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ABSTRACT

This paper addresses the optimization of a sorting system encountered in the semiconductor industry. The
system consists of parallel sorting machines and a material handler to transport materials to, from and
between machines. The problem is decomposed into multiple subproblems. For each of these subproblems
heuristic methods are proposed. A discrete-event simulation is used to study the performance of the
system using these heuristics. Application on two real-world cases shows that this heuristic approach can
significantly decrease the makespan and cost, yielding practically feasible schedules.

1 INTRODUCTION

This research is motivated by a die sorting process in the semiconductor industry. The production process
of integrated circuits (ICs) starts with wafer fabrication, where many ICs are fabricated on a blank disk
of semiconducting material (such as silicon) using photo-lithography techniques. Due to the nature of the
production process, it is unachievable that each IC on a wafer, also called a die, has exactly the same
electrical properties. In wafer testing, the dies are probed and categorized into so-called classes. Each die
class is defined by limits on certain electrical properties. According to these classes, the dies are sorted into
bins by designated sorting equipment. This paper focuses on the optimization of the die sorting process
through the development of multiple scheduling heuristics. The reader is referred to Nishi and Doering
2007 for an elaborate overview of the semiconductor manufacturing process.

Prior to die sorting, tested wafers are stored in a warehouse. At this point, wafers lie on a thin piece of
foil, a so-called wafer frame. From the warehouse, wafers are transported to a number of parallel sorting
machines. Besides wafers, a sorting machine can contain multiple bins. These bins are physically similar
to a wafer frame but smaller. The sorting machine picks up dies from the wafer and sorts them onto bins.
A bin can only contain a single die class. Full wafers and empty bins need to be supplied to the sorting
machine. Empty wafer frames and filled bins need to be removed from the machine. Similar to the wafers,
bins (empty and filled) are stored in a warehouse. The movement of materials between machines and the
warehouse is done by a material handler. Transport times are significant compared to the time a machine
requires to sort a wafer and therefore can not be neglected. Bins are expensive and when a bin is only
partially filled, the value of the sorted dies drastically decreases. Hence, for a given number of wafers to be
sorted, one objective is to minimize the number of partially filled bins. Therefore, it can also be beneficial
to transport partially filled bins between sorting machines, in order to further fill up the bins. Additionally,
it is desired to sort the wafers as fast as possible, i.e. minimizing the makespan.

In the past, major drivers to decrease costs in the semiconductor industry included increasing wafer
sizes, decreasing die sizes, and improving the yield. While this will continue, it is likely that efforts to
improve operational processes become more important to realize further cost reductions (Mönch et al.
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2011). Although this research is motivated by the semiconductor industry, its application and challenges
to reduce costs extend to other industries. For this reason, the problem at hand is regarded in a general
sense: a wafer that contains unsorted dies is referred to as a batch of unsorted items.

In this sorting problem, numerous decisions are to be made. Firstly, the unsorted batches have to
be assigned to the parallel sorters. Once assigned, the sequence in which they are sorted needs to be
determined. At last, the routing of the material handler needs to be determined, i.e. when are batches
delivered and picked up from the sorters, when are empty bins delivered, partially filled bins transported
between sorters, and finally brought back to the warehouse.

The assignment of unsorted batches to the parallel sorters resembles a parallel machine scheduling
problem, a problem that is widely studied in literature. However, frequently made assumptions are that
the transport times of jobs to machines are negligible compared to the process time (Lee and Chen 2001;
Saidi-Mehrabad et al. 2015) and that all jobs are directly available for processing at the start (Mokotoff
2001; Fathi and Barnette 2002; Azab and Naderi 2015; Wang et al. 2018). On the other hand, when
transportation times are not negligible, such as in vehicle routing problems, it is usually known up front
which jobs are needed at a certain location and time (Van Woensel et al. 2008; Huang et al. 2012). The
parallel machine scheduling problem with the objective to minimize the makespan alone is NP-complete
and therefore it is often not possible to provide an exact optimal solution within a reasonable time limit,
even for moderately sized problems. This justifies the use of heuristics, also in the current problem.

