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ABSTRACT 

Infineon Technologies Dresden has long used discrete event simulation to optimize production planning 
for its fully automated front end manufacturing lines. There are needs to reduce maintenance efforts, to 
increase transparency for validation and verification, and to improve flexibility for the fast simulation of 
scenarios with a focus on qualitative statements. Less detailed models will be utilized where components 
could be omitted. This paper considers a simplification of the process flows through operation 
substitution for constant delays. The main idea is to consider the accuracy measurements used to evaluate 
simplification. It is shown that standard accuracy measurements (e.g. mean absolute error, correlation 
coefficient, etc.) produce rather poor performance. It is suggested instead to use measurements based on 
lot cycle time distributions (e.g. goodness-of-fit tests). Nine types of simplification sieve functions were 
analyzed, with analyses based on the MIMAC dataset 5 model. 

1 INTRODUCTION 

Van der Zee (2019) presented an overview of the simulation model simplification and noted that 
simplification “is still very much a green field”. Mönch et al. (2018) provided several other papers 
relevant to simplification for supply chain simulation needs and links on existing testbeds. Unfortunately, 
research in this area often describes evaluation measurements which are only suitable for the rather 
simple examples which the authors considered in their works. More appropriate methods do exist, e.g. 
goodness-of-fit tests (Law 2015). However, these methods are utilized less often, most likely due to 
historical traditions in simulation, where the main focus is placed on precise estimation of the mean and 
quantile values of the simulation model results in comparison with reality (Alexopoulos and Kelton 
2017), but not on the comparison of the dozens of simulation models with each other.  

The research presented in this paper seeks to compare 83 simplified models with a base model and 
with each other. This is done as the problem of gradual simplification of the process flows through 
operation substitution for constant delays is being considered. There is also a need to compare the 
different experiment series of 83 simplified models with each other in order to identify the most effective 
simplification method (see Table 2). The main idea of the experiments presented here is to investigate 
how many tool sets could be substituted by delays, and with which heuristic (sieve function), without a 
big loss of accuracy of the simplified model. Here, the accuracy measurements are the main focus.  

As a continuation of previous work (Stogniy and Scholl 2019), the current paper makes the following 
contributions: 1) gradual simplification with substitution of a one tool set per step (this allows oscillations 
in the accuracy measurements to be observed); 2) the consideration not only of tool set, but also process 
step based delays (providing an improved simplified model); 3) considerations of 9 (not one and a half) 
sieve functions with a focus on standard accuracy measurements (mean absolute error, correlation 
coefficient, etc.) as opposed to simply comparing the results of sieve functions, an approach that 
highlighted, in contrast to other findings in the literature, the unsuitability of the measurements for 
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simplification tasks; and 4) a dramatically increased data volume for which R (R Core Team 2019) was 
used for calculations, as opposed to the electronic spreadsheets used in previous research. 

As a basis for the research, the  MIMAC datasets (1997) were chosen. MIMAC dataset 5 was decided 
upon because it includes the largest quantity of process flows. For the fab simulation model, AutoSched 
AP from Applied Material, version 11.5, was used. 

This paper is organized as follows. Several ideas from related works are presented in Section 2. The 
designs of the experiments, including sieve function, delay types, and accuracy measurements description, 
are discussed in Section 3. The diagrams, including measurements and their critiques, are described in 
Section 4. Section 5 includes summarized experimental results for sieve function comparison. 

