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ABSTRACT

Over the last decade, offshore wind energy has become a viable source of sustainable energy. During the
installation of offshore wind farms, the dimensioning of related base ports became increasingly important.
Base ports act as central logistics hubs for the installation and, thus, need to provide sufficient space and
equipment to store and handle required components. Thereby, current developments tend to larger and
heavier components as well as to an increase in simultaneously occurring installation and decommissioning
projects. This article proposes a Mixed-Integer formulation for the optimization of supply deliveries to
the base port. Moreover, it presents an example of this formulation’s integration with an optimization of
the base port capacity and, furthermore, a simulation study on the effects of different resupply cycles on
the efficiency of installation projects. Results show that the resupply cycle has a minor influence on the
project’s efficiency but highly affects the base port capacity.

1 INTRODUCTION

Wind energy has evolved into one of the most promising technologies to produce sustainable energy reliably.
Consequently, the last decade witnessed a close to exponential increase in produced wind energy (REN21
2018). In particular, offshore wind farms provide large amounts of energy, due to higher wind speeds at
sea. Within the first half of 2019, Germany increased its offshore energy production by more than 6.6
GW by installing over 1350 new offshore turbines (Deutsche WindGuard GmbH 2019). While offshore
wind farms produce larger amounts of energy than their onshore counterparts, the highly dynamic weather
conditions at sea complicate their installation. Literature attributes about 15–20% of an offshore wind
farm’s overall cost to logistics during the installation (Lange et al. 2012; Dewan et al. 2015; Muhabie
et al. 2018). On the one hand, these costs result from quickly changing strong weather dynamics, which
interfere with planned operations. On the other hand, the high specialization of required resources, like,
heavy-lift vessels, jack-up vessels, or heavy-duty cranes and storage facilities, imposes a high base-line
cost.

While most of the literature relating to the installation of offshore wind farms focuses on an efficient use
of vessels under dynamic weather conditions, only a few works investigate the impact of related port-side
resources, e.g., storage spaces or heavy-duty handling equipment. On the one hand, these resources need to
be chartered before the actual installation project starts. On the other hand, an unsuitable dimensioning of
the base ports can drastically interfere with efficient installations and, consequently, incur additional costs,
as, e.g., described by Rippel et al. (2019a). Current literature suggests that the availability of port-side
resources might pose a bottleneck for future installation projects due to the observed trends towards larger
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and heavier components, a higher number of concurrent installations, and the upcoming decommissioning
of old wind farms (Oelker et al. 2020; Beinke et al. 2020).

This article proposes a Mixed-Integer Linear Programming model to support decision-makers in
determining the most effective resupply cycle for a planned installation project. Thereby, the model focuses
on optimizing a limited set of round-trips between the base port and the geographically distributed production
ports for turbine components. Furthermore, this article presents an exemplary integration of this model
with other approaches for the dimensioning of the base port and the simulation of the planned installation
project. This simulation aims to assess the impact of resupply cycles on the overall project. Thereby, the
resupply cycle constitutes one of two major streams for the optimization of a base port’s storage capacity.
On the one hand, the cycle needs to provide a steady stream of component sets, each consisting of at least
one tower, one nacelle, and one set of blades. On the other hand, the cycle determines the overall storage
capacity required at the base port, as deliveries (inputs) and installations (outputs) need to be balanced.

The next section first introduces the general process of installing an offshore wind farm and discusses
current literature in this area. Afterward, Section 3 describes the proposed model. Section 4 first presents
an evaluation of the model itself to highlight its characteristics and to verify its results against a reference
scenario found in the literature. Afterward, it presents the simulation study mentioned above to assess the
impact of different resupply cycles on the base port capacity and the overall installation project. Table 1
summarizes the most relevant parameters and variables used throughout this article. Additional constants
and parameters may be introduced in the appropriate subsections.

