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ABSTRACT 

Two-echelon distribution systems are very common in last-mile supply chains and urban logistics systems. 
The problem consists of delivering goods from one depot to a set of satellites usually located outside urban 
areas and from there to a set of geographically dispersed customers. This problem is modeled as a two-
echelon vehicle routing problem (2E-VRP), which is known to be computationally difficult to solve. This 
paper proposes a solution approach based on optimization-simulation to solve the 2E-VRP with stochastic 
travel times. For the objective function, this paper considers the minimization of travel times. The efficiency 
of the solution approach is analyzed against the solution of the deterministic counterpart, which is solved 
using both exact and approximation approaches. The impact of adding stochastic travel speeds as part of 
the objective function is evaluated through simulation. Experiments are run using real data from several 
convenience stores in the city of Bogota, Colombia. 

1 INTRODUCTION 

The populations in cities has been growing over the years. About 3.5 billion people lives in cities today. 
Forecasts indicate that 5 billion people will live in cities by 2030, and about 66 % of the total population 
by 2050 (UN 2015). To satisfy the demand of the population in cities, an efficient supply chain management 
strategy must be implemented, especially with respect to freight distribution. Urban freight distribution is 
defined as “the transport of goods by vehicles and the activities related to this transport to or within an 
urban environment” (Fernandez-Barcelo and Campos-Cacheda 2012). Also, it considers the freight 
transportation entering the city, the facilities used for consolidation, the cost of these activities, and the 
policies regarding freight transport (Cardenas et al. 2017). Although the urban goods distribution is essential 
for the economic development of cities, it is one of the main generators of traffic congestion and interferes 
with the rest of the urban activities in terms of the use of public space (Antún 2013). Due to the fact that 
urban areas have increased their population, the number of vehicles circulating in the cities has grown. 
Every day, hundreds of trucks have to enter the cities to deliver the demanded products. When any means 
of transport has full access to cities in any area and time, traffic jams increase (Benjelloun et al. 2010; 
Muñuzuri et al. 2005; Russo and Comi, 2010). 

To face the challenges of the urban freight distribution and looking for the improvement of its 
efficiency, logistics centers were created (Antún 2013). One kind of logistics center is the Urban 
Consolidation Center (UCC), which is a facility that is located in the proximity of an urban area, enabling 
the consolidation of freight flows. When the shipments are consolidated, a UCC can perform the last-mile 
delivery more efficiently than individual carriers (Browne et al. 2005). UCCs have a central position in the 
logistics network connecting the logistics centers with the customers. 

When designing the last-mile supply network, the most employed model is the two-echelon distribution 
system. The problem consists on delivering goods from one depot to a set of satellites and from there to a 
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set of geographically dispersed customers. This problem is modeled as a two-echelon capacitated vehicle 
routing problem (2E-CVRP) (Gonzalez-Feliu et al. 2008). Our problem includes both the transport from 
the depot to satellites (first echelon) and from these satellites to each of the stores (second echelon). Each 
echelon or level has a specific fleet of vehicles: the first has bigger vehicles than the second. This scenario 
can be implemented in some companies to reduce the travel distance between the depot and the clients, so 
that operational cost can be reduced, too. This also contributes to the reduction of the number of big trucks 
in cities, which at the same time would minimize the invasion of the public space during freight unloading 
and, consequently, it could decrease the congestion in cities. 

The first literature review was made by Mancini (2013), focusing on routing problems arising in city 
logistics like the 2E-VRP, and classified the basic variants according to their dependence on time. Among 
the variants with time dependence are the 2E-VRP with time windows (2E-VRPTW) (Dellaert et al. 2019) 
and 2E-VRP with satellite synchronization (2E-VRP-SS) (Grangier et al. 2016). Other variants are the two-
echelon multi-depot problem where the satellites are served by more than one depot and the 2E-VRP with 
pickup and deliveries (2E-VRPPD) (Belgin et al. 2018). Other reviews available in the literature include 
some other families of two-echelon distribution problems (Cuda et al. 2015; Gonzalez-Feliu 2013; Mancini 
2013). 