Given the complexity of the problem, it is not uncommon to hierarchically decompose the complete
problem into smaller, more manageable subproblems (Crama et al. 2012). In this paper, it is proposed to
decompose the sorting problem into the following subproblems: (i) batch allocation, (ii) batch sequencing
and (iii) material handler routing. With the objectives to minimize the makespan while simultaneously
minimizing the number of partially filled bins, heuristic methods are proposed for each subproblem. Where
possible, individual heuristics are compared to mathematical programming solutions. Finally, the complete
solution approach is applied to a real-world case study and a comparison is made with current practice.

The remainder of this paper is structured as follows: in the next section a detailed description of the
sorting system is given. In Section 3 the proposed heuristic method is explained. Then, in Section 4 this
solution method is applied a real-world case study and the results are compared to current practice. Finally,
conclusions and suggestions for future research are given in Section 5.

2 PROBLEM DESCRIPTION

2.1 Sorting System

The system sorts items and each item has a specific class. Items are stored in carriers, such that they can
be transported through the system. A carrier is either a batch or a bin, which is a carrier with items from
multiple different classes or a carrier with items from one single class, respectively. Thus, a batch contains
unsorted items and a bin contains sorted items. However, batches and bins can also be empty.

The main purpose of the system is to sort items based on their class by moving them from batches (of
unsorted items) to bins (of sorted items). The sorting system consists of three main components, shown
in Figure 1: (i) a warehouse, (ii) a material handler (also referred to as merely handler or (MH) and (iii)
sorting machines (SMs). The warehouse stores both full and empty carriers. A sorting machine sorts items
by moving them from a batch into designated bins. The handler transports carriers between the warehouse
and sorting machines or between sorting machines themselves. Both the handler and the sorting machines
have an internal buffer with a specified capacity to store batches and bins.

Warehouse

Sorting machines

Material
handler

1 2 3 4 ... N

Figure 1: Schematic overview of the sorting system.
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Generally, the sorting system operates in cycles. One cycle starts with feeding full batches and empty
bins to the warehouse. Then, the handler transports these batches and bins to the multiple sorting machines,
whereafter the sorting machines sort the items. After the sorting process, empty batches and full bins are
picked up by the handler and transported back to the warehouse. Finally, the empty batches and full bins
are removed from the warehouse and the next cycle begins. An overview of all parameters and the values
used in the considered use cases are shown in Table 1.

2.2 Warehouse

The warehouse can store carriers and has an infinite capacity. It is assumed that there are no travel times
for the handler within the warehouse.

2.3 Material handler

The handler travels with a constant speed between the warehouse and the sorting machines. If the handler
is at the position of the warehouse it can immediately start picking carriers from the warehouse or placing
them back into the warehouse. The time it takes to transfer one carrier is constant, and the handler’s
capacity for bins and batches is limited.

2.4 Sorting machines

There are multiple identical sorting machines in the system, and each sorting machine consists of several
components: the internal buffer, the internal transfer unit and the work area, see Figure 2. The internal
buffer has a limited capacity and both the material handler and the internal transfer unit can simultaneously
access this buffer. The internal transfer unit moves one carrier at a time from the buffer to the work area
and vice versa. The sorting operation happens in the work area, where merely one bin and one batch can
be present. This means that items can only move from batches to bins. After an item is sorted in a bin, the
item cannot be moved to another bin. Once a batch is loaded into the work area, all items have to be sorted
before the empty batch can be unloaded again, i.e., the scheduling of these batches is non-preemptive. In
contrast, bins can always be loaded and unloaded to the work area. A batch which is loaded into the work
area has to be checked before it can be sorted. Furthermore, per batch, the items are sorted in groups per
class. That is, after a batch is loaded, the sorting machine starts to sort all items of class A, then sorts all
items of class B, and so forth. The sequence in which different classes are sorted per batch is in ascending
order of the quantity of items per class, i.e. the class with fewest items is sorted first and the class with
most items is sorted last.