Table 1: Nomenclature.
Variable Value Set Parameters
T N+ Number of round-trips to be planned
C N+ Number of component types, usually 3 (Tower, Blades, Nacelle)
costsetup

c R+
0 Setup time for components of type c

cost load
c R+

0 Loading time for components of type c
costunload

c R+
0 Unload time for components of type c

costroute
r R+

0 Travel times for each possible round-trip
weightc R+

0 Weight of component c
spacec R+

0 Space required by component c on the vessel
weightmax R+

0 Maximum combined weight of payloads for the vessel
spacemax R+

0 Maximum space for payloads on the vessel
Indices

k N+; k ≤ T Index of the current round-trip
c N+; c≤C Index of the current type of component
r N+; r ≤ 2C Index of the current route within the round-trip

Decision Variables
X loadout

k,c N+
0 Number of components c to be loaded in round-trip k

Dependent Variables
X setup

k,c N+
0 Number of loading slots for components of type c to be removed or

added in round-trip k
Y location

k,c Binary 1 if the vessel transports components of type c in the current round-trip
k; 0 otherwise

Y route
k,r Binary 1 if route r conforms to the current round-trip k; 0 otherwise

2 STATE OF THE ART

This section shortly introduces the conventional installation process for offshore wind farms, as it remains
the most common installation concept found in practice and literature. Afterward, it summarizes approaches
and models found in the current literature, which explicitly deal with the installation of wind farms.
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2.1 Installation Process

The installation of offshore wind farms can be separated into three distinct phases, which, in practice, follow
sequentially one after the other (Vis and Ursavas 2016; Quandt et al. 2017): The first phase comprises
the installation of the turbines’ foundations and the required infrastructure to connect the wind farm to the
energy grid. The second phase focuses on the installation of the so-called top structures, consisting of the
turbines’ tower, nacelle, and blades. The final phase finally commissions the turbines and includes their
final testing and ramp-up. This article focuses on the second phase, while the proposed model and the
general approach is easily applicable to the first phase without limitation.

Within the conventional installation concept (Figure 1), the process relies on a geographically distributed
logistics and production network. This network consists of the production ports for the components, the
base port as a logistics hub, and the actual offshore installation site (Oelker et al. 2017; Quandt et al.
2017). Thereby, heavy-lift vessels perform the transport between the production ports and the base port
to guarantee a steady supply of components for the installation. So-called jack-up vessels obtain sets of
components at the base port, transport these to the installation site, and construct a number of turbines
before returning to the base port.

Production Site
Tower

Production Site
Nacelle

Production Site
Rotor Blades

Base Port
Storage

Installation Site
Construction

Heavy Lift
Vessel

Installation
Vessel

Heavy Lift
Vessel

Heavy Lift
Vessel

Figure 1: Conventional installation concept for top structures (Rippel et al. 2019a).

Thereby, installation operations performed by the jack-up vessel are highly susceptible to unstable
weather conditions at sea. In the case of high wind speeds or wave heights, the installation cannot start
or has to be aborted (Rippel et al. 2019b). Consequently, weather dynamics and forecasts impose high
uncertainties on the planning of the overall installation project. Nevertheless, planners need to charter
storage and equipment at the base port long before the actual installation begins. On the one hand, they
need to ensure that sufficient resources will be available to avoid supply shortages. On the other hand,
these specialized resources, like cranes or heavy-duty storage facilities, only have a limited supply and
come at high costs for the project planners.

2.2 Models and Approaches for the Installation of Offshore Wind Farms

Over the last decade, several authors proposed models and approaches to increase the efficiency of offshore
wind farm installations. Nevertheless, compared to other topics in the offshore area, literature on the topic
of offshore wind farm installations is still sparse (Vis and Ursavas 2016).

Most literature, thereby, proposes models to schedule or simulate the installation process with a focus
on an efficient application of jack-up vessels under weather dynamics. For example, Ait Alla et al. (2017)
propose a simulation study to compare the conventional installation concept with feeder concepts. Vis and
Ursavas (2016) present a simulation study to assess the efficiency of different pre-assembly concepts, where
they assumed that parts of the top-structure are already assembled within the base port. Muhabie et al.
(2018) propose a simulation model to evaluate different assumptions about weather conditions. While these
studies focus on the process itself, other authors present optimization models, e.g., for the scheduling of
jack-up vessels (Scholz-Reiter et al. 2011; Ursavas 2017; Rippel et al. 2019b; Irawan et al. 2017; Irawan
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et al. 2019) or for an cost-efficient commissioning and decommissioning of additional jack-up vessels
(Kerkhove and Vanhoucke 2017).

