distribution of Emissions (%)

0.00
0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Total NH; 92.13 80.31 68.32 55.05 44.05 35.30 30.05 24.72 19.51 13.97 4.88
Total NO, 1175.31 1201.94 1147.33 1045.50 984.10 934.12 919.13 907.32 889.99 863.82 724 87
Total N2, 419.85 432.15 428.70 42397 424.02 42511 426.99 429.32 430.99 432,46 420.85
Total CO, 2007821 1984646 1855205 1689649 1586042 1498093 1448302 1405748 1352089 1291929 981604

I Total NH;

Total NO,

I Total N2,

. Total CO,

------ Linear: Total N2,

ssssnns Linear: Total CO,

Figure 4: Average emissions in grams per day depending on e-grocery utilization
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Analyzing mileages and corresponding emissions based on supply chain levels, it becomes obvious that
most emission outputs for traditional grocery shopping occur on the last mile, while in the case of e-grocery,
emissions occurring between CW and RW constitute the main share of total emission outputs (Figure 5).

Stationary Grocery Supply Chain E-Grocery Supply Chain

Share of E-Groc

0 200000 1000000 1500000 2000000

500000 1000000 1500000 2000000

Total Emmisions (CO, / grams) Total Emmisions (CO, / grams)
W Stationary - Last Mile m Stationary - Supply Chain Level 1 m E-Grocery - Last Mile m E-Grocery - Supply Chain Level
E-Grocery - Supply Chain Level 2

Stationary - Supply Chain Level 2

Figure 5: Average emissions in grams of CO; per day based on supply chain level.

5 DISCUSSION AND CONCLUSIONS

In this paper, we presented a simulation model capable of reproducing supply chain operations within the
context of grocery shopping. The model was designed to investigate the impact of increasing e-grocery
utilization on sustainability metrics such as mileage and emission outputs and consequently judge e-grocery
in terms of its potential environmental and social benefits within a holistic supply chain context. Applied
to the operational case of a major retail organization in Hanover, Germany, we showed that an increasing
use of e-grocery offers a huge potential to decrease both mileage- as well as traffic-related emissions. Es-
pecially utilization rates starting from 20 % seem to have a very high impact across the entire supply chain
compared to the scenario exclusively including stationary grocery shopping. However, despite of the given
potential of e-grocery in terms of sustainable value, e-grocery utilization rates fall far below the indicated
20 % rate in many countries. For instance, in Germany, e-grocery utilization currently equals about 1.1 %,
whereas even in countries with comparably high utilization rates like the USA or France, e-grocery is not
employed regularly by more than 5 % of the population (HUbner et al. 2019). Hence, to make the benefits
of e-grocery more feasible in terms of mileage and emission reduction, e-grocery utilization needs to be
fostered and promoted in the near future, especially when considering the local maximum at 2 %, indicating
that minor e-grocery operations as they are given in many countries even result in increased mileages and
emission outputs. Moreover, our analysis illustrated that emissions are not reduced in accordance with the
reduced mileages, as fleet compositions and transporter types feature different emission outputs per Kilo-
meter driven. Hence, while e-grocery can aid in reducing CO and NHsz emissions, it has a minor impact on
NOx emissions and even results in increased N-O emissions. Nevertheless, due to its high emission reduct-
ion potential on the last mile, e-grocery can be suggested to reliably aid in traffic and emission reductions
in urban areas, as it results in a shift of mileages and emissions across the supply chain.

Besides of the fact that this simulation study has been conducted to realistically model grocery supply
chain operations and shopping effects, taking into account various peculiarities such as the impact of
chained trips, shopping trip types, average shopping baskets, as well as delivery time windows, still some
limitations and opportunities for future research can be identified. First, we did not assess product sourcing
processes and operations, which may be influenced by prior supply chain levels and even affect the overall
comparison results between stationary grocery and e-grocery supply chain. Moreover, as delineated by our
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industry partner, we assumed one particular central warehouse and one regional warehouse to be respon-
sible for the entire operations within the given area of investigation. Future research should, therefore,
conduct further (sensitivity) analyses to verify our results in different contexts and identify the impact of
warehouse locations and different supply chain structures in various countries. Additionally, different cases
with other supermarket outlets, geographical structures (e.g., rural delivery areas), or even purchase
behaviors influences such as the impact of seasonal demand could be investigated.
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