According to Savelsbergh and Van Woensel (2016), one of the emerging research opportunities 
regarding the 2E-VRP is concerned with more real-life issues. Real-life problems have stochastic features 
and have been studied as a variant of this topic. For instance, one of the few papers that applied stochasticity 
to the 2E-VRP used a methodology to calculate the impact of stochastic travel times on the cost of a 
deterministic solution using a two-stage GRASP algorithm with path relinking and Monte Carlo simulation 
(Anderluh et al. 2019). This method is known as simheuristic and enables to deal with real-life uncertainty 
in a natural way integrating simulation into a metaheuristic-driven framework.  

Simheuristics facilitate the introduction of reliability during the evaluation of alternative high-quality 
solutions to stochastic combinatorial optimization problems (Juan et al. 2015). The method can be applied 
in different fields like supply chain management, manufacturing, and logistics. For instance, Guimarans et 
al. (2018) used a hybrid simheuristic that combines Monte Carlo simulation with an iterated local search, a 
biased-randomized routing, and packing heuristics to solve the two-dimensional VRP (2L-VRP) with 
stochastic travel times. 

This paper proposes a solution approach based on simheuristic to solve the 2E-VRP with stochastic 
travel times. As objective function, we consider the minimization of travel times. The efficiency of the 
solution approach is analyzed against the solution of the deterministic counterpart solved using a 
decomposition heuristic using mathematical programming. The impact of adding stochastic travel speeds 
on the objective function is evaluated through simulation. Such experiments are run using real data for the 
delivery of goods to convenience stores in the city of Bogota, Colombia. 

The rest of this paper is organized as follows: Section 2 reviews the literature related to 2E-VRP, 
stochasticity in routing problems, and simheuristics for routing problems. Section 3 focuses on presenting 
the solution approach. In Section 4, computational experiments are described and their results analyzed. 
Finally, conclusions and perspectives are presented in Section 5. 

2 OVERVIEW OF RELATED LITERATURE 

2.1 Literature about the 2E-VRP 

The first Mixed-Integer Programming (MIP) formulation for the 2E-CVRP was proposed in 2008, the 
model was tested using benchmarks datasets from literature (Gonzalez-Feliu et al. 2008). Crainic et al. 
(2010) analyzed the impact on the total cost of distribution to find the best satellite location with parameters 
like customer distribution, satellites-location rules, depot location, number of satellites and mean 
transportation cost between the satellites and the customers. Then, two math-heuristics were introduced to 
solve the 2E-CVRP with valid inequalities (Perboli et al. 2011). The 2E-VRP and its variants have been 
known due to its high computational complexity, approximate methods have been developed to find good 
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solutions as the adaptative large neighborhood search heuristic with new neighborhood search operators 
that were proposed by Hemmelmayr et al. (2012). Also, a hybrid heuristic called GRASP+VND was applied 
by Zeng et al. (2014). For the 2E-VRP with simultaneous pickup and delivery (2E-VRPSPD), a node-based 
mathematical model and a hybrid heuristic algorithm based on a variable neighborhood descent and local 
search were developed to solve medium-large size instances (Breunig et al. 2019).  