While all these models mainly investigate the application of vessels, more recent literature shows
increasing interest in the role of the base port and its related resources on a broader scope. For example,
Beinke et al. (2017) propose a model to investigate potential cost reductions by sharing heavy-lift vessels
between different installation projects. In Beinke et al. (2020), the authors present a simulation study
showing that resource availability may become a bottleneck if the current trends of concurrent installation
projects continue, showing increasing both number and size. Thereby, they highlight that, over the next
years, the first wind farms need to be decommissioned again, which requires the same resources and spaces.
In a similar context, Oelker et al. (2020) present a simulation study of the base port in Eehmshaven. This
study shows that the requirement for heavy-duty storage areas might exceed the available spaces if the size
of wind farms and components continues to increase. The authors highlight the need for new concepts and
advanced approaches to optimize the use of these port-side resources in the future.

In previous work, Rippel et al. (2020) proposed a model to optimize the capacity of base ports
for installation projects. Thereby, the article focuses on the estimation of the base port’s output stream
(number of installed turbines per time step) using aggregated, historical weather records. Nevertheless, as
described in the introduction, an efficient installation process requires a steady stream of components as
input. Therefore, the following section proposes an algorithm to optimize resupply cycles that continuously
deliver a number of component sets to the base port with a defined frequency.

3 ALGORITHM AND OPTIMIZATION MODEL

The algorithm aims to determine a sequence of round-trips between the base port and the production
ports, which maximizes the number of delivered component sets while minimizing the overall time needed.
Thereby, a round-trip always starts and ends at the base port and visits at least one production port. The
general type of problem resembles a transshipment problem (Agadaga and Akpan 2017), which aims to
find optimal routes to deliver cargo from several storages (sources) to several depots (sinks). This particular
instance provides three sources (production ports) and a single sink (base port). Thereby, this instance limits
the capacity of the transport vehicle in a way that the combination of transported components cannot exceed
its capacity in terms of space and weight. Consequently, the overall problem consists of a combination
of a routing problem to determine the shortest paths with an assignment problem, determining which
components to fetch. In contrast to classic transshipment problems, the problem at hand does not aim to
satisfy the global demand, i.e., to deliver all components, but to find a set of round-trips that deliver a
certain number of sets in a minimized time.

3.1 Simplification of the Routing Problem

The proposed model exploits the small size of the transportation network to reduce the problem formulation
from a transshipment problem to a multi-periodic knapsack problem. Knapsack models aim to maximize
the amount and composition of items to carry, while constraining the available capacity. As each round-trip
can only consist of a maximum of three visited nodes (production ports), there only exist 23 = 8 possible
routes, assuming that the trips are symmetric, i.e., trips between port A and port B take the same time as
the trip between port B and port A. Consequently, each route is defined by the combination of visited ports,
which the proposed model represents as a binary array Y location

k,c , where k denotes the current round-trip and
c the type of component, i.e., its respective production port. Thereby, this article enumerates components
and ports as 1 = Tower, 2 = Blades, 3 = Nacelles. Thus, Y location

k,c = [1,0,0]T denotes that the vessel only
visits the production port for towers during this single round-trip, while the vector Y location

k,c = [1,0,1]T

denotes that the vessel visits the production ports for towers and nacelles. Moreover, this representation
enables a unique mapping of each route to a specific index r ∈ [0..7] by applying a simple binary encoding
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as given in Equation (1).

r = Y location
k,1 ·20 +Y location

k,2 ·21 +Y location
k,3 ·22 ∀k, k ≤ T (1)

This mapping allows the optimization for using the costs for a selected route, instead of considering the
actual routing itself. Therefore, the proposed model precalculates the optimal route for each combination of
visited ports offline in advance by solving a standard traveling salesman problem and storing the duration
(cost) of each route as vector costroute

r . Consequently, the model itself constitutes a modified version of a
multi-period knapsack problem, which uses a set of dependent variables to determine the actual costs for
each assignment. Another example of a multi-periodic knapsack problem can be found, for example, in
(Samavati et al. 2017) for the planning of sequence-dependent mining operations.

3.2 Formulation of the Optimization Problem

This section presents a Mixed-Integer formulation for the optimization problem. In contrast to a standard
knapsack problem, this formulation minimizes the cost function J given in Equation (2) subject to the
constraints (3) to (11) described below. This formulation relies on four optimization variables, whereas
three of them fully depend on the variable X loadout

k,c , as shown in Figure 2. Using this variable, the optimizer
determines the number of components a vessel should fetch in each round-trip k. By using the constraints
(6) and (7), the optimizer denotes the differences between the loadout for each round-trip to determine the
required setup times. Additionally, constraints (8) and (9) represent a larger-or-equal-to-zero operator to
denote the visited production ports for each round-trip in Y location

k,c . Finally, the formulation uses a binary
encoding of this variable to map the visited production ports in each round-trip into a vector denoting the
selected route as part of the variable Y route

k,r .
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Figure 2: Schematic structure of the optimization formulation.

