
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

EVALUATION OF bi-PASS FOR PARALLEL SIMULATION OPTIMIZATION

Linda Pei
Barry L. Nelson

Dept. of Industrial Engr. & Management Sciences
Northwestern University

Evanston, IL 60208-3119, USA

Susan R. Hunter

School of Industrial Engineering
Purdue University

West Lafayette, IN 47907, USA

ABSTRACT

Cheap parallel computing has greatly extended the reach of ranking & selection (R&S) for simulation
optimization. In this paper we present an evaluation of bi-PASS, a R&S procedure created specifically for
parallel implementation and very large numbers of system designs. We compare bi-PASS to the state-of-
the-art Good Selection Procedure and an easy-to-implement subset selection procedure. This is one of the
few papers to consider both computational and statistical comparison of parallel R&S procedures.

1 INTRODUCTION

Simulation optimization (SO) uses simulation output to estimate the performance of feasible solutions or
“systems” to identify an optimal—or at least good—system design. Ranking and selection (R&S) SO
procedures simulate every feasible system and therefore can provide global statistical error control or
guarantees. For instance, frequentist R&S procedures often guarantee the probability of correct selection,
while Bayesian R&S procedures provide posterior inference about the quality of the selection. See Kim
and Nelson (2006) and Frazier (2010) for surveys. This paper considers the frequentist parallel R&S setting
when there are a very large number of systems k.

Parallel R&S procedures use multiple processors to solve SO problems more quickly compared to
serial procedures run on a single processor. Parallel R&S is not as simple as taking procedures originally
created for a single processor and adapting them to a parallel setting, because parallel procedures must
coordinate tasks and manage information among all processors.

This paper carefully evaluates a frequentist parallel R&S procedure called the the bisection Parallel
Adaptive Survivor Selection (bi-PASS) algorithm. The bi-PASS algorithm operates in a master-worker
framework, exploiting a “master” processor checking systems for elimination and p > 1 parallel “worker”
processors carrying out simulations. We highlight two advantages: First, bi-PASS statistically benefits rather
than suffers from large k, whereas many conventional R&S procedures become prohibitively conservative
as k grows. Second, the structure of bi-PASS reaps computational savings by keeping workers busy.

In this paper, we conduct an empirical evaluation of bi-PASS. Our empirical evaluation demonstrates that
bi-PASS maintains its statistical guarantees on large-scale, realistic problems using a practical implemen-
tation. Previous work in Pei et al. (2018) and Pei et al. (2020) proves the theoretical soundness of bi-PASS
under conditions that require more synchronization than would be computationally prudent. We compare
bi-PASS to a parallel version of subset selection based on Nelson et al. (2001), and to the state-of-the-art
Good Selection Procedure (GSP) of Ni et al. (2017). We study two large-scale, realistic problems: an
inventory optimization problem with 22,500 systems and a throughput maximization problem with 216,600
systems. Since we study three procedures that have different objectives and statistical guarantees, we do
not intend to show that bi-PASS dominates with respect to every metric. Rather, we highlight differences
in the procedures and obtain insight into the settings in which bi-PASS is advantageous.

2960978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Pei, Nelson, and Hunter

The paper is organized as follows: Section 2 introduces the notation and guarantees of bi-PASS, GSP,
and subset selection, Section 3 provides pseudocode for the three procedures, then compares them with
respect to parallelization. Section 4 showcases numerical results.

2 SETTING AND STATISTICAL GUARANTEES

Suppose that we have k systems, indexed by i ∈ I= {1,2, . . . ,k}, with simulation output on replication r,
Yir. We assume that Yir are i.i.d. N(µi,σ

2
i). We assume the frequentist setting and we maximize, so that

larger means are better, and unknown to us, the true means satisfy µ1 ≥ µ2 ≥ ·· · ≥ µk−1 ≥ µk. Notice that
ties are permitted. We have p “worker” processors, and one “master”, giving p+1 processors in total.

We let τ ≥ 0 denote the “global” or wall-clock time elapsed in a trial of an SO algorithm. For each
i ∈ I, we let ni(τ) be system i’s “local” time, which is the number of replications accumulated for system
i by global time τ . The distinction between global and local time is important because local time does
not account for the wall-clock time that elapses due to calculations, simulation, message passing among
processors, etc., all critical components of executing a R&S procedure in parallel. Serial procedures
commonly measure efficiency in terms of total number of replications expended, but examining wall-clock
time in parallel procedures is important to capture algorithmic overhead.