2 RELATED WORK 

This research was inspired mostly by two papers: Johnson et al. (2005) and Völker and Gmilkowsky 
(2003). Following Johnson et al. (2005), gradual simplification was implemented in this paper, but with a 
much more detailed model (MIMAC dataset 5 and not a tandem-10 M/M/1 or M/M/10 model). Johnson 
et al. (2005) used correlation and autocorrelation to estimate the accuracy of simplified models. In the 
current this paper it was determined that these estimations would not be sufficient (see Secion 4.1). 
Völker and Gmilkowsky (2003) was found to be the most detailed paper in the field of simplification. The 
authors used three sieve functions to choose the operations for substitution. In comparison, the work 
presented in the current paper uses nine sieve functions, each with two variations. The focus was put on 
tool sets and not on the operation substitution, as this does not require capacity reservations. However, 
information about each particular operation was also used for the calculation of process step based delays. 
Völker and Gmilkowsky (2003) also used an estimation based on lot cycle time mean absolute error 
(MAE) and found “pathological” configurations when the error function is not monotonous. The research 
presented below also found such configurations and a logical explanation for this phenomenon is 
presented in Section 4.1. Moreover, it was also found that MAE is inadequate as an estimation tool for 
simplified models. Similar to the Völker and Gmilkowsky, an operation ratio was used here to quantify 
the degree of simplification. 

Another consequential paper is that of Rose (1999), from which several design features were adopted: 
using First In First Out (FIFO) and Critical Ratio (CR) dispatching rules, considering lot cycle time 
distribution as an accuracy criterion, and investigating bottleneck problems. Rose (1999) did not present 
formal criteria to estimate differences in lot cycle distributions, but used them as illustrations. In a 
previous paper (Stogniy and Scholl 2019), we suggested using a Kolmogorov-Smirnov test and 
summarized absolute divergence (SAD). Within the previous review process, our attention was directed 
to a similar SAD criterion in (Ewen et al. 2017). In the current work, these and other accuracy 
measurements are also considered. It is also necessary to emphasize that one of the more popular 
statistical tests, namely, the t-test (see for example Piplani and Puah (2004)), is not suitable for the 
simplification sought in our case. A literature review of papers on bottlenecks produced two helpful ideas: 
a sieve function ζ3 based on active period method (Roser and Nakano 2015) and using standard deviation 
to estimate sieve function fluctuation.  

3 DESIGN OF EXPERIMENTS 

For this research a special automated experimental environment was developed. It allowed for 4,000  
detailed model runs to calculate warm up period and delays (2000 seeds x2: FIFO and CR dispatching 
rules). Subsequently, 44,820 automated experiments for accuracy measurements calculations were carried 
out: 3 system configurations: ε1 – FIFO, ε2 – CR, ε2b – CR with consolidated delays at the beginning; 9 
sieve functions; 2 variants of sieve function fluctuation (with and without); 2 types of delays (process step 
and tool set based); and 83 tool sets substitutions (5 seeds for each substitution). An experiment includes 
a single run of the simplified simulation model. The experiment number signifies the number of 
substituted tool sets (from 1 to 83). 

1826



Stogniy and Scholl 
 

 

A steady state simulation was considered. Each simulation run was 114 weeks. Welch’s procedure to 
determine the warm up period was used (Law 2015), with the warm up being set at 10 weeks. Tool set 
substitution for constant but not random delays was considered. Explanations for this decision can be 
found in (Stogniy and Scholl 2019). In the current paper distributed delays (ε1 and ε2) were applied. 
However, because the previous research showed a significant difference for the CR rule when calculating 
a consolidated delay for each process flow and placing it already at the beginning, an ε2b system 
configuration was examined as well.  

3.1 Sieve functions ζ 

For tool set substitution, workcenter criticality indexes were used, referred to here as sieve functions 
following (Völker and Gmilkowsky 2003). An order of tool sets according to a particular sieve function 
was created to substitute a tool set one by one. The term “bottleneck” is often used in simplification 
papers. However, the term “tool importance” is used in the current work to emphasize the focus being 
placed on identifying an important tool set when considering substitution, as opposed to simply locating 
bottlenecks.  