Unfortunately, a Mixed-Integer model cannot express fractions between variables as part of the cost
function or the constraints and, thus, cannot minimize the time per delivered set of components directly.
In consequence, this formulation uses an alternative cost function. As commonly applied in knapsack
formulations, the cost function maximizes the number of delivered component sets, and in extension,
minimizes the associated costs (travel time):

J =−100 ·
T

∑
k=1

X loadout
k,1 +

2C

∑
r=1

(
(

T

∑
k=1

Y route
k,r ) · costroute

r

)
+

C

∑
c=1

(
(

T

∑
k=1

X setup
k,c ) · costsetup

c +(
T

∑
k=1

X loadout
k,c ) · (cost load

c + costunload
c )

)
(2)
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The cost function consists of two parts. The first term assigns a bonus (negative cost/penalty term) for each
delivered set of components. Therefore, it multiplies the sum over all delivered sets, represented by any
single component as the optimizer needs to deliver full sets, with an arbitrarily chosen negative value. The
remaining terms denote the actual cost part of the function: These consist of a summation of the loading and
unloading times, the setup times, and the traveling times. The formulation uses the following constraints
to ensure that all of these variables contain the correct values and to constrain the problem itself.

T

∑
k=1

X loadout
k,c =

T

∑
k=1

X loadout
k,(c−1) ∀c, 2≤ c≤C (3)

Constraint (3) requires the optimizer to ensure that across all round-trips, only full sets of components,
each consisting of one tower, one nacelle, and one (set of) blades, are delivered to the base port.

C

∑
c=1

(
X loadout

k,c ·weightc
)
≤ weightmax ∀k, k ≤ T (4)

C

∑
c=1

(
X loadout

k,c · spacec

)
≤ spacemax ∀k, k ≤ T (5)

Constraints (4) and (5) ensure that the payload in all round-trips k does not exceed the vessel’s maximum
capacity, neither in terms of weight nor in terms of space.

X setup
k,c ≥ X loadout

k,c −X loadout
(k−1),c ∀k,c 2≤ k ≤ T,c≤C (6)

X setup
k,c ≥ X loadout

(k−1),c −X loadout
k,c ∀k,c 2≤ k ≤ T,c≤C (7)

Constraints (6) and (7) force the optimizer to note the absolute difference of loaded components between
two round-trips as part of the dependent variable X setup

k,c . This formulation enforces the entry always to
be larger or equal to the positive and negative difference between those round-trips for each component.
The cost function uses X setup

k,c , to determine slot-specific setup times. Given the example in Figure 2 for
k = 2, these constraints ensure that X setup

2,c ≥ (4− 0,2− 2,0− 4)T ∧X setup
2,c ≥ (0− 4,2− 2,4− 0)T . The

minimization of X setup
k,c results in X setup

2,c = (max(−4,4),max(0,0),max(−4,4))T = (4,0,4)T , as given in the
figure.

X loadout
k,c ≤ Y location

k,c ·Cmax
c ∀k,c k ≤ T,c≤C (8)

X loadout
k,c ≥ Y location

k,c ∀k,c k ≤ T,c≤C (9)

Constraints (8) and (9) ensure that the optimizer marks the type of transported components in the current
round-trip k within the dependent, binary variable Y location

k,c . While constraint (8) also limits the maximum
number of components to a precalculated value, this limitation is redundant to the one imposed by the
constraints (4) and (5) and only serves as relaxation support. Thereby, the algorithm calculates the maximum
number of loadable components as Cmax

c = min(weightmax

weightc
, spacemax

spacec
) for all component types c. The algorithm

uses this binary combination of used slots to determine the actual route for each round-trip k.

C

∑
c=1

(Y location
k,c ·2c−1)≤ (r−2) · z−k,r +(r−1) ·Y route

k,r +UB · z+k,r ∀k,r k ≤ T,r ≤ 2C (10)

C

∑
c=1

(Y location
k,c ·2c−1)≥ LB · z−k,r +(r−1) ·Y route

k,r + r · z+k,r ∀k,r k ≤ T,r ≤ 2C (11)
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Finally, the constraints (10) and (11) translate the combination of visited production ports, i.e., of transported
components, into a unique route. Therefore, these constraints use a binary encoding of the transported
components in Y location

k,c to assign a unique route index 1 ≤ r ≤ 2C, as given on the left-hand-side of the
constraints. The constraints exploit a variant of a so-called Big-M formulation, which uses two support
variables z+k,r, and z−k,r to denote if the index r is larger or smaller than the round-trips’ encoded route-index.
Finally, these constraints ensure that Y route

k,r only takes on the value 1, if this index and r are equal. The
lower and upper bound for this formulation are given as LB = 0 and UB = (2C)−1.