Further, let Ri(τ) = ∑
ni(τ)
r=1 Yir be the running sum of system i’s output up to global time τ , and let

Ȳi(τ) = ∑
ni(τ)
r=1 Yir/ni(τ) = Ri(τ)/ni(τ) be the corresponding sample mean. Let τend be the termination time

of a procedure. Common to bi-PASS, GSP, and subset selection is a set G ⊆ I of “good systems,” an
acceptable level of error α ∈ (0,1/2), and a terminal set of systems delivered by the procedure, Q(τend)⊆ I.
Each algorithm has a non-increasing set of “contenders” or “surviving systems” Q(τ) for 0 ≤ τ ≤ τend
which consists of systems that have not been eliminated by time τ .

• For bi-PASS (Pei et al. 2018), G= {i : µi ≥ µ?}, where µ? is a standard. In this paper µ? = µ1,
the unknown value of the best system’s mean, but other definitions are possible. bi-PASS controls
the expected false elimination rate EFER = 1−E|G∩Q(τend)|/|G| ≤ α , which becomes no more
difficult to maintain as k increases.

• For GSP (Ni et al. 2017), G = {i : µi ≥ µ1− δ}, where δ > 0 is an allowable optimality gap.
GSP returns a singleton set |Q(τend)| = 1 and guarantees the probability of a good selection
PGS = Pr{Q(τend)⊆ G} ≥ 1−α . To guarantee a single system, GSP employs Rinott’s procedure
(Rinott 1978) in its final stage, which demands more output data as k increases due to PGS being
a family-wise error statement.

• For subset selection (Nelson et al. 2001), G = {i : µi ≥ µ1}; the procedure returns a subset
that guarantees the probability of inclusion PI = Pr{|Q(τend)∩G| ≥ 1} ≥ 1−α , which is also a
family-wise statement.

The quantities above indexed by τ are random and will change from trial to trial of the same procedure,
due to stochasticity of simulation output, simulation execution times, and message passing times.

3 PSEUDOCODE AND COMPARISONS

In this section, we provide pseudocode for our bi-PASS, GSP, and subset selection implementations in a
master-worker framework, and compare and contrast the computational characteristics of all three algorithms.

In the master-worker framework, the master and workers execute their respective code in parallel, and
the master assigns “jobs” to workers, who report back upon job completion (Hunter and Nelson 2017).
To accommodate generic computational environments, we assume processors do not share memory, so
master-worker message passing is required to share information. This assumption is also realistic when
working with a larger number of processors, potentially across different physical nodes. A job is either a
simulation job or a screening job, and there is exactly one simulation job for each contender and at most

2961

Pei, Nelson, and Hunter

one screening job for each worker. A job is characterized by the message that the master sends to the
worker, which contains the data required to complete the job. We say a worker is “busy” if processing a
simulation or screening job and is “idle” otherwise. We assume that there are many more systems than
workers, so that k� p.

Send and Receive are the two methods that comprise message passing. Both methods are “blocking”
until a message is successfully passed due to another processor posting a matching Receive and Send,
respectively. This means that processors will not continue executing subsequent code until they are able
to send their message to an appropriate destination or until they receive a message from an appropriate
source. We also use Receive to include the action of the receiving master or worker updating its copies
of the received statistics. For example, when the master executes Receive(i,Ri,ni), it also updates its
(old) copies of Ri and ni to be the new updated values returned by the worker.

Whenever we refer to a variable in the pseudocode, we refer to its “current” value at the global time
of the algorithm. For simplicity, we omit each variable’s notational dependence on global time τ . For
example, we simplify the running sum Ri (τ) by denoting it as Ri in the pseudocode. We assume that
any worker can simulate any system i, and that Simulate(i,∆) for ∆ ∈ Z+ returns the sum of ∆ i.i.d.
replications from system i. This implies that random number streams are managed so that Simulate(i,∆)
is independent for all i ∈ I, for each time the simulation routine is called, and for each worker that calls it.

The three R&S algorithms we evaluate use auxiliary routines, and their pseudocode is given in
the appendix. DataCollectionMaster and DataCollectionWorker obtain statistics from all
systems. For bi-PASS and GSP, these routines are used for a “calibration” stage to obtain initial statistics
from every system. GSP employs RinottStageMaster and RinottStageWorker to select a single
good system in its endgame.