Within the scope of this research, only four papers were found that considered real-case instances as  
stochastic issues in the 2E-VRP. Two of them studied stochastic demands (2E-CVRPSD). The first one 
applied a Genetic Algorithm (GA) with a simple coding and decoding scheme to minimize the travel cost 
and the expected cost of recourse actions resulting from potential route failures (Wang et al. 2017). In the 
second one, a Simulation-based Tabu Search algorithm (STS) was developed, in which each movement is 
analyzed in a neighborhood search based on Monte Carlo simulation with the aim to solve real-world large-
scale 2E-VRPSD instances (Liu et al. 2017). The Two-Echelon Fixed Fleet Heterogeneous VRP (2E-
HVRP) on Brazilian wholesale companies was studied using a parallel island-based memetic algorithm 
with a local search procedure based on a Lin–Kernighan heuristic (IBMA-LK). The stochastic part consists 
of picking tour size individuals from the population using a uniform probability distribution with 
replacement (Bevilaqua et al. 2019). The most recent paper had the purpose of calculating the impact of 
stochastic travel times on the cost of a deterministic solution of a 2E-VRP. They used a two-stage GRASP 
algorithm with path relinking for the deterministic part, and then they applied a Monte Carlo simulation to 
generate travel time scenarios based on lognormally distributed travel times (Anderluh et al. 2019). 

In a similar way, the VRP and the its stochastic variants have been widely studied in the last years. For 
this paper, we only made a brief summary of some reviews due to the fact that there are many existing 
articles about this subject. Berhan et al. (2014) developed a structural classification of the stochastic VRP. 
As final results, the authors mentioned that the most common variants are stochastic customer demands, 
stochastic customers, and stochastic service time. Additionally, a survey made by Braekers et al. (2016) 
classified the VRP literature published between 2009 and 2015 in a comprehensive taxonomy with three 
classes according to their  characteristics: (i) customer service demand quantity, request times of new 
customers, and onsite service or waiting times; (ii) physical characteristics as stochastic travel times; and 
(iii) stochastic data in information characteristics. The authors also highlight that usually stochastic demand 
quantities are considered in the research (Mehrjerdi 2014; Zhang et al. 2016) or stochastic travel times 
(Ehmke et al. 2016; Norouzi et al. 2017; Xiao and Konak 2016), but not both. 

2.2 Simheuristics for Routing Problems 

A simheuristic is an optimization-simulation approach that combines metaheuristics and simulation 
methods like Monte Carlo, discrete-event, agent-based, to solve stochastic combinatorial optimization 
problems (SCOP). It has a lot of advantages due to its flexibility, accuracy, and its easy implementation 
(Calvet et al. 2019). Simheuristics can also be applied to deterministic problems that – due to their 
complexity – require the use of simulation (Juan et al. 2015). Several authors have applied this method 
combining an iterated local search algorithm (ILS) with a Monte Carlo simulation to solve routing problems 
with stochastic demands, for instance, the Multi-Depots VRP and its stochastic version (Calvet et al. 2019); 
the Capacitated Location Routing Problem (CLRP) (Quintero-Araujo et al. 2019); the VRP with 
heterogeneous fleet, site dependency, asymmetric costs, and stochastic demands (HSAVRP-SD) (Calvet et 
al. 2019); and the Waste Collection Problem with multiple depots (MDWCPSD) with a Horizontal 
Collaboration (HC) scenario (Gruler et al. 2017). 

To solve cases with stochastic travel times, the application of Monte Carlo simulation method is very 
common, too. However, the metaheuristic may vary according to the kind of routing problem. Guimarans 
et al. (2018) used a hybrid simheuristic with an ILS and a biased-randomized routing and packing heuristics 
for the two-dimensional VRP (2L-VRP). Reyes-Rubiano et al. (2019) analyzed the Electric Vehicle Routing 
Problem with Stochastic Travel times (EVRPST). The simheuristic applied a multi-start metaheuristic and 
a biased-randomization technique. 
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We have derived two main observations from the literature. Firstly, there are few studies that are 
focused on the stochasticity in the 2E-VRP and the most studied stochastic characteristic is the demand. 
Secondly, simheuristics are very useful to deal with stochastic features in routing problems, but we still 
have not found literature that studies the 2E-VRP with this approach. 