4 EVALUATION AND RESULTS

This article uses a scenario proposed by Beinke et al. (2017) to evaluate the described model. According
to the authors, this scenario relies on empirically collected real-world data obtained from research projects
related to the installation of a wind farm in Germany’s Northern Sea. It uses a base port in Eemshaven,
Netherlands. This scenario locates the production port for rotor blades and nacelles in Bremerhaven,
Germany, and the production port for towers in Cuxhaven, Germany. The authors provide the required
data to obtain a manually optimized route for the resupply cycle, the required round-trips and processing
times: The heavy-lift vessel performs a total of four trips to obtain eight sets of components. Therefore,
it performs one trip to obtain eight sets of blades, one trip for eight towers, and two trips for four nacelles
each. The overall cycle time is calculated as 310 hours (Beinke et al. 2017; Rippel et al. 2020). While
most of the required values in Table 2 can be calculated based on this scenario, the article does not provide
values for the weight and size of components or the vessel’s capacities.

Table 2: Base scenario parameterization.

Parameter Tower Blade Nacelle
Base port Eehmshaven
Vessel Capacity - Space 2646 m2

Vessel Capacity - Weight 8900 t
Production Port Cuxhaven Bremerhaven Bremerhaven
Loading Time per Component 2 h 8 h 10 h
Unloading Time per Component 1.2 h 4.8 h 6 h
Setup Time per Component 0 0 0
Weight per Set of Component 600 t 240 t 500 t
Space required per Set of Component 650 m2 300 m2 263 m2

Therefore, this article relies on the average characteristics for 10 MW turbines given in BVGassociates
(2019). Table 3 shows the relevant characteristics and the resulting limitations. Due to the use of transport
racks, this article assumes that it is possible to stack two sets of blades (6 single blades) on top of each
other, effectively assuming only half the required size for the optimizer’s input.

Table 3: Characteristics of turbine components.

Component Stackable Sets Length Width Required Area Weight of Stacked Sets
Tower 1 100 m 6.5 m 650 m2 500 t
Blade 2 100 m 6 300 m2 240 t
Nacelle 1 25 m 10.5 262.5 m2 500 t

This article employs the average values for the fleet of a randomly chosen shipping company to obtain
realistic limitations for the vessel’s capacity. This fleet comprises 22 heavy-lift vessels with an average
weight capacity of 438 TEU ≈ 8,900 tons and a usable deck area of approximately 2,464 m2.
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4.1 Evaluation of the Number of Round-Trips and Verification

This subsection presents an evaluation of the impact of different configurations for the number of allowed
round-trips per resupply cycle. Figure 3 shows the results of the proposed algorithm for T = 2 to 40
round-trips. The figure omits the scenario for T = 1 to improve readability, as it shows a very high average
cycle time of 46 hours. In Figure 3, the solid line depicts the average resupply time per set of components,
while the dotted line shows the total time of the resupply cycle. The numbers at the points show the total
number of sets obtained within that resupply cycle. For example, the vessel obtains a total of four sets
with two round-trips, or a total of 86 sets, if it performs 40 round-trips.

Considering the reference scenario for verification of the proposed optimization model, the manually
optimized route comprises four round-trips in 310 hours and obtains eight sets. In the case of configuring
the optimizer to use four round-trips, it obtains a cycle time of 312 hours and a total of 8 sets. This
result only differs by two hours from the manually optimized cycle described in the reference scenario.
Nevertheless, this difference can be traced back to different assumptions between this article’s scenario
and the one described in Beinke et al. (2017). While the reference scenario assumes that the vessel needs
two trips to obtain all nacelles but only a single trip to obtain all towers, the restrictions described in the
previous subsection impose the exact opposite. While the vessel can load all eight nacelles on a single trip,
it requires two trips to fetch all eight towers. Thus, while the structure of the solution remains the same, the
vessel visits a different location twice, resulting in varying travel times for both solutions. Adjusting the
obtained 312 hours be the difference in travel time between the respective production ports, i.e., assuming
the locations for towers and nacelles would be switched, the optimizer obtains the same 310 hours of cycle
time for eight full sets of components. Thus, the proposed method achieves the same optimal resupply
cycle as the manual optimization conducted in the reference scenario.
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Figure 3: Results of the transport optimization for T ∈ [2..40] round-trips.