3.1 Implementation of bi-PASS

The bi-PASS algorithm consists of workers asynchronously completing simulation jobs and the master
keeping track of statistics on all systems and comparing a system’s sample mean to the estimated standard.
There is a one-to-one correspondence between simulation jobs and contenders. A contender’s job is either
in the job queue waiting to be assigned to a worker, or being simulated on exactly one worker. Eliminated
systems no longer have jobs. When a worker reports new simulation output after completing job i, the
master updates its copies of statistics on system i and returns job i to the back of the job queue. When job
i gets to the front of the job queue, the master checks whether system i can be eliminated. If so, job i is
deleted, and if not, job i is assigned to the next available worker.

For elimination decisions, we employ the boundary function gPASS(t) = gPASS(t,c) =√
[c+ log(t +1)] (t +1). As described in detail in Fan et al. (2016), a boundary constant c = c(α,n0)

exists that ensures that a mean-zero Brownian motion with variance estimated from n0 initial observations
will remain inside the boundary forever with desired EFER ≤ α . Since there are significant numerical
issues due to truncation error in estimating the false elimination rate across an infinite time horizon, we
approximate the value of c. We select a very large cutoff point n′max and estimate ĉ satisfying

P

{
∑

n
r=1 Zir

σ̂2(n0)
≤−gPASS

(
n

σ̂2(n0)
, ĉ

)
for some n ∈ N, n0 ≤ n≤ n′max

}
≤ α

where Zir
i.i.d.∼ N(0,1) and σ̂2(n0) is the sample variance based on the first n0 observations. We estimate ĉ

using Monte Carlo simulation and use it in place of c in gPASS.
Algorithms 1 and 2 below are asynchronous because the master does not wait for all workers or all

jobs to finish before updating the estimated standard and checking elimination for the system at the head of
the job queue whenever a worker reports back. Thus, we expect systems to be “out-of-sync,” meaning that
at any global time τ there will be i, j ∈ Q(τ) such that ni(τ) 6= n j(τ). Current theoretical results assume

2962

Pei, Nelson, and Hunter

perfectly synchronized systems (Pei et al. 2020). However, large k tends to ameliorate the effects of being
out-of-sync because the estimated standard will be the average of a large number of replications.

In Algorithm 1, lines 6–14 represent the master “pre-loading” by assigning jobs to idle workers. Then
the main loop, in lines 15–25, is “worker-driven” because the master reacts to workers reporting back.

Algorithm 1: bi-PASSMasterRoutine
Input: EFER parameter α , initial sample size n0, run length ∆, boundary gPASS(t) for t > 0, number of systems k,

and StoppingCondition.
1 Create job queue J = {1,2, . . . ,k} and set of contenders Q= {1,2, . . . ,k}
2 DataCollectionMaster

(
RequestedStats=(Ri, σ̂

2
i)
)

// Get initial statistics using n0 reps
3 for i ∈Q do
4 set ni = n0

5 Compute initial estimated standard µ̂?← |Q|−1
∑ j∈Q R j/n j

6 while some worker w idle do // Assign a job to each idle worker until no jobs or no idling
7 while |J|> 0 do
8 Pop first i from head of J

9 if ni
σ̂ 2

i

(
Ri
ni
− µ̂?

)
≤−gPASS

(
ni
σ̂ 2

i

)
then // Check elimination

10 remove i from Q and update µ̂?← |Q|−1
∑ j∈Q R j/n j

11 else
12 Send(i,Ri,ni,∆) to worker w and break // Break inner loop, job has been assigned

13 if |J|= 0 then // If no more jobs needed, retire idle worker
14 Send(EndAlgorithmMessage) to worker w
15 while StoppingCondition not met do // Main bi-PASS loop
16 Receive(i,Ri,ni) from any worker w that has completed its job i
17 Add i to J and update estimated standard µ̂?← |Q|−1

∑ j∈Q R j/n j

18 while |J|> 0 do
19 Pop first i from head of J

20 if ni
σ̂ 2

i

(
Ri
ni
− µ̂?

)
≤−gPASS

(
ni
σ̂ 2

i

)
then // Check elimination

21 remove i from Q and update µ̂?← |Q|−1
∑ j∈Q R j/n j

22 else
23 Send(i,Ri,ni,∆) to worker w and break // Break inner loop, job has been assigned

24 if |J|= 0 then // If no more jobs needed, retire idle worker
25 Send(EndAlgorithmMessage) to worker w
26 return Q as set of contenders

Algorithm 2: bi-PASSWorkerRoutine
Input: Simulation models Simulate(i) for i = 1,2, . . . ,k and initial sample size n0 (available on all workers).