The following model statistics based on weekly standard model reports were used to build sieve 
functions: IDLE%/IDLE# – the percent of time/the number of times a tool set entered the idle state; 
PROC% – the percent of time a tool set entered the processing state; BSAVG – the average of batches 
processed (batch size); BSMAX – the maximum quantity of pieces allowed in a batch; QTAVG – the average 
time lots waited at the tool set (queue time); QLAVG – the average number of pieces in front of the tool set 
(queue length);  PTAVG – the average of the lot processing time for the tool set; CTAVG – the average lot 
cycle time for the tool set (CTAVG = PTAVG + QTAVG); and CTSD – standard deviation of the cycle time for 
the tool set (CT2

SD = PT2
SD + QT2

SD).  
The following sieve functions were used: ζ1 = IDLE%; ζ2 = IDLE% + PROC% – PROC%(BSAVG / 

BSMAX); ζ3 = (100 – IDLE%) / IDLE#; ζ4 = QTAVG; ζ5 = QTAVG / PTAVG; ζ6 = QLAVG; ζ7 = QLAVG / BSMAX; ζ8 
= CTSD

total; and ζ9 = CTSD
total / CTAVG

total. All ζ (except ζ3) were calculated based on weekly report data of 
2,000 independent experiments with detailed models. ζ3 was calculated based on 104-week period reports 
of the 2,000 experiments. This was done to reduce the cases where IDLE# = 0. In the case of 104-week 
period reports, IDLE# = 0 appeared for only one tool set in about 500 of 2,000 experiments. In this case it 
was substituted with IDLE# = 1 for the calculation of ζ3. To calculate CTSD

total (ζ8), the following formula 
was used (the law of total variance (Fewster 2014)): 

CT𝑆𝐷
𝑡𝑜𝑡𝑎𝑙 = √

∑ (𝐶𝑇𝑆𝐷)𝑖
2 ∙ 𝑝𝑖

𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

+
∑ ((𝐶𝑇𝐴𝑉𝐺)𝑖 − 𝐶𝑇𝐴𝑉𝐺

𝑡𝑜𝑡𝑎𝑙)
2

∙ 𝑝𝑖
𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

,  

where i is the report period (a week), n = 104 weeks, and pi is the number of pieces which finished 
processing at the tool set during the ith report period.  

Several papers about bottlenecks (e.g. Roser and Nakano (2015)) mentioned that taking momentary 
bottlenecks into account is important, and that advice was followed here. Therefore sieve function 
fluctuations were considered. As long as ζ is calculated based on large amounts of data, a distribution of 
its value and calculated mean value (µ) and standard deviation (σ) is available. There are two sieve 
function variants: ζi = µ and ζif = µ ± σ (where i = 1, 2, …, 9 and f – fluctuation). To understand the 
difference between the two variants and which sign (“+” or “–”) should be used in the second variant, 
consider the following illustrative example (Figure 1). There are three tool sets (A, B, and C) with the 
following case to consider: “tool importance” → max, when ζ → min. This means that an ascending order 
of the tool sets should be created. Taking into account only mean values (µ) results in an order of 
B<A<C. But taking both mean and standard deviation values into consideration suggests that µ – σ be 
used to obtain a conservative estimation. This results in A<B<C. If the following case is considered, “tool 
importance” → max, when ζ → max, then µ + σ should be used. 
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Figure 1: An illustrative example of ζ fluctuation. Two variants: ζi and ζif. 

3.2 Delay types η 

Two types of delays are considered here: process step (η1) and tool set (η2) based. The delays are 
calculated as averages based on 104 weekly reports of 2,000 independent simulation runs with detailed 
models. The first type is calculated based on process step reports and the second type based on tool set 
reports (Figure 2). A delay for a particular week is equal to the sum of average processing and average 
queueing time for a process step or a tool set. For system configurations FIFO (ε1) and CR (ε2), 
distributed delays were used: each delay substitutes each operation exactly at the place where this 
operation appears in the process flow. For the case CRb (ε2b), the sum of all the delays for a process flow 
was calculated and placed at the beginning of the process flow.   

 
Figure 2: Delay types: η1 – process step based; η2 – tool set based. 

Thus, for each of the nine sieve functions there are four experiment configurations: (ζi, η1), (ζi, η2), 
(ζif, η1), and (ζif, η2). Altogether there are 36 experiment configurations for each of the three system 
configurations (ε1 – FIFO, ε2 – CR, ε2b – CRb). When referring to individual simulations within this 
paper, a triad (ε, ζ, η) is used to label a particular experimental configuration. 