3 SOLUTION APPROACH 

Due to the fact that the 2E-CVRP is known for its NP-hardness (Gonzalez-Feliu et al., 2008), approximate 
algorithms, such as heuristics and metaheuristics, are suitable approaches to find good solutions, while 
exact methods based on mathematical programming allow for optimally solving small-sized instances as 
well as parts of a real-life problem. Real-life problems are very complex and modeling them as 
combinatorial optimization problems (COPs) with uncertain conditions makes it more difficult. 
Approximate algorithms allow for generating high-quality solutions for this type of problems in relatively 
short computation times. But, these are usually applied in scenarios where real-life uncertainty, given by 
the stochastic behavior of certain variables, is simplified or even not considered (Juan et al. 2015). 
Simheuristics emerged as an optimization-simulation methodology that integrates simulation with 
heuristics or metaheuristics to solve complex stochastic COP scenarios (Juan et al. 2018). In addition, as 
Fu (2002) mentioned, the combination of simulation techniques with approximation algorithms allows for 
considering stochastic issues in the optimization problem. We combine a decomposition algorithm with 
Monte Carlo simulation to solve the problem, and explain the components of the proposed method. 

3.1 Overview of the Solution Approach  

The proposed solution approach consists of two phases as shown in Figure 1. Given the stochastic version 
of the problem, random variables are transformed into deterministic values (expected values). Then, in the 
first step, we solve the deterministic 2E-VRP using a MILP-based decomposition algorithm. This 
decomposition algorithm splits the problem into four sub-problems to reduce its complexity, but aggregates 
them and their corresponding results to guarantee the quality and feasibility of the solutions. The first sub-
problem is to find a set of routes starting from the depot to serve the satellites (first-echelon); the second 
one is the vehicle allocation to satellites; the third sub-problem is to cluster the clients to the satellites, and 
the last sub-problem determines the routing from satellites to serve the corresponding clients (second-
echelon VRP).  

The second step begins with the generation of instances from the statistical distributions. Preliminary 
runs with 𝑛଴ replications are solved using the MILP-based heuristic mentioned in the first step. Afterwards, 
the number of required replications is computed using Equation (1), where 𝑆଴ is the standard deviation of 
the preliminary runs, Z0.05 is the value of the normal distribution with 95 % of confidence, and  is the 
precision (Banks et al. 2000). Additional 𝑛 െ 𝑛଴ replications are run. 

𝑅 ൒ ൬
𝑍଴.଴ହ𝑆଴
𝜀

൰
ଶ

 

 

ሺ1ሻ 

3.2 Routing from Depots to Satellites 

A decomposition heuristic is applied to reduce the problem complexity. In this section, we explain in more 
detail the mathematical models employed to solve the first two sub-problems. On the first hand, we present 
the mathematical formulation for the VRP of the first level. Then, to determine the vehicle allocation to 
satellites (second sub-problem) we used the allocation model proposed in (Muñoz-Villamizar et al. 2015). 

The VRP is solved using the mixed-integer linear programming (MILP) model. Given a set of n depots, 
m satellites, and l vehicles, binary decision variables are defined as follows: 𝐴௜ ൌ 1 if the depot i is opened, 
and 0 otherwise; 𝑋௜௝௞ ൌ 1 if the depot i serves the satellite j with vehicle k, and 0 otherwise; 𝑌௝௜௞ ൌ 1 if 
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vehicle k goes from satellite j to depot i, and 0 otherwise; and 𝐵௝௛௞ ൌ 1 if vehicle k goes from satellite j to 
satellite h, and 0 otherwise. Auxiliary variables Uj are required for subtour elimination. The parameters of 
the model are: v is the speed of vehicles, Dej is the demand of satellite j, CapT is the total loading capacity 
of a vehicle, N is the fleet size, M is the total number of satellites in the network, and, finally, Dij , DRjh, and 
DCjh are the distances between depot i and satellite j and between satellites j and h. The mathematical model 
is presented in Equation (2). 