1 DataCollectionWorker() // Get initial statistics using n0 reps
2 while EndAlgorithmMessage not yet received do // Receive and do simulation jobs
3 Receive(i,Ri,ni,∆) from master
4 ni = ni +∆

5 Ri = Ri +Simulate(i,∆)
6 Send(i,Ri,ni) to master

In our numerical experiments, we also modify bi-PASS slightly so that systems do not get too far
out-of-sync: When a job corresponding to system i completes, if it is 2∆ or more replications behind any
other system, then it is put at the front of the master queue rather than at the end.

3.2 Modified GSP Implementation

GSP uses a divide-and-conquer approach that assigns each worker a screening group. The master distributes
simulation jobs to workers, and after all jobs are completed the master sends screening group statistics and

2963

Pei, Nelson, and Hunter

“distributed killers” to workers that do pairwise comparisons to eliminate within their respective groups.
Later, GSP transitions to a select-the-best stage which applies Rinott’s indifference-zone R&S procedure.

The boundary function is gGSP = η , where η = η(α1,k) is a constant depending on the Type-I error
rate α1 for the sequential elimination stage and the number of systems k. Details for computing η are
found in Ni et al. (2017). In the algorithms that follow, a subscript w indicates a worker-specific set. In
particular, Qw is a set of systems assigned to worker w, and Ew is a set of systems eliminated by worker w.

Our implementations in Algorithms 3 and 4 are more synchronized and similar to the Spark im-
plementation of GSP in Ni et al. (2017). We use this synchronized version rather than the original for
simplicity of implementation and to preserve the one-simulation-job-per-contender structure that allows
more straightforward pseudocode comparisons among the algorithms. It is possible that our wall-clock
times might be inflated compared to an asynchronous implementation of GSP, although an asynchronous
implementation might suffer from increased master computations and message passing. Ni et al. (2017)
provide numerical experiments in which their SparkGSP implementation is slower than their asynchronous
GSP implementation using MPI and C++, but to our knowledge, timing analysis has not been conducted
for a synchronous vs. asynchronous version that both use MPI and the same programming language.

Algorithm 3: GSPMasterRoutine
Input: Good selection probability 1−α and error splitting parameters α1,α2, where α1 +α2 = α , indifference-zone

parameter δ > 0, number of distributed killers d� k, initial sample size n0, maximum number of pre-Rinott
replications per system nmax, and run length ∆.

1 Create job queue J = {1,2, . . . ,k} and set of contenders Q= {1,2, . . . ,k}
2 DataCollectionMaster(RequestedStats=T̄i(n0)) where T̄i(n0) is the average simulation completion time

for system i based on n0 independent observations // Get timing info for load balancing

3 DataCollectionMaster
(
RequestedStats=(Ri, σ̂

2
i)
)

// Get initial statistics using n0 reps
4 Set common replication counter n = n0
5 for each w = 1,2, . . . , p do
6 compute load-balanced screening group Qw and Send(Qw) to worker w
7 while n < nmax do // Until max Pre-Rinott reps reached, sequentially simulate and screen
8 Recreate job queue J = { j : j ∈Q}
9 if p > |Q| then // If more workers than simulation jobs, retire excess workers

10 Send(EndSimulationStageMessage) to any p−|Q| workers
11 while some worker w is idle do // Send simulation jobs and receive results
12 Send(i,Ri,∆) to worker w
13 while some worker busy do
14 Receive(i,Ri) from any worker w that has completed its job i
15 if |J|> 0 then
16 Send(i,Ri,∆) to worker w
17 else
18 Send(EndSimulationStageMessage) to worker w
19 Update common replication counter n = n+∆

20 Form the set D of distributed killers from systems in Q with the largest d sample means
21 for each worker w do // Send screening jobs to workers and receive results
22 if |Qw|> 0 then
23 Send(D,Qw,{(i,Ri,n, σ̂2

i) : i ∈D,Qw}) to worker w
24 else // If worker screening group empty, no screening job needed
25 Send(EndScreenStageMessage) to worker w
26 while some worker busy do
27 Receive(Ew) from any worker w and update Q=Q\Ew and Qw =Qw \Ew
28 Send(EndScreenStageMessage) to worker w
29 Set ni← n for all i ∈Q RinottStageMaster()
30 Send(EndAlgorithmMessage) to all p workers
31 return argmaxi∈Q Ri/Ni as the estimated single best system