Sorting machine

Buffer

Item

Batch

Bin
Work area

Transfer
unit

Material
handler

Figure 2: Schematic overview of a single sorting machine with the internal buffer, the internal transfer unit
and the work area. Both the transfer unit and the material handler can access the buffer.

2.5 Objective

As mentioned before, the purpose of the system is to sort items according to their class by moving them
from batches (of unsorted items) to bins (of sorted items). The system operates in cycles, where the system
starts with full batches and sufficiently many empty bins and ends with empty batches and filled bins. A
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fully filled bin is worth significantly more than a partially filled bin and the system should finish its cycle
as fast as possible. During the sorting process, a partially filled bin is referred to as a WIP bin if it still
possible to fully fill the bin, given all the items which still have to be sorted, including the ones on other
machines and in the warehouse. If this is not possible anymore, this partially filled bin is referred to as a
deadlock-WIP (DWIP) bin. Obviously, all partially filled bins at the end of the sorting cycle are DWIP
bins. Therefore, the main goal of this work is to generate a schedule σ which minimizes the objective

f (σ) =Cmax−w ·∑
i∈C

[Fi−DWIPi] , (1)

where Cmax is the makespan, and Fi and DWIPi are the total amount of fully filled bins and DWIP bins,
respectively, of class i. w is a weight factor and C denotes the set of all classes. The two components
– minimizing Cmax and maximizing ∑i∈C [Fi−DWIPi] – in this multi-objective optimization problem are
conflicting. Maximizing ∑i∈C [Fi−DWIPi] would result in a schedule where batches with items of the
same class are not sorted simultaneously to avoid unnecessary partially filled bins, while minimizing Cmax
would lead to schedules where batches are sorted simultaneously as much as possible. In the best case,
all the items add up precisely to a multiple of Cbin and the total number of DWIP bins is 0. However, it
is more realistic to say that in the best case each class that needs to be sorted results in one DWIP bin,
and the lower bound is equal to the number of classes that is sorted into bins. An upper bound for the
total number of full bins of class i is obtained by summing all the items of class i, dividing by Cbin and
rounding down to the nearest integer.

Table 1: Parameters of the sorting system with the values used in the real-world case study.

Material handler
Variable Value Unit Description
ttrans f er 50 s/carrier Time to transfer carriers from the handler to the warehouse/sorting machines

or vice versa.
vMH 1.0 m/s The speed of the handler.
Cbin,MH 80 - Number of bins that can be placed in the handler’s internal buffer.
Cbatch,MH 20 - Number of batches that can be placed in the handler’s internal buffer.
R 0.5 - Fill rate of the internal buffer, see Section 3.4.3.

Sorting machines
Variable Value Unit Description
nm 20 - Number of sorting machines.
Cbin,SM 200 - Number of bins that can be placed in each sorting machine’s internal buffer.
Cbatch,SM 20 - Number of batches that can can be placed in each sorting machine’s internal

buffer.
tsort 1 s/item Time to sort a item from a batch to a bin.
tload 50 s Time to load or unload a batch or bin to the work area of the sorting machine.
tcheck 2000 s Time to check a batch after the batch is loaded into the work area of the

sorting machine.
General

Variable Value Unit Description
Cbin 20000 The capacity of a bin.
dSM 5.0 m Distance between two subsequent sorting machines.
dW 5.0 m Distance between the warehouse and the first sorting machine.

3 SOLUTION METHODS

Due to the complexity of the complete problem, this work proposes to decompose the complete problem
described in Section 2.5, into the following subproblems, which will be discussed in separate sections.

1. Batch allocation. Which batches are allocated to which machines?
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2. Batch sequencing. Per machine, in what sequence are the allocated batches sorted?
3. Bin switching. When does a machine, during the sorting process, switch to a different bin?
4. Material handler routing. Which carriers should be picked or placed at which location at what time?