3.3 Accuracy measurements 

In this paper, the following simulation run data measurements were used: simulation time; operation ratio 
(OP_r = 100 * substituted operations/all operations); Work-In-Process ratio (WIP_r =100 * WIP of 
substituted tool sets/WIP of all tool sets ); Work-In-Process in the queue ratio (WIPq_r = 100 * WIP of 
the queue in front of substituted tool sets/ WIP of the queue in front of all tool sets). WIP values are 
calculated based on detailed models. Four typical accuracy measurements from simplification papers 
were used: lot cycle time (CT) mean absolute error (MAE), correlation coefficient, autocorrelation 
function, and t-test. Additionally, following the advice of a reviewer, the Wilcoxon rank sum test is also 
considered as an alternative to the t-test. 

 During a preliminary experimental analysis, the above-mentioned common accuracy measurements 
were found to be unsuitable (see “pathological” in Section 4.1). Therefore, based on literature analysis 
(Law 2015, Rose 1999, Ewen et al. 2017) it was decided to apply the following accuracy measurements 
based on lot CT distribution (Dowd 2018): Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and 
Cramer-von Mises (CVM), Two Sample Test (DTS), Wasserstein distance (WASS), and Summarized 
Absolute Divergence (SAD). For the KS test, the standard function from the R-package “stats” was used, 
and for SAD a novel R-code was written. The formulas (Table 1) were taken from the package 
description (Dowd 2018). 
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Table 1: Accuracy measurements based on lot cycle time distributions. 

Designation R package / function Formula 
KS stats/ks.test max|𝐸(𝑥) − 𝐹(𝑥)| 
AD twosamples / ad_stat ∑ (𝐸(𝑥) − 𝐹(𝑥))

2
[𝐺(𝑥)(1 − 𝐺(𝑥))]⁄𝑥   

CVM twosamples / cvm_stat ∑ (𝐸(𝑥) − 𝐹(𝑥))
2

𝑥   

DTS twosamples / dts_stat ∑ |𝐸(𝑥) − 𝐹(𝑥)| [𝐺(𝑥)(1 − 𝐺(𝑥))]⁄𝑥   

WASS twosamples / wass_stat ∑ |𝐸(𝑥) − 𝐹(𝑥)|𝑥   

SAD own code ∑ |𝑃𝐸(𝑥) − 𝑃𝐹(𝑥)|𝑥   
 
Table 1 displays the designation, source, and formulas used for calculating the statistics. In the 

formulas: E(x) is the empirical cumulative distribution function (ECDF) of sample 1 (detailed model); 
F(x) is the ECDF of sample 2 (simplified model); G(x) is the ECDF of the joint sample; PE(x) is the 
probability density function (PDF) of sample 1; and PF(x) is the PDF of sample 2. Because the R-package 
“twosamples” uses randomization to create p-values (bootstrapping), it takes significant time to produce 
meaningful numbers. Therefore, p-values were not calculated for AD, CVM, DTS, and WASS. For SAD 
it is not possible to calculate a p-value, because it is not a statistic in a classical meaning, but it does 
represent a suitable measurement for the purpose (see Section 4.2). 

4 EXPERIMENTS 

Five independent experiments with different seeds were carried out for each tool set substitution. 
Subsequently, averages of output parameters (simulation time, correlation coefficient, etc.) were 
calculated to compare the various experiments. Figure 3a illustrates the calculation for simulation time. 
The calculations were carried out on a server which is used for numerous tasks simultaneously. It can be 
assumed that fluctuations in simulation time were caused by fluctuations in server load resulting from 
other tasks being served at the same time. 

 
Figure 3: Simulation output. 