2964

Pei, Nelson, and Hunter

Algorithm 4: GSPWorkerRoutine
Input: Simulation models Simulate(i) for i = 1,2, . . . ,k, boundary function gGSP for t > 0, and initial sample size

n0 (available on all workers).
1 DataCollectionWorker() // Get timing info for load balancing
2 DataCollectionWorker() // Get initial statistics using n0 reps
3 Receive(Qw) from master
4 Set elimination status Ei← False for all i ∈Qw
5 while EndAlgorithmMessage not yet received do
6 while EndSimulationStageMessage not yet received do // Receive and do simulation jobs
7 Receive(i,Ri,n,∆) from master
8 Ri = Ri +Simulate(i,∆)
9 Send(i,Ri) to master

10 while EndScreenStageMessage not yet received do // Receive and do screening job
11 Receive(D,Qw,{(i,Ri,n, σ̂2

i) : i ∈D,Qw}) from master
12 for i ∈Qw do
13 for j ∈D∪Qw, j 6= i do

14 if
n/
√
(n0−1)nmax√
σ̂2

i + σ̂2
j

(
Ri
n −

R j
n

)
≤−gGSP then

15 set Ei = True and break // Break inner loop, begin checking next system

16 Set Ew = {i ∈Qw : Ei = True}
17 Send(Ew) to master // Report eliminated systems

18 RinottStageWorker()

3.3 Parallel Subset Selection Implementation

Our parallel implementation of subset selection is the simplest of the three procedures we evaluate. Workers
complete one round of simulation jobs and then are not used again. After the master receives statistics from
all systems, the master does pairwise comparisons to determine which systems to keep in the subset. This
is in contrast to bi-PASS and GSP, in which workers successively complete multiple rounds of simulation
jobs and communicate back and forth with the master.

The boundary function is simply gSubset = t(1−α)1/(k−1), n0−1, which is the (1−α)
1

k−1 quantile of the t
distribution with n0−1 degrees of freedom, as explained in Nelson et al. (2001).

Algorithm 5: SubsetSelectionMasterRoutine
Input: Correct inclusion probability 1−α , initial sample size n0, boundary function gSubset.

1 Create job queue J = {1,2, . . . ,k} and set of contenders Q= {1,2, . . . ,k}
2 Set elimination status Ei← False for all i ∈Q

3 DataCollectionMaster
(
RequestedStats=(Ri, σ̂

2
i)
)

// Get initial statistics using n0 reps
4 for i ∈Q do // Pairwise comparisons to check elimination
5 for j ∈Q, j 6= i do

6 if

√
n0

σ̂2
i + σ̂2

j

(
Ri

n0
−

R j

n0

)
<−gSubset then

7 set Ei = True and break // Break inner loop, begin checking next system

8 Update Q= {i ∈Q : Ei = False}
9 return Q as selected subset of systems

Algorithm 6: SubsetSelectionWorkerRoutine
Input: Simulation models Simulate(i) for i = 1,2, . . . ,k and initial sample size n0 (available on all workers).

1 DataCollectionWorker() // Get initial statistics using n0 reps

2965

Pei, Nelson, and Hunter

Table 1: Comparison of computational characteristics of bi-PASS, GSP and subset selection.

bi-PASS GSP Subset Selection

Simulation Workers Workers Workers
Elimination Master Workers Master

Master Sends Running sum, # observations,
and run length for i

Running sum and run length for i (simulation);
statistics for systems in screening group

and distributed killers (screening)
Initial sample size for i

Master Receives Running sum and
observations for i

Running sum for i (simulation);
systems eliminated by worker (screening)

Running sum and sample
variance for i

Master Tasks Updates estimated standard Updates distributed killers Pairwise comparisons

3.4 Discussion

All three procedures make elimination decisions by checking whether a scaled difference between two
sample means falls below a boundary.

• bi-PASS eliminates system i if ni
σ̂2

i

(
Ri
ni
− µ̂?

)
≤−gPASS

(
ni
σ̂2

i

)
=−

√
[c+ log(ni/σ̂2

i +1)](ni/σ̂2
i +1).