In general, the results show a steady, close-to-linear increase in the total time of resupply cycles as well
as in the total number of sets delivered. Nevertheless, concerning the average time per set of components,
Figure 3 shows slight variations between 39 and approximately 41.5 hours. Moreover, it shows a slight
trend towards increasing average times with an increased number of round-trips. Increasing the number
of round-trips allows the heavy-lift vessel to deliver two additional sets in most cases. Thereby, the initial
experiments using two and three round-trips show very high average delivery times as no efficient cycle
can be constructed. Some cases, e.g., for 19 and 32 round-trips, add three more sets instead. These cases
usually result in a high increase in the average time, which slowly declines again into another local minimum
before increasing again. This shows that some configurations enable slightly more efficient routes than
others. Moreover, Figure 3 indicates a repeating pattern, starting with the experiments using 3, 19, and 32
round-trips.
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In conclusion, the results show that the proposed model achieves quite consistent results in optimizing
resupply cycles with a provided number of round-trips. The verification against the manually optimized
resupply cycle from Beinke et al. (2017) results in the same cycle if the scenario is adapted accordingly.
While this model provides optimized resupply cycles, the next subsection shows an evaluation of different
cycles in the context of a simulated offshore installation project. This experiment aims to provide further
insights into a suitable selection of the number of round-trips T considering a broader context.

4.2 Simulation of Installation Projects using Optimized Resupply Cycles and Base Port Capacities

This experiment integrates the results of the proposed model with previously published models and
approaches, to evaluate the influence of the number of round-trips T on the overall installation project, as
given in Figure 4. Therefore, this experiment uses the generated resupply cycles to optimize the capacity
of the base port as proposed in Rippel et al. (2020). Afterward, the experiment uses these optimized
settings to schedule the offshore installation as proposed in Rippel et al. (2019a) and Rippel et al. (2019b).
It finally evaluates these schedules against a simulation of the real world’s weather conditions, relying
on real historical recordings. These recordings consist of hourly recordings of the wind speed and wave
height in Germany’s Northern Sea between 1958 and 2007. The capacity optimization thereby relies on
the base ports’ in- and output streams. While the optimized resupply cycle determines the base port’s
input stream (frequency and amount of delivered components), the output stream relies on the current
weather conditions. Thus, the capacity optimization includes the simulation of an installation project using
aggregated historical weather recordings.

Cycle Time
Restock Amount

Optimize
Transport

Optimize
Capacity

Capacity
Initial Stock

Optimize
Schedule

using
Forecasts

Simulated Project
using Aggregate weather

Real-World Simulation
using recorded weather

Figure 4: Schematic of the experimental setup.

The simulation uses the geographical layout and the characteristics of the heavy-lift vessel described at
the beginning of this section. Moreover, the simulation assumes a single jack-up vessel for the installation
of 50 turbines. The simulation starts on the first of June 2000 as the weather records show a moderate mix
of conditions, i.e., no perfect weather but also no long periods of really bad weather. Consequently, the
capacity optimization applies historical weather records from 1979 to 1999. The simulation uses actual
records for the year 2000, while the scheduling relies on generated forecasts for the year 2000. It shall be
noted that the average installation project takes about 2.5 months. Thus, the simulation and the optimizations
at least require records for June, July, and August.

Table 4 summarizes the results of the simulation and the optimization models for T = 1 to T = 16
applied round-trips. Thereby, T = 16 constitutes the last scenario where the capacity optimization found a
feasible solution. Investigating the latter cases, the results show that only a single delivery could be made
at the beginning of the project. At the same time, a second resupply cycle would exceed the project’s
duration. Thus, in all follow-up scenarios, we can assume that the project requires a capacity of 50 sets
and an initial stock as high as the difference between the capacity and the resupply amount.

The table indicates the same results for the transport optimization, as described in the previous subsection.
The results clearly show that reliable resupply cycles require at least four round-trips to be efficient (avg.
time per set). The results depict an increase in the required maximum capacity with an increase in round-
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Table 4: Simulation results, including transport, capacity, and schedule optimization for T ∈ [1..16].