 

Figure 1: Flowchart of our simheuristic approach. 
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The objective function (2) computes the minimization of the travel times. Constraints (3) ensure that 
only one depot is opened. Constraints (4) ensure that if the depot is opened it is possible to send freight 
from it. Constraints (5) ensure that one vehicle must leave the depot to do the routing. Constraints (6) ensure 
that if satellite j is served from depot I, this route must be continued to another customer h with the same 
vehicle k. Constraints (7) define the route sequence per vehicle. Constraints (8) force all satellites to be 
visited exactly once. Constraints (9) define that after a satellite is visited, the vehicle goes to another satellite 
or returns to the depot. Constraints (10) ensure that each route must start and end at the depot. Constraints 
(11) ensure that the maximum capacity of vehicles is not violated. Constraints (12) correspond to sub-tour 
elimination. Constraints (13) ensure that each vehicle has only one route. Finally, constraints (14) ensure 
binary values of decision variables.  

3.3 Routing from Satellites to Clients 

In this section, we explain the last two sub-problems. In the third sub-problem, a clustering of the clients is 
made to allocate these clients to a specific satellite with a given coverage range. The model used for this 
clustering is the same as the one used in the first sub-problem, based on the allocation model of Muñoz-
Villamizar et al. (2015). 

Furthermore, to solve the VRP in the second echelon (last sub-problem), we applied the same 
mathematical formulation as in the previous section, but changes in both sets and binary variables were 
required. Thus, the VRP model of the second-level has the following sets: i corresponds to satellites, j 
corresponds to clients, and k remains the same for vehicles. Binary variables are defined: 𝐴௜ ൌ 1 if the 
satellite is opened, and 0 otherwise; 𝑋௜௝௞ ൌ 1 if the satellite i serves the client j with vehicle k, and 0 
otherwise; 𝑌௝௜௞ ൌ 1 if vehicle k goes from client j to satellite i, and 0 otherwise; and 𝐵௝௛௞ ൌ 1 if vehicle k 
goes from client j to client h, and 0 otherwise.  

4 EXPERIMENTS 

4.1 Experiments with benchmark datasets 

The proposed procedure was implemented in the General Algebraic Modeling System (GAMS). 
Experiments were run on a personal computer Intel® Core™ i3 CPU at 2.3GHz and 8GB RAM. A first 
experiment was carried out using datasets from the literature. We employed Set 1 proposed by Perboli et 
al. (2011), consisting of 1 depot, 12 customers and 2 satellites. Datasets are available at the ORLibrary 
(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/). They were solved at optimality by Gonzalez-Feliu et 
al. (2008). Numerical results are presented in Table 1. Results show that the average approximation of the 
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proposed approach is 18.9 % of the optimum travel time, ranging from near to 5 % to 28 %. Computational 
times are between 1.67 and 2.23 seconds. 

4.2 Analyzing a Case Study in Bogota, Colombia 

To study the performance of the procedure on real-life data, simulation experiments were made using real 
locations from a company with a chain of retail stores. This company has 94 stores in Bogota, D.C and 2 
distribution centers (depots) outside the city. Bogota is the largest city in Colombia and also its capital. The 
population of Bogota is approximately 7.1 million inhabitants according to the last census (DANE 2018). 
We have selected Bogota as the city under study, because its configuration and size allow a complex 
scenario that can be an example of the behavior of cities with similar characteristics. The locations of the 
selected convenience stores were collected using Google Maps™. The origin-destination matrix with actual 
driving distances was obtained through Google Maps Distance Matrix API, the shortest path was selected 
for calculations as given in Muñoz-Villamizar et al. (2015) and Quintero-Araujo et al. (2016). We chose 
two types of vehicles: for the first-level, the JMC Carrying Plus with 3.5 tons of payload; for the second-
level, the Renault Kangoo Van with 750 kg of payload. It is also assumed that availability of the necessary 
vehicles fleet achieves a service level of 100 %. 

Table 1: Comparison using benchmark datasets. 