It is important to note that the batch allocation and sequencing decisions are taken prior to execution,
while the bin switching and material handler routing decisions are taken during execution. Each step
attempts to individually optimize the overall objective function, hence, to put more focus on one of the
conflicting terms, adjustments are required in multiple stages of the decomposed approach.

3.1 Batch Allocation

The first subproblem concerns the allocation of batches to a number of identical parallel sorters. The
objective of this problem is previously stated in (1). At this level, movement of partially filled bins between
sorters is not considered. Given this constraint, it is not necessary to consider the maximization of the
number of filled bins. Consequently this term is redundant and may be omitted in the objective function.
The set of machines is denoted by M, the set of unsorted batches by B and the set of classes by C. As
mentioned, all machines are initially empty. As a consequence, not all machines can start processing at
the start, since they need to wait before the material handler supplies them with batches and empty bins.
The time at which machine i can start processing is denoted by tstart

i with i ∈ M. This depends on the
policy under which the material handler operates, which will be explained more elaborately in Section
3.4.1. The required time to sort batch i, with the assumption that a sorter can process without interruptions
and requires the minimal number of bins, is Pi with i ∈ B. The number of items of class j in batch i is
given by Li j with j ∈C. Using this notation the model formulation of this subproblem is given as follows:

min
ρ,δ

Cmax +w ·∑
i∈C

DWIPi, (2)

subject to

∑
j∈M

δi j = 1 ∀ i ∈ B (3)

tstart
j +∑

i∈B
δi jPi ≤Cmax ∀ j ∈M (4)

Kρi j ≥ ∑
k∈B

δk jLki ∀ j ∈M, i ∈C (5)

∑
j∈M

ρi j ≤ DWIPi ∀ i ∈C (6)

where

δi j =

{
1 if batch i is allocated to sorter j
0 otherwise

and

ρi j =

{
1 if class i is sorted at sorter j
0 otherwise

Objective function (2) minimizes number of DWIP bins and the makespan. Constraints (3) ensure that
each batch is allocated to exactly one machine. Constraints (4) state that the makespan is equal to the
maximum completion time. Constraints (5) state that if a class is sorted on a machine it always results in
one DWIP bin, where K is a large integer. Note that the rare case where all bins can be filled precisely
on a machine is neglected. At last, constraints (6) determines the total number of DWIP bins of a specific
class over all machines. In Sections 3.1.1 and 3.1.2 two solution methods are described to solve the ILP.
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3.1.1 Gurobi Optimizer

Gurobi Optimizer is a commercial optimization solver for mathematical programming problems, such as
the integer linear programming (ILP) problem introduced in Section 3.1. For a more elaborate description
of this solver the reader is referred to (Gurobi Optimization. 2019).

3.1.2 Clustering Algorithm

Given the size and complexity of the problem at hand, it is not possible to find an optimal solution within
a reasonable time limit. For this reason, a heuristic method is proposed as alternative. The proposed
algorithm attempts to cluster batches with the same classes of items on the same sorter as much as possible.
First, a similarity matrix is constructed for the unsorted batches. The similarity between two batches is
simply the number of classes they have in common. Subsequently, the matrix is clustered using the Ward
variance minimization algorithm (Murtagh and Legendre 2014). An example is provided in Figure 3.
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Figure 3: Example of (a) the initial unclustered similarity matrix and (b) the clustered similarity matrix
for eight batches. Clusters are indicated with bold colored squares.