Figure 3b demonstrates relations between simulation time, operation ratio, and WIP ratios (here and 
later, all curves represent the average of the five seeds). The resulting curves appear different for different 
experiment configurations. Often they are relatively close to each other, but for some cases, such as (ε1, 
ζ8, η1), only operation ratio repeats the simulation time curve convexity. Moreover, Figure 3b shows that 
simulation time is not a monotonically decreasing function, in contrast to an operation ratio. Therefore, 
operation ratio was used as a measurement of simplification to compare different experiment 
configurations at the end of this paper (Figure 9). On the other hand, using the experiment number on the 
x-axis results in more intuitive and understandable diagrams. Therefore, this configuration of the x-axis is 
used for the following figures. 
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4.1 Typical accuracy measurements 

A common measure of model accuracy is lot cycle time (CT) mean absolute error (MAE). Völker and 
Gmilkowsky (2003) used a measurement based on MAE and found some configurations which they 
called “pathological”, where an error function does not grow monotonously, but increases at the 
beginning and decreases towards the end. As an illustration, consider (ε1, ζ1, η1): MAE increases until 
experiment number 60 and falls after 70 (Figure 4a). At first it was assumed that this behavior was caused 
by a shift of the overall lot CT mean. Initial analysis provided confirmation of this (Figure 4b). However, 
a further example (ε1, ζ7, η1) was found where a similar overall mean shift exists, but there is no 
“pathological” behavior. Therefore, lot CT standard deviation (SD) was also considered (Figure 4b). An 
average SD based on each process flow SD was calculated. The average SD decreases in both cases, but 
more sharply in the first case. Figure 4c and 4d illustrate this behavior: the exp#70 distribution for (ε1, ζ1, 
η1) is much more narrow than for (ε1, ζ7, η1), but there is a significant shift to the left at the right peak for 
both cases. From this it was concluded that “pathological” behavior exists when both lot CT mean shift 
and a strong decrease of average SD appear (ε1, ζ1, η1). If there is only the shift and a mild decrease of 
average SD, then no “pathology” is observed (ε1, ζ7, η1). Several other examples of “pathological” but less 
expressed behavior were observed: e.g. (ε1, ζ3, η1), (ε1, ζ4, η1), and (ε1, ζ5, η1). 

 
Figure 4: (a) MAE; (b) mean lot CT and average SD; (c) and (d) lot CT distributions. 

Lot CT mean shift and decrease of average SD were a result of substitution for constant delays. If the 
SD reduction is logical, due to the use of constant and not random delays, the shifting of the lot CT mean 
indicates that the calculation of constant delays as a sum of averaged processing and queueing time is 
possibly not correct. For process step based simplification, processing time is a constant value and the 
impact is caused by averaged queueing time. What is more interesting is that the shift has negative ((ε1, ζ1, 
η1) exp# 40-70) and positive ((ε1, ζ1, η1) exp# 70-80) values. Identifying a more accurate way to calculate 
the delays would be a worthwhile endeavor for future research. 

Another interesting observation about MAE is that, for some configurations (e.g. (ε1, ζ1, η1) see 
Figure 4a), the MAE value is high (18.08) already in the first experiment, and there is minimal change 
(20.3) through the last experiment. This suggests that the first substitution of a tool set with IDLE% = 
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97.14 ((ε1, ζ1, η1) exp#1) leads to significant changes in MAE (from 0 to 18.08), but further substitutions 
incur only small changes (from 18.08 to 20.3). For other configurations (e.g. (ε1, ζ7, η1), this can be 
observed after the second substitution. Two possible reasons for this exist: 1) the MAE calculation is 
based on every single lot; 2) even small changes in the production system could lead to big lot 
rearrangements. We could call it a “butterfly effect”. The scatter plot in Figure 5b illustrates this 
phenomenon for exp#1 (ε1, ζ1, η1). 