Instance OPT 
This paper 

Obj. func. gap CPU time (sec.) 
E-n13-k4-2 286 300 4.9 % 2.135 
E-n13-k4-3 284 320 12.7 % 1.67 
E-n13-k4-4 218 280 28.4 % 2.235 
E-n13-k4-5 218 278 27.5 % 1.959 
E-n13-k4-6 230 292 27.0 % 1.831 

Avg. 247 294 18.9 % 1.966 
 
According to official data, the mean travel speed in Bogota is 20 km/h (Alcaldía Mayor de Bogota, 

2019). However, in order to add stochasticity, we defined a triangular distribution for the travel speed with 
a minimum value of 10 km/h, maximum value of 35 km/h and most likely value to be 20 km/h. It must be 
noted that the average value of this distribution is 21.66 km/h. Hence, to run the experiments, we did use 
both the average of the triangular distribution (21.66 km/h) and the mean speed reported by the city of 
Bogota (20 km/h). Customer demands were generated from a normal distribution with 𝜇 ൌ 60 and 𝜎ଶ ൌ
6.6  / 𝐷𝑒௝~ 𝑁ሺ𝜇,𝜎ଶሻ. Satellites act as satellite and store at the same time. Finally, nine different scenarios 
that result from the combination of both depots and the use of each one separately (Gachancipa, Siberia, 
Gachancipa-Siberia), with 3, 5, and 7 satellites and 94 stores were generated. In order to replicate the 
experiments, the full origin-destination matrix and stochastic travel time sets are available upon request 
from the authors of this paper. 

4.3 Model Validation and Verification 

To verify the operation logic of the model, 30 preliminary runs were made (𝑛଴ ൌ 30). After that, the number 
of required replications 𝑛 was obtained finding that at least 104 replications were needed to validate the 
model, with 95 % confidence. Finally, additional 𝑛 െ 𝑛଴  replications were run using the MILP-based 
heuristic and the solutions were saved for analysis by calculating the confidence interval with mean and 
standard deviation known for all the proposed scenarios. 
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4.4 Analysis of Results 

A total of 105 replications were made for each of the nine scenarios. As a MILP-based decomposition 
algorithm was applied to solve this problem, the results were consolidated in two tables, one for the first 
echelon (Table 2) and another one for the second echelon (Table 3). The stochastic results presented are the 
mean of the results obtained in the 105 replications. However, Table 4 shows the confidence intervals for 
these scenarios, the minimum value that was obtained, the maximum, and the standard deviation of the 
stochastic travel times, and a gap that represents the difference between the deterministic (using the average 
value of the triangular distribution) and the stochastic values for each scenario.  
 

Table 2: Results for the first echelon: routing from UDCs to satellites. 

UDC 
location 

Number 
of 

satellites 

Number of 
vehicles 

leaving the 
UDC 

% Vehicle 
utilization 

Time of route 
(Bogota 

average speed: 
20km/h) 

Time of route (avg. 
value of the 
triangular 

distribution: 21.66 
km/h) 

Time of route 
(stochastic) 

Gachancipa 
 

3 2 81.2 % 331.8 306.4 328.1 
5 2 81.2 % 274.5 253.5 260.8 
7 2 81.2 % 266.7 246.3 259.3 

Siberia 
 

3 2 81.2 % 217.8 201.1 216.3 
5 2 81.2 % 361.8 334.1 349.9 
7 2 81.2 % 415.2 383.4 384.7 

Gachancipa 
& Siberia 

 

3 2 81.2 % 242.4 223.8 246.6 
5 2 81.2 % 250.2 231.0 239.6 
7 2 81.2 % 310.8 287.0 302.6 

 

Table 3: Results for the second echelon: routing from satellites to clients. 