Next, a lower and an upper bound for the makespan are determined. Determination of the lower bound
is rather straightforward:

Clower =
∑i∈M tstart

i +∑i∈B Pi

|M|
(7)

i.e. through summation of the batch process times and the times at which the sorters can start, and division
by the total number of machines. To determine the upper bound, a greedy solution is determined. This is
done by first ordering the batches, disregarding the clusters, by decreasing processing time. According to
this sequence, the batches are consecutively allocated to a machine in a greedy manner, i.e. to the sorter
with the lowest completion time. The value of the reduced objective function (2) for this solution is denoted
by fgreedy. Most ideally, the DWIP term is equal to the total number of classes, i.e. one DWIP bin for
every class. Therefore, an upper bound for the makespan is given by:

Cupper = fgreedy−w · |C| (8)

Now, using the upper and lower bounds, a solution based on the similarity matrix can be derived. First, a
bound Cbound is set equal to the lower bound Clower. The set of machines is ordered with the lowest tstart

i
first. The batches are allocated to the machines cluster-by-cluster using the Next Fit (NF) algorithm (Hofri
1984). According to the NF algorithm, the first batch from the first cluster is allocated to the first machine
where it fits, i.e. its completion time does not surpass Cbound . If this is not the case, it is attempted to
allocate the batch to the next machine. The next batch is allocated to the first machine where it fits, starting
at the machine where the last batch was allocated. This way, batches in the same cluster are allocated to
the same machine as much as possible. This procedure is schematically depicted in Figure 4. If it is not
possible to allocate all batches while satisfying the bound, then Cbound is increased by (Cupper−Clower)/s,
where s specifies the number of steps. This process continues until a solution is found or Cbound >Cupper.
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In the latter case, the schedule is definitely worse than the greedy solution. The number of sequences in
which the clusters can be allocated to the machines increases as a factorial. Therefore it is not feasible
to search through all sequences. To limit computational effort but explore the search space further, the
procedure is repeated taking each cluster as a start. At last, a final attempt to improve the solution is made
by grouping the batches by machine assignment. The groups are successively reallocated, starting with the
group that has the largest total processing time. This group is allocated to the machine with the earliest
tstart
i , then the group with the second largest total processing time and so on, until all groups are reallocated.
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Cbound Cbound
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4 6

Figure 4: Illustrative example of the NF algorithm. The numbers indicate different batches and the colors
correspond to the clusters in Figure 3b.

3.2 Batch sequencing

Now that the batches are allocated to the sorters, the sequence in which the batches are processed at an
individual sorter needs to be determined. A simple heuristic is applied to make this decision: for each
sorter, the assigned batches are ranked in ascending order according to the number of bins that are required
per unit of process time. The reasoning behind this is as follows: in the beginning all machines are idle,
waiting to be supplied by the material handler. With this heuristic, it is attempted to minimize the required
supply of a sorter in the beginning, such that the material handler can focus on serving all idle machines.

3.3 Bin switching

At this point, the batches have been allocated to the machines, the sequence in which batches are sorted
has been determined and it is given that the sequence of which classes are picked in a batch is in ascending
order based on the quantity of items per class. Now, it has to be determined when a machine should switch
bins during the sorting process. Obviously, a machine has to switch bins if (i) it reached its maximum bin
capacity or (ii) it starts to sort items from another class. However, it might also be preferable to switch
before one of the aforementioned conditions is met. This is illustrated in Figure 5, where both machine
1 and 2 are sorting items from the same class. In the left schedule both machines switch bins after the
maximum capacity of the bins is reached, resulting in using in total 4 bins (2 fully filled and 2 DWIP bins).
In the right schedule machine 1 switches bins earlier, such that exact enough items remain to fully fill bin
2 and bin 1 can be moved to machine 2. The time it has to transfer the bin from machine 1 to 2, is also
shown in Figure 5. The right schedule results in using a total of 3 (2 fully filled bins and 1 DWIP bin).
As is illustrated with this example, the number of resulting DWIP bins can be influenced by transferring
WIP bins between machines. Therefore, a heuristic is proposed to determine when a sorting machine has
to switch bins during the sorting process.