• GSP eliminates system i with system j if n/
√

(n0−1)nmax√
σ̂2

i +σ̂2
j

(
Ri
ni
− R j

n j

)
≤ −gGSP = −η and we note

that due to our synchronized implementation, the formulation of the elimination condition above
is simpler than the one used in Ni et al. (2017).

• Subset selection eliminates system i with system j if
√

n0
σ̂2

i +σ̂2
j

(
Ri
n0
− R j

n0

)
≤−gSubset =−t(1−α)1/(k−1), n0−1.

In Table 1, we compare and contrast computational characteristics of the three procedures. “Simulation”
and “elimination,” respectively, refer to whether simulation and elimination are completed on the master
or the worker processors. “Master sends” refers to the data passed to a worker when assigning a job i, and
“master receives” refers to the data received from a worker which has just completed its job i. Since the
master in GSP assigns two types of jobs, we describe simulation job data first and elimination job data
second. Notice that for bi-PASS and GSP, when the first n0 observations are collected, the master will also
receive the sample variance σ̂2

i . “Master tasks” refer to the main computations that the master carries out
beyond job assignment and completed job data collection.

In terms of message passing overhead per system, GSP suffers the most. Consider the quantity of
jobs needed for each system to obtain exactly n0 observations and check systems for elimination exactly
once. For bi-PASS and subset selection, this requires k jobs. For GSP, this requires k+ p jobs, due to
worker screening. Additionally, the master in GSP must pass a very large amount of data to workers for
screening. The other two algorithms only require the master to send a handful of scalar values to each
worker for each job. GSP also requires more “maintenance” messages than the other two algorithms due to
the master in GSP needing to tell workers when to switch from simulation to screening. Subset selection
is clearly very efficient in limiting the amount of message passing, and in fact only k jobs are required
for the entire algorithm. In this sense, GSP and subset selection represent extremes: GSP incurs a higher
message passing cost in an attempt to eliminate systems quickly, whereas subset selection incurs minimal
message passing cost with a naı̈ve allocation of observations that likely results in inefficient expenditure
of simulation effort.

Next, we discuss worker processor idling. All bi-PASS jobs are of the same type and require minimal
data to be passed when sent to workers, and updating the estimated standard is a simple operation. These
factors are designed to keep the master mostly idle and the workers mostly busy in bi-PASS. In contrast,

2966

Pei, Nelson, and Hunter

during the comparison stage of subset selection the workers are idle and the master does all the work. When
there are fewer remaining systems than processors, bi-PASS does not make use of these idle processors.
Later in the algorithm, and generally when there are few systems left, GSP moves from sequential simulation
and elimination to a Rinott stage in which a final run on each contender is completed and the contender
with the largest sample mean is chosen as the best. This move is strategic because when there are few
contenders we expect them to be similar in performance, and it might be computationally better to spend
less wall-clock time on message passing and more on extra observations to distinguish similar means.

4 EXPERIMENTS

In this section we describe the computing environment, experiment design, and empirical evaluation of
bi-PASS, GSP, and subset selection on two large-scale realistic problems.

4.1 Cluster Specifications and Implementation Details

For each experiment trial, we used 101 processors across two nodes on Northwestern University’s Op-
timization and Statistical Learning (OSL) group cluster. The cluster runs a Linux CentOS 7.4 operating
system. Each node contains two Intel(R) Xeon(R) Gold 6148 cores with 256 GB of RAM, 1 TB of hard
drive memory, and 40 processors. No other jobs were executed while we ran our experiments, to ensure
that timing was not affected by resource competition.

We evaluate parallel bi-PASS, GSP, and subset selection based on the pseudocode in the previous
section as implemented in Python, and using the package mpi4py, which has Python bindings to Open
MPI, for parallelization.

We skip the load-balancing stage in GSP because the simulation execution times for the systems are
about the same, so that our version of GSP already starts with load-balanced groups without incurring the
costs of the additional observations normally needed for this stage. This gives GSP an advantage in our
comparisons because in the usual implementation all systems are simulated to gain timing information,
and then these data are discarded.

4.2 Inventory Cost Minimization Problem

The first set of experiments is applied to an (s,S) inventory problem with 22,500 policies. This problem
is outlined in Semelhago et al. (2017). The objective is to maximize the negative expected value of
average cost per period over 30 periods, where the decision variables are s and S− s, constrained to
s,S− s ∈ {1,2, . . . ,150}. Demand per period is i.i.d. Poisson with mean 25, and the unit costs for holding
and backorder are 1 and 5 per period, respectively. The unique best solution of (s,S) = (18,53) has a true
mean that is $106.14 and $0.01 better than the second-best solution.