A second typical measurement for model accuracy is correlation coefficient. Figure 5 demonstrates 
how the correlation is a less effective measurement for the simplified model. We can see that, for the 
configuration (ε1, ζ7, η1), the correlation oscillates from exp#2 to exp#77 between 0.95 and 0.96 (Figure 
5a). Moreover, the previously discussed “pathological” behavior can be observed for the configuration 
(ε1, ζ1, η1). Thus, it can be assumed that the correlation coefficient is indeed not sensitive to the 
simplification. The scatter plots in Figure 5 illustrate the reason for this: despite the existence of a point 
cloud in the scatter plot, the cloud is distributed along the bisector. Moreover, the cloud narrows to 
parallel lines as the experiment number increases (compare b with e and c with f). Figure 5d shows the 
scatter plot for the extremely reduced model (exp#83). The correlation coefficient is 0.947 in this case. 

 
Figure 5: Correlation coefficient and scatter plots. 

The third typical criteria to determine the accuracy of simplified models is the value of the 
autocorrelation function of lot CT for model output. Rose (1999) and Johnson et al. (2005) noted that 
autocorrelation should decrease with simplification. This is true when considering the very simplified 
model of exp#80, where all except 3 tool sets were substituted for delays (see Figure 6). However, 
attempting to use autocorrelation as an accuracy measurement of simplification seemed to be 
counterproductive, as some configurations (e.g. (ε1, ζ7, η1)) saw increases instead of decreases, at least 
until exp#70. Moreover, three different products were chosen with different demands (product 14 – 
demand 35 lots/week, 12 – 5 lots/week, 1 – 2 lots/week) to show that autocorrelation varies for different 
products depending on the quantity of the product lots in the model.  
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Figure 6: Autocorrelation function (base case, experiments: 45, 60, 70, 80). 

The forth typical measurement is a t-test (Piplani and Puah 2004). T-test is usually recommended if 
there is a normal distribution. A testing of the normality using R package normtest (Gavrilov and Pusev 
2014) proved unsuccessful. Nevertheless, the results of t-tests within this research (Figures 7a and 7b) 
may provide some useful insights.  

 
Figure 7: (a) and (b) t-test, (c) and (d) Wilcoxon rank sum test, (e) and (f) Kolmogorov-Smirnov test: 
statistic (black) and p-value (red). 

For the configuration (ε1, ζ1, η1) for both products, the t-statistics can be observed first increasing and 
then eventually falling. This is unsurprising due to the shift of lot CT mean (see Figure 4b). Moreover, the 
p-value was above 0.2 for product 1 even for exp#83 and there were significant oscillations of the p-value 
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from exp#1 to exp#83. In the end, it can be concluded that t-test is not suitable for the research being 
carried out in this paper. During the review process, it was suggested that the Wilcoxon rank sum test may 
provide a useful alternative to t-test (Figures 7c and 7b). The results were found to be similar to the t-test.  

4.2 More suitable accuracy measurements 

Figures 7e and 7f present the results of a classical KS-test. Here it is clear that the KS-statistics also 
demonstrate some fluctuations, but they are much smaller than the t-statistics and, more importantly, the 
KS-statistics do not grow monotonously but quite strongly. The p-value also has oscillations but it tends 
to zero quite quickly. It is assumed that using measurements based on lot CT distribution is more suitable 
for the simplification task. First of all, they are not sensitive to the “butterfly effect”, which occurs for 
exp#1 (see Figure 5b), because they consider all lots as a whole (distribution) as opposed to just looking 
at a single one. Second, the “pathological” (non-monotonous) behavior due to lot CT mean shift is not as 
expressed (see Figure 4b), because the measurements are not as sensitive to the shift.  