Transport Capacity Simulation

Num.
Trips

Cycle
Time
[h]

Num.
Sets

Avg.
Time
Per Set
[h]

Initial
Storage Capacity

Project
Duration
[h]

Storage
Min

Storage
Max

Empty
storage
[h]

Delayed
Cycles
[h]

1 92.1 2 46.0 27 27 1,792 11 26 0 0
2 162.6 4 40.7 18 18 1,792 6 17 0 0
3 248.2 6 41.4 17 17 1,792 2 16 0 0
4 312.2 8 39.0 17 17 1,792 1 16 0 0
5 397.7 10 39.8 15 15 1,828 0 14 150 0
6 474.8 12 39.6 18 18 1,792 0 17 8 0
7 598.9 15 39.9 29 29 1,792 7 28 0 0
8 677.9 17 39.9 21 21 1,823 0 20 135 0
9 755.0 19 39.7 27 27 1,792 2 26 0 0
10 827.5 21 39.4 33 34 1,792 6 32 0 0
11 904.5 23 39.3 40 40 1,792 11 39 0 0
12 983.6 25 39.3 46 48 1,792 17 45 0 0
13 1,105.7 28 39.5 34 35 1,792 2 33 0 0
14 1,191.2 30 39.7 38 40 1,792 3 37 0 0
15 1,261.8 32 39.4 43 45 1,792 5 42 0 0
16 1,334.3 34 39.2 48 49 1,792 8 47 0 0

trips. Applying these settings to the simulation shows that the majority of resupply cycles allow for an
optimal installation project with an overall duration of 1,792 hours ≈ 75 days. Only two instances show
an extended project duration, resulting from empty storages at the base port. Both show comparably low
values for the initial storage and capacity. Comparing the simulation’s maximum storage with the optimized
capacity, the results show that the capacity usually exceeds the requirements by a single set of components
for resupply cycles up to 9 round-trips. Afterward, the discrepancy increases, showing an overestimation of
the required capacities for long resupply cycles. No instance underestimated the required capacity as given
by the non-existence of delayed resupplies. Overall, the scenario using four round-trips per resupply cycle
provides the best overall result. This result falls in line with the manually optimized resupply cycle given
in the reference scenario of Beinke et al. (2017). While another scenario (5 round-trips) results in a lower
base port capacity, which constitutes one of the main cost drivers for the installation project, it also results
in an extended project duration, imposing additional costs for jack-up vessels. In contrast, the scenario
using only three round-trips does not require additional capacity or impose a higher project duration. The
similarity between these scenarios shows that a higher average cycle time does not necessarily impact
the overall project negatively. Nevertheless, the scenario using three round-trips slightly overestimates the
required capacity and provides a slightly less efficient resupply cycle.

5 CONCLUSION AND FUTURE WORK

This article presents a Mixed-Integer Linear Programming Model for the strategic optimization of resupply
cycles for the installation of offshore wind farms. The formulation exploits the small transportation network
to reduce the problem to a variant of a knapsack problem by moving the actual routing into an offline
computation. Furthermore, the article presents an evaluation of this model in the broader context of an
installation project. Therefore, the experiments use the model’s results to optimize the related base port
capacity and simulate the installation of an offshore wind farm.

The verification against a scenario from the literature shows that the proposed model achieves the same
result as a manually optimized resupply cycle. Even when simulating the corresponding installation project,
the optimized resupply cycle achieves the most efficient results. These results show that the number of
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round-trips per resupply cycle has no significant impact on the overall installation project. Nevertheless,
the dimensioning of the base port strongly correlates to the planned cycle. Consequently, cycles with a
lower number of round-trips provide a higher cost efficiency as they reduce the required port storage.

Future work will focus on a more in-depth evaluation of this model in terms of different weather
conditions and extended geographical layouts. Moreover, future work will evaluate if this particular
optimization already needs to regard the influence of weather dynamics. The current article assumes that
transportation remains unaffected by weather conditions and, thus, relies on determined traveling times.
While the literature shows that sailing operations have quite high limits of wind speeds up to 21m/s and
wave heights of up to 2.5m (Oelker et al. 2018), they might still introduce certain stochasticity to the
optimization. Moreover, future work will try to integrate the production ports’ characteristics in terms of
manufacturing rates and storage capacities. These values might limit the availability of components at each
production port and, therefore, influence the viability of resupply cycles.
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