We compare how the three procedures perform when given roughly the same amount of replications.
We ran 10 independent trials of GSP on the inventory problem; 10 trials made the standard error sufficiently
small for our performance statistics. Let totalm be the total number of replications in trial m of GSP, for
m = 1,2, . . . ,10. For trial m of bi-PASS, once totalm replications have been reached, jobs in progress are
allowed to finish, but the master assigns no new jobs, and the algorithm terminates. For trial m of subset
selection, we equally allocate totalm among all systems and set n0 = dtotalm/ke for each system.

The parameters for the experiments are as follows. For bi-PASS, GSP, and subset selection, the error
parameter is α = 0.05. For bi-PASS, n0 = 10 and ∆ = 10. For GSP, α1 = α2 = α/2, δ = $1, d = 20,
nmax = 100, n0 = 10, and ∆ = 10. For subset selection, n0 = dtotalm/ke as mentioned above. We use
δ = $1 for GSP instead of the true difference of $0.01 between the best and second best system to be
advantageous to GSP. Neither bi-PASS nor subset selection require an indifference-zone parameter δ ; the

2967

Pei, Nelson, and Hunter

Table 2: Inventory problem performance
with standard errors based on 10 trials for
bi-PASS, GSP, and subset selection with
101 processors and a stopping condition for
each trial of bi-PASS and subset selection
based on the total reps GSP accumulates.
No false eliminations were observed in any
trial for any algorithm.

Contenders Total Reps Time (sec)
bi-PASS 8±1 1.2e6±9e4 45.8±11
GSP
Pre-Rinott 580±12 5.0e5±2e4 70.7±0.4

GSP
Complete 1 1.2e6±9e4 75.0±0.7

Subset 215±14 1.2e6±8e4 515±3.6

−250

−200

−150

−100

2e+05 4e+05 6e+05 8e+05 1e+06

Total Reps Accumulated Across All Systems

V
a
lu

e
 a

t
E

lim
in

a
ti
o
n

Estimated Standard
Sample Mean

Figure 1: bi-PASS inventory problem sample path: when
an elimination occurs, we note the sample mean of the
eliminated system, estimated standard value, and total reps.

number of observations required in the Rinott stage of GSP is proportional to 1/δ 2, so if it had been set
to, say, $0.01, this stage would take significantly longer. For δ = $1, there are 57 “good” systems. Run
length ∆ was chosen to avoid the master being overwhelmed. Parameters n0 and nmax were chosen based
on previous empirical success in Ni et al. (2017) using initial sample sizes that are multiples of 10 and a
maximum number of “rounds” or jobs of 10, but other combinations of n0,∆, and nmax might be effective.

Out of 10 trials, we observed 0 false eliminations for bi-PASS, 0 instances of GSP failing to select a
good system, and 0 instances of subset selection failing to include the best system. In 2 of the 10 trials,
GSP selected the unique best system.

In Table 2, we describe summary results averaged across the 10 trials with their standard errors.
“Contenders” refers to the number of contenders (non-eliminated systems) at trial termination. For GSP, we
report statistics for the sequential elimination part of the procedure (called “GSP Pre-Rinott”) as well as the
total time elapsed after the final Rinott stage to select a single system (called “GSP Complete”). Compared
to both bi-PASS and GSP, subset selection performs much worse on this problem. Subset selection takes
an order of magnitude longer to run compared to bi-PASS, due to the master having to execute O(k2)
comparisons, while also leaving behind an order of magnitude more contenders than bi-PASS due to the
naı̈ve equal allocation. GSP selects exactly 1 system in each trial due to the Rinott stage. GSP pays
a price in terms of time, however, and takes about 60% longer than bi-PASS, although bi-PASS has an
average of about 8 contenders remaining. The speed of the Rinott stage is due to minimal message passage
requirements, since at most one simulation job is needed per contender at this stage.

We conclude the inventory problem discussion with a sample path from bi-PASS. In Figure 1, when
a system gets eliminated, we plot the sample mean of that system, the value of the estimated standard,
and the total reps accumulated, all at the time of elimination. Note that the estimated standard is always
greater than the sample mean of any system it eliminates.