In the Section 3.3, six measurements based on lot CT distribution were introduced. Figures 8 and 9 
present the results of these measurements based on the same configurations as before: (ε1, ζ1, η1) and (ε1, 
ζ7, η1). In Figure 8 it can be seen that SAD has the least fluctuations in comparison with other 
measurements. This occurs due to the use of the probability density function (PDF), which is built as a 
histogram with equidistant bins (Figures 4c and 4d). In this case, small changes inside one bin do not 
have an influence on the SAD value. On the other hand, we could see that SAD is less sensitive in the 
area exp#1-70 in comparison with others. The KS test shows moderate fluctuations and is more sensitive 
to the changes in the area exp#1-70. This happens as a result of the empirical cumulative distribution 
function (ECDF), which contains data about every single lot. But the KS-statistic is based on a 
measurement only of the maximum of the difference between the ECDFs, meaning the measurement of 
the difference is made only at one point. Before the experiments it was assumed that this would not be 
adequate and the preference was to include the whole ECDF. Such measurements include AD, CVM, 
DTS, and WASS. It is interesting to see that AD and CVM were less sensitive than KS in the area exp#1-
40, and DTS and WASS were somewhat more sensitive than KS in the same area. Moreover, AD and 
CVM have larger oscillations in the area exp#70-83 than other accuracy measurements. These differences 
between AD/CVM and DTS/WASS are caused by using a factor of 2 in the formulas (Table 1). 

 
Figure 8: Six accuracy measurements in dependence on experiment number.  

1833



Stogniy and Scholl 
 

 

 
Figure 9: Six accuracy measurements in dependence on operation ratio.  

Moreover, AD/CVM become much more sensitive to the lot CT mean shift as exp# grows. At the end 
(exp#80-83), even small changes in lot CT mean cause significant changes in AD/CVM (compare with 
Figure 4b). It is assumed that KS and SAD are more reliable measurements for simulation simplification, 
but further research is needed to prove this. Figure 8 represents a picture of the quality. For the 
calculations, another x-axis was needed – operation ratio (see Figure 9).  

As mentioned above, the simulation time curve varies for different configurations (Figure 3b). This 
means that experiment numbers from one configuration are not equivalent to other configurations in the 
sense of simplification. As already mentioned, it was also observed that the curve is not monotonous. 
Therefore, it could not be used for the comparison of configurations. On the other hand, it was found that 
simulation time and operation ratio curves matched sufficiently. Thus, it was decided within this paper to 
use the operation ratio as a basis for the comparisons. Figure 9 presents the accuracy measurements with 
operation ratio as the x-axis. Here the difference between two configurations is even more clear than in 
Figure 8. 

5 EXPERIMENTAL RESULTS 

To compare various configurations, measurements were made along the axis (accuracy measurement, 
operation ratio). Those were then approximated with lines to produce the curves (see Figure 9), which 
were then numerically integrated to obtain a single value (area under the curve). This value represents a 
score of the particular configuration in a particular measurement. All configurations were ordered 
according to the score for each accuracy measurement. To compare two system configurations, ε2 and ε2b, 
a single list with those configurations was created. Table 2 presents the results for the first eighteen items 
in each list. For ε2, a gray background is used. Other colors in the table are used only to easily distinguish 
different configurations.  
 Table 2 shows that there are different orders for different accuracy measurements. Nevertheless, it 
can be seen that configurations (ζx, η1) mostly outperform (ζx, η2): process step based delays usually 
perform better than tool set-based. However, the results of (ζx) and (ζxf) are less clear. It seems that those 
configurations do not differentiate from each other much, meaning it is difficult to evaluate which 
configuration is superior. For ε1 and ε2b configurations, (ζ4, η1), (ζ4f, η1), (ζ8, η1), and (ζ8f, η1) demonstrated 
the best accuracy overall. But for ε2 there were other leaders, namely (ζ7) and (ζ7f). Based on our previous 
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experience (Stogniy and Scholl 2019), it was assumed that ε2b would always outperform ε2. The data in 
Table 2 suggest otherwise. Further research is needed to determine the underlying reasons for this.  

Table 2: Ordered configurations. 