A WIP bin which is not going to be filled anymore at the current machine is referred to as a transfer
bin. This transfer bin can be caused by two reasons: (i) there are no items going to be sorted anymore
on that machine from the corresponding class or (ii) the bin switching heuristic determined that this bin
is not going to be filled anymore. The bin switching heuristic starts with estimating the minimum number
of transfer bins needed for class c in machine m by

T Bc =
∑m∈M Nrem,c,m

Cbin
∀ c ∈C (9)
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Figure 5: Illustrative example of the possible performance gain with bin switching. All bins are from the
same class and, contrary to Figure 4, the numbers indicate different bins.

where T Bc is the number of transfer bins needed for class c. Nrem,c,m is the number of remaining items of
class c at machine m that will be sorted into the bin that cannot be filled totally. This is calculated by

Nremc,m = (Nsortc,m +NWIPc,m +NWIP,MHc) mod Cbin ∀ c ∈C,∀ m ∈M (10)

where Nsort,c,m is the total number of items of class c which are still going to be picked (including items
from batches which are still in the warehouse) at sorting machine m. NWIPc,m is the total number of items
of class c in WIP bins (which are not transfer bins) present at machine m and NWIP,MHc is the total number
of items of class c in WIP bins in the material handler which are en route to machine m.

The bin switching heuristic works as follows. Before filling a bin, T Bc is computed with the current
state of the system. Then, it is checked whether the total amount of transfer bins of class c is smaller than
T Bc. If this is true, the bin will become a transfer bin and is filled with Nremc,m . If this is false, the bin will
be filled as far as possible. Once the bin is filled until the determined amount, the SM has to load a new
bin. The policy used for this is as follows: if there is a WIP bin available of the class which is going to be
sorted next, this WIP bin is loaded. If there are multiple WIP bins available, the WIP bin with the highest
quantity is chosen. If there are no WIP bins available, an empty bin is loaded. Finally, if there are also no
empty bins available, the SM will be idle until it is supplied with new bins by the material handler.

3.4 Material handler routing

A heuristic is proposed which determines, depending on the state of the system, what the material handler
has to do. The material handler can be in three different modes: Supply, WIP and Clear, which is managed
by Algorithm 1. t is the current time in the system and tidle,m is the time that the sorting machine will be
idle, given that it will receive no new bins or batches. A summary of the modes will be given here, after
which each of the modes will be explained elaborately in following sections. The system begins in Supply
mode, in which the material handler will supply the sorting machines with carriers by moving between the
warehouse and sorting machines. The MH continues doing this, until all machines are able to keep sorting
(without being supplied by the handler) for at least threshold time τ . Then, the material handler switches
to WIP mode, in which it will move WIP bins (also referred to as transfer bins) between machines. If the
MH could not execute a task in one of the aforementioned modes, then it switches to Clear mode. In this
mode, the handler returns full bins and empty batches by moving them from machines to the warehouse.
If the handler could not execute any task in the Clear mode, i.e., no carriers were ready to be returned, the
material handler has no task to do and will be idle until the next event triggered by one of the machines.

3.4.1 Supply mode

In this mode, the material handler will supply the sorting machines with carriers from the warehouse. Two
different policies are used: single loading policy and the multi loading policy, where one sorting machine
is supplied simultaneously or multiple sorting machines are supplied simultaneously, respectively. For
these policies an estimate of the makespan for machine m at time t, Ĉmax,m(t), is calculated. Ĉmax,m(t) is
estimated under the assumption that machine m can continuously process, i.e. the supply of batches and
empty bins is sufficient to keep sorting. Knowing the state of the system at time t, it is known how many
items each sorting machine m still has to pick and Ĉmax,m(t) can be computed.
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Algorithm 1 Heuristic to determine the next task of the material handler.
1: if minm∈M[tidle,m]≤ t + τ then
2: Supply mode . See Subsection 3.4.1
3: else
4: WIP mode . See Subsection 3.4.2
5: end if
6: if no task executed then
7: Clear mode . See Subsection 3.4.3
8: end if
9: if no task executed then

10: t← time of next event
11: end if

Under the single loading policy, sorting machine m is selected with the highest Ĉmax,m(t). The material
handler starts loading carriers until the condition tidle,m > t +τ is met. If this condition is met, the material
handler departs from the warehouse to deliver carriers to this machine.