Number 
of 

satellites 

Satellite 
ID 

Number 
of 

vehicles 
leaving 

the 
satellite 

% Vehicle 
utilization 

Number 
of 

served 
nodes 

Served 
demand 

Time of route 
(Bogota 
average 
speed: 

20km/h) 

Time of 
route (avg. 
value of the 
triangular 

distribution: 
21.66 km/h) 

Time of 
route 

(stochastic) 

3 

31 3 96.80 37 2238 357.6 330.2 349.4 
58 3 82.49 33 1988 363.9 336.0 362.9 
90 2 93.67 24 1459 296.4 273.7 283.8 

Total 8 90.99 94 5685 1017.9 939.9 996.1 

5 

31 1 88.27 12 722 228.0 210.5 219.4 
35 2 97.87 24 1469 288.9 266.8 272.6 
58 2 70.80 22 1298 267.3 246.8 259.8 
70 2 97.47 24 1472 250.8 231.6 244.5 
90 1 89.33 12 724 203.7 188.1 200.3 

Total 8 88.75 94 5685 1238.7 1143.8 1196.7 

7 

7 1 87.60 12 721 225.6 208.3 228.5 
11 1 75.33 12 726 153.9 142.1 149.8 
31 1 86.53 12 727 226.8 209.4 216.4 
35 1 83.33 12 726 199.8 184.5 198.0 
58 1 72.80 12 712 194.7 179.8 191.3 
70 2 85.60 22 1345 247.5 228.5 251.5 
90 1 89.87 12 728 242.7 224.1 233.8 

Total 8 83.01 94 5685 1491.0 1376.7 1469.3 
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In the first echelon (Table 2), for each of the proposed scenarios, two vehicles depart from the depot 
towards the satellites. The average vehicle utilization rate is 81.2 %. It also shows that the scenarios Siberia 
with three satellites, Gachancipa-Siberia with three satellites and Gachancipa-Siberia with five satellites, 
provide the shortest deterministic and stochastic travel times. As for the second echelon, from satellites to 
clients (Table 3), the distribution is not affected by the depot from which the goods are supplied. 
Nevertheless, it is important to mention that the total distance traveled and, therefore, the total travel time 
(1st echelon plus 2nd echelon) differ depending on the depot that is serving the satellites. The number of 
vehicles assigned to distribute the goods in the second echelon is eight in each of the scenarios, which 
satisfies 100 % of the demand with an average vehicle utilization rate of 90.99 % for three-satellite 
scenarios, 88.75 % for five-satellite scenarios, and 83.01 % for seven-satellite scenarios. In this way, if 
customer demand increases, the distribution network is still able to satisfy that demand without the need to 
incur in additional costs to include a new vehicle, human resources, or travel costs for higher fuel 
consumption. 

The scenario that enables the total distribution of the goods to all the clients in a minimum total travel 
time of 1,141 minutes (deterministic), 1,212.4 minutes (stochastic) and a minimum total traveled distance 
of 472.6 km is the one that includes the use of the Siberia depot with three satellites and 94 clients, as shown 
in Table 4. This scenario has a confidence interval of (1183, 1241.8) with a significance of 5 %. The gap 
between the deterministic solution and the stochastic one is -6.3 %. If it is necessary, this scenario is capable 
to handle a bigger demand because the average utilization rate of the vehicles used is 86.1 %. Computational 
times for the solution of the deterministic scenarios are also presented in Table 4. 

Table 4: Final deterministic and stochastic results for each scenario. 

Scenario 
CPU times 
(seconds) 

Deterministic value 

21.66 km/h 20 km/h 
Gach-5-94 6.5 1397.2 1513.2 
Gach-3-94 154.4 1246.3 1349.7 
Gach-7-94 3.6 1623.0 1757.7 
Sib-5-94 6.6 1477.8 1600.5 
Sib-3-94 154.4 1141.0 1235.7 
Sib-7-94 3.4 1760.1 1906.2 

Gach-Sib-5-94 7.1 1374.8 1488.9 
Gach-Sib-3-94 154.4 1163.7 1260.3 
Gach-Sib-7-94 3.7 1663.7 1801.8 