The estimated standard initially increases rapidly, then increases more slowly and starts to level off.
Correspondingly, systems are initially eliminated in large swaths, then in less-frequent intervals. The plotted
bi-PASS sample path terminated after about 1e6 total reps. At the halfway point, at the first 5e5 total reps,
all but 68 systems were eliminated. This is an order of magnitude less systems compared to the average
GSP Pre-Rinott results in Table 2. However, bi-PASS only eliminated 63 systems in the next 5e5 total
reps compared to eliminating 22,432 in the first 5e5 total reps. As seen in Figure 1, towards the end,
eliminations become sporadic and infrequent. In general we expect behavior like this in a bi-PASS sample

2968

Pei, Nelson, and Hunter

path, because bi-PASS eliminations slow down significantly when there are few contenders remaining. This
underscores that bi-PASS might not be an ideal “endgame” algorithm, because it becomes less efficient
towards the end when there are few contenders left.

4.3 Throughput Maximization Problem

The second set of experiments is a throughput maximization problem with 216,600 solutions. This is a larger
version of the Throughput Maximization problem from SimOpt.org for which the constraints
were strict equalities; we changed the constraints to be inequalities to enlarge the feasible region without
changing the optimal solutions. There are 3 stations in a tandem queue with an infinite number of jobs in
front of station 1. Each station i has a single server with exponential service rate ri for i = 1,2,3. Stations
2 and 3 have buffer sizes b2 and b3, respectively, with buffer sizes including the server. If Station i has a
full buffer, then manufacturing blocking occurs and Station i− 1 cannot release a finished job. Feasible
solutions (r1,r2,r3,b2,b3) ∈ Z+ satisfy r1 + r2 + r3 ≤ 20 and b2 +b3 ≤ 20. For each solution, output from
one simulation replication is generated by estimating throughput based on 50 jobs after a 2000 job warm-up
period. Both (6,7,7,12,8) and (7,7,6,8,12) are optimal with expected throughput of 5.776 per unit time.

For the throughput maximization problem, we compare the screening capabilities of bi-PASS and GSP
when given roughly the same stopping condition; subset selection is too slow for this large-scale experiment.
We ran 10 independent trials of GSP without Rinott since we are primarily interested in how effectively
each procedure can eliminate inferior systems with a modest simulation effort. In contrast to the inventory
problem, we terminate bi-PASS and GSP after each contender has at least 100 observations. Due to our
synchronous implementation of GSP, each contender will have exactly 100 observations at termination.

The parameters for the two algorithms are the same as for the inventory problem, unless explicitly
stated. Since we do not use the Rinott stage for this problem, we do not need an indifference-zone parameter
δ for GSP, and we do not need to split the error over two stages, so α1 = α for GSP.

Out of 10 trials, we observed 0 false eliminations or incorrect selection events for both procedures, as
in the previous set of experiments. Table 3 records the average time, number of contenders remaining, and
total number of replications, as well as their standard errors. bi-PASS is able to reduce the set of contenders
more quickly than GSP with more efficient usage of both simulation replications and wall-clock time.

In Figure 2, we plot 10 sample paths of the number of contenders remaining versus wall-clock time
elapsed for bi-PASS and GSP. Figure 2’s information is slightly different from Table 3, due to increased

Table 3: Throughput problem performance
with standard errors based on 10 trials for
bi-PASS and GSP with 101 processors and a
stopping condition based on each contender
accumulating 100 reps (i.e., 10 jobs of 10
reps each, including the n0 job). No false
eliminations were observed in any trial for
either algorithm.

Contenders Total Reps Time (sec)
bi-PASS 2280±8 3.9e6±7.5e2 5.1e3±1e2
GSP 3100±170 5.7e6±1.5e5 12.1e3±6e2

2000 4000 6000 8000 10000 12000 14000
Wall-clock (Global) Time Elapsed (Seconds)

0
10

00
00

21
66

00
Nu

m
be

r o
f C

on
te

nd
er

s

bi-PASS
GSP

Figure 2: Throughput problem: 10 sample paths of bi-PASS
(solid black) and GSP (dotted red) of contenders-vs-time.

2969

Pei, Nelson, and Hunter

I/O overhead needed to save the sample paths. The difference between master elimination in bi-PASS and
worker group screening in GSP is reflected in the delays and jaggedness of the GSP curves. In bi-PASS,
the master checks elimination one by one