The multi loading policy starts in the same way as the single loading policy by selecting machine m
with the highest Ĉmax,m(t). Then it starts to pick one carrier from the warehouse for machine m. After each
pick, it calculates how long it would take the MH to deliver all the carriers and travel back to the warehouse.
This time denoted as τdeliver, and then maxm∈M[Ĉmax,m(t + τdeliver)] is computed. If the condition

max
m∈M

[Ĉmax,m(t + τdeliver)]> max
m∈M

[Ĉmax,m(t)] (11)

is true, then another carrier is picked for machine m which has the largest Ĉmax,m(t + τdeliver). τdeliver is
computed again and condition (11) is checked again. This is repeated until condition (11) no longer holds
or if the maximum capacity of either the material handler or one of the sorting machines is reached. Then,
the material handler departs from the warehouse and starts supplying the machines.

3.4.2 WIP mode

For this mode the time tm is introduced. tm is the time that SM m will take an empty bin to fill. Before tm,
the SM is filling WIP bins. In the WIP mode, the algorithm checks which transfer bins each SM m ∈M
requires, based on the classes that still have to be sorted on this SM. The MH starts with serving the sorting
machine with the earliest time tm. It takes transfer bins from the nearest other SM and transfers these to
this SM. This transfer has to satisfy the condition that the transfer bin will be delivered on time, i.e, before
tm. If this condition is not met, it iterates over the machine until a feasible transfer is found.

3.4.3 Clear mode

In the Clear mode, the MH picks carriers that have to be returned from the closest SM, with respect to the
current location of the MH. The MH continues doing this until either R (chosen to be 50% in this work)
of the MH’s internal buffer is filled with these returning carriers or there are no returning carriers in the
sorting machines left. Then, the MH moves to the warehouse and unloads these carriers.

3.5 Discrete-event simulation

Using the heuristics previously explained, a discrete-event simulation (DES) is executed to obtain the
complete schedule and analyze the performance of the system. Prior to the first event in the DES, the
simulation is initialized by running the batch allocation (Section 3.1) and the batch sequencing (Section 3.2)
heuristic. After that, the events of the material handler are handled by the material handler routing heuristic

1726



Smit, Adan, and Deenen

0 50 100 150 200 250 300

3

4

5

·105

Computation time (seconds)

O
bj

ec
tiv

e

Incumbent (Gurobi)
Lower bound
Clustering algorithm

0 50 100 150 200 250 300

3

4

5

·105

Computation time (seconds)

Incumbent (Gurobi)
Lower bound
Clustering algorithm

(a) (b)

Figure 6: A comparison between Gurobi and the clustering algorithm for (a) Case 1 and (b) Case 2.

(Section 3.4) and the events of the sorting machines by the bin switching heuristic (Section 3.3). At every
event, where either a SM or the MH has to make decisions, the corresponding heuristic is executed.

4 REAL-WORLD CASE STUDY

In this section, the proposed solution method is applied to real-world cases. All algorithms are coded in
Python 3.7 and all experiments are run on a computer with an Intel Core i7-5700HQ processor running at
2.70 GHz and 8 GB of RAM memory. For all cases the weight factor w in the objective function (Equation
2) is set to 20, the number of steps s in the clustering algorithm is set to 100 and the threshold time τ in
Algorithm 1 is set to 4100 seconds.

4.1 Cases

Two real-world cases are obtained from an industrial partner, which represent two extreme scenarios that
are both frequently encountered in practice:

• Case 1 contains 62 unsorted batches with in total 190 different classes. On average a batch contains
78305 items, with a standard deviation of 4370. Each batch contains an average of 28 different
classes, varying between 23 and 38. All items are required to be sorted into bins.

• Case 2 contains 58 unsorted batches with in total 4 different classes. On average a batch contains
393875 items, with a standard deviation of 8805, varying between 38630 and 121680. Each batch
contains items of all four classes. The most abundant class does not have to be sorted into a bin
and remains on the batch carrier. In this case, this is always the same class. As a result, the process
time of a batch varies significantly.