 FIFO (ε1)   CR (ε2) and CRb (ε2b) 
# KS AD CVM DTS WASS SAD  KS AD CVM DTS WASS SAD 
 ζ η ζ η ζ η ζ η ζ η ζ η  ζ η ζ η ζ η ζ η ζ η ζ η 
1 4 1 8f 1 8f 1 4f 1 4 1 8 1  8f 1 8f 1 8f 1 8 1 8 1 8f 1 
2 4f 1 8 1 8 1 4 1 4f 1 8f 1  8 1 8 1 8 1 8f 1 8f 1 8 1 
3 8 1 4 1 4 1 8f 1 8f 1 4 1  4f 1 4f 1 4f 1 7f 1 4f 1 8 2 
4 8f 1 4f 1 4f 1 8 1 8 1 4f 1  4 1 4 1 4 1 4f 1 4 1 4f 1 
5 4 2 5 1 9 1 4 2 4 2 8 2  8 2 7f 1 7f 1 4 1 8 2 8f 2 
6 4f 2 5f 1 9f 1 5f 1 9 1 8f 2  8f 2 7 1 7f 1 8 2 8f 2 4 1 
7 8 2 9 1 5 1 4f 2 4f 2 4f 2  7f 1 7f 1 7 1 8f 2 7f 1 4f 2 
8 8f 2 9f 1 5f 1 5 1 8f 2 4 2  7f 1 7 1 8f 2 7f 2 7f 2 4 2 
9 5 1 8f 2 8f 2 8f 2 8 2 5f 1  4f 2 8f 2 7 1 7 1 7f 1 7f 1 
10 5f 1 8 2 8 2 8 2 9f 1 5 1  4 2 7f 2 8 2 7 2 7 2 7 1 
11 6f 1 4f 2 4 2 9 1 5f 1 6f 1  7 1 6f 1 7f 2 7 1 7 1 7f 2 
12 9 1 4 2 4f 2 9f 1 5 1 7f 1  6f 1 8 2 6f 1 7f 1 7 1 7f 1 
13 9f 1 6f 1 3f 1 3f 1 3f 1 9 1  5f 1 7 2 7 2 2f 2 2f 2 5f 1 
14 6 1 3f 1 3 1 3 1 3 1 6 1  7f 2 2f 1 2f 2 2f 1 6f 1 6f 1 
15 3f 1 3 1 6f 1 6f 1 6f 1 3f 1  7 1 5f 1 6 1 5 1 2f 1 7f 2 
16 3 1 6 1 6 1 5f 2 5f 2 3 1  5 1 5 1 5f 1 8f 1 4f 2 8f 1 
17 6f 2 5f 2 5f 2 5 2 3f 2 9f 1  5f 1 2f 2 2f 1 6f 1 2 2 5f 1 
18 6 2 6f 2 6f 2 3f 2 3 2 7 1  2f 2 6 1 5f 1 5f 1 7 2 8 1 

6 CONCLUSIONS 

In this paper, a simplification of process flow operations through substitution for constant delays was 
considered. Numerous experiments with three system configurations were carried out: First In First Out, 
Critical Ratio, and Critical Ratio with consolidated delays at the beginning. For the first two system 
configurations, it was found that queue time or cycle time standard deviation performed better as sieve 
functions for the substitution. For the third variant, queue length divided by batch size was the best 
choice.  
 Different accuracy measurements were used to analyze the results of experiments. Based on the 
presented analysis, it can be concluded that the following measurements can not be effectively used to 
estimate simplified models: lot cycle time mean absolute error, correlation coefficient, autocorrelation 
function, t-test, and Wilcoxon rank sum test. Accuracy measurements based on lot cycle time 
distributions are more suitable. It is assumed that a classical two sample Kolmogorov-Smirnov test and 
summarized absolute divergence (based on probability density function) outperform others as they have 
proven to be more stable. The experiments presented here showed that delays calculated based on average 
processing and queueing time are not precise enough and could lead to overall lot cycle time shift. This 
causes oscillation within the accuracy measurements. If that problem were to be solved, it can be assumed 
that accuracy measurements based on empirical cumulative distribution functions would show better 
performance.    
 In future research, we plan to analyze methods for more precise constant delay calculations and to 
consider other dispatching rules (Earliest Due Date, Operation Due Date). We will enhance our approach 
for variable workload scenarios and combine with the artificial process flow concept, which was 
presented earlier. Eventually, these approaches will be implemented in a real Infineon simulation model. 
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