 
As shown in Table 5, the mean of the stochastic travel times is usually higher than the value obtained 

in a deterministic problem (21.66 km/h). Moreover, the confidence interval for each scenario was calculated 
to validate if the deterministic result fits the reality of the problem and simultaneously a hypothesis test was 
performed to validate if the mean of the stochastic values obtained for each scenario is equal to the value 
of the deterministic scenario. The results show that the mean of the stochastic values is different from the 
deterministic value of the scenarios with a confidence level of 95 %. In addition, the results obtained 
through the factorial design carried out over two factors allows us to verify that the use of the UDCs, the 
number of satellites, and the interaction of these have significant effects on the travel time, with p-values 
of 0.000185, <2e-16, and 3.8e-13, respectively. 

Finally, a comparison was made between scenarios that have the same number of satellites, which was 
done through the analysis of box-and-whiskers plots and a hypothesis tests for equality of two means. For 
the scenarios with a greater number of satellites, we found that there is an equality between the mean of the 
stochastic travel times for Gachancipa-Siberia and Gachancipa scenarios; the difference of the stochastic 
travel times of these two scenarios with Siberia with the seven-satellite scenario is significant. Something 
similar happened in the scenarios that considered five satellites. The scenarios Gachancipa-Siberia and 
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Gachancipa have an equality in the means of travel times with a significance of 5 %. Regarding the 
scenarios that only consider three satellites, the Siberia and Gachancipa-Siberia scenarios have significantly 
equal means of the travel times. In contrast, the scenario that considered the Gachancipa UDC with three 
satellites has longer travel times and, therefore, these are not equal to those of the other two scenarios with 
a confidence level of 95 %. 

Table 5: Final deterministic and stochastic results for each scenario. 

Scenario 
Stochastic value 

Confidence 
interval (95 %) 

Gap 

min. max. mean st.dev. LL UL  

Gach-5-94 1154.4 1932.0 1457.5 161.8 1426.5 1488.4 -4.3 % 
Gach-3-94 955.6 1925.1 1324.1 173.4 1291.0 1357.3 -6.2 % 
Gach-7-94 1342.8 2122.9 1728.5 165.9 1696.8 1760.3 -6.5 % 
Sib-5-94 1213.2 2051.9 1546.6 164.7 1515.1 1578.1 -4.7 % 
Sib-3-94 894.7 1647.0 1212.4 153.8 1183.0 1241.8 -6.3 % 
Sib-7-94 1515.6 2531.2 1854.0 196.7 1816.4 1891.6 -5.3 % 

Gach-Sib-5-94 1146.3 1830.2 1436.2 144.4 1408.6 1463.9 -4.5 % 
Gach-Sib-3-94 913.5 1632.2 1242.7 151.1 1213.8 1271.6 -6.8 % 
Gach-Sib-7-94 1463.5 2194.7 1771.8 166.3 1740.0 1803.6 -6.5 % 

5 CONCLUSIONS AND PERSPECTIVES 

This paper presented a simheuristic approach to solve a goods distribution problem in an urban context 
from a real case of convenience stores in the city of Bogota, Colombia, where depots located at the periphery 
of the city are used to deliver goods to satellite facilities and then to final sales points where customers can 
buy the products. The problem was modeled as a two-echelon vehicle routing problem with limited capacity 
of both vehicles and satellites (2E-CVRP). This approach combines a MILP-based decomposition 
algorithm with Monte Carlo simulation. Numerical experiments were carried out using real data. Results 
were analyzed in terms of the impact of using either one or both of the urban distribution centers already 
available for delivery to the satellites, and the use of three, five, or seven satellites. The impact of adding 
stochasticity in the problem was evaluated through simulation. In future research, improvement heuristics 
can be designed to obtain better results in terms of routes. Also, characteristics such as delivery time 
windows and a heterogeneous fleet of vehicles that consider the use of both electric and gasoline-based 
vehicles or vehicles with different loading capacities at any of the echelon can be included. 
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