4.2 Results

Prior to solving the cases entirely, the batch allocation problem is solved using the two solution methods
presented in Sections 3.1.1 and 3.1.2, i.e. the commercial mathematical programming solver Gurobi and
the proposed clustering algorithm respectively. The results obtained with both methods are depicted in
Figure 6. Gurobi did not prove optimality for any of the cases, despite running for several hours. In
Case 1 the clustering algorithm found the best solution, while in Case 2 Gurobi found the best solution.
The gap between the two methods with respect to the heuristic is 0.24% and -5.34% for Case 1 and 2
respectively. This comparison proves that the heuristic method is able to provide descent solutions to the
batch allocation problem within minimal required computational time. In practice, the simplicity of the
heuristic is preferred over an expensive commercial solver. Even though better solutions may obtained in
some cases, this only concerns the first subproblem, and does not translate directly to the overall objective.
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Figure 7: Case 1 schedules with (a) single and (b) multi loading policy. Colors indicate idle time (black),
sorting (orange), bin unloading (red), bin loading (green), batch loading (pink) and unloading (blue).

Next, both cases are provided as input to the DES in order to determine the performance measures
of the system. A comparison is made between current practice and the novel heuristic, with two different
routing policies. The results for Case 1 and 2 are summarized in Table 2. Firstly, it can be seen that
the novel heuristic significantly reduces the number of DWIP bins and increases the amount of full bins
when compared to current practice. Despite the fact that makespan and the number of fully filled bins
are conflicting objectives, this is achieved at a makespan that is approximately equal or even lower than
current practice. Although the computational time required for the current method is extremely low, the
time required for the proposed heuristic is also acceptable in practice.

In Table 2 it can be seen that the multi loading heuristic is able to reduce the makespan further compared
to the single loading policy. The difference between the two routing policies is most clear in a visualization
of the schedules. For Case 1 the schedules are shown in Figure 7 for both policies. Current practice refers
to a simple dispatching heuristic that is currently applied, and does not consider transfer bins. When the
single loading policy is applied, the first sorter is supplied, after which the material handler returns to the
warehouse, before the second sorter is supplied, and so on. This explains the linear increase of the idle
time at the beginning of the schedule from SM01 to SM20. When the multi loading policy is applied,
the increase is not exactly linear. Additionally, the total idle time at the beginning is equal or less when
compared to the single loading policy. This enables a reduction in the makespan.

For Case 1 and 2, the minimum total number of DWIP bins is 190 and 3, and the upper bound for the
total number of full bins is 161 and 224, respectively. For Case 2, the single loading policy comes very
close, while the multi loading heuristic is able to match the upper bound for the number of full bins. For
Case 1, the gap is significantly larger, which is likely due to the large number of different classes per batch.

Table 2: Performance measures for the novel heuristic compared to current practice.

Case 1
Method Routing policy Makespan (hrs) DWIP bins Full bins Comp. time (s)
Current practice - 93.9 1526 81 2
Novel heuristic Single loading 87.0 854 102 30
Novel heuristic Multi loading 82.5 787 106 74

Case 2
Method Routing policy Makespan (hrs) DWIP bins Full bins Comp. time (s)
Current practice - 87.0 60 198 1
Novel heuristic Single loading 69.8 7 221 18
Novel heuristic Multi loading 69.3 4 224 17
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5 CONCLUSIONS AND FUTURE WORK

In this paper the entire sorting problem was decomposed into subproblems for which several heuristics were
proposed. Application to two representative real-world cases shows that the heuristic approach performs
significantly better than current practice. Though this is promising, further investigation is required to gain
more confidence about the performance of the proposed solution method. Also, it is relevant to investigate
which properties of the sorting system (e.g. the speed of the material handler, carrier buffer sizes) are most
critical to the system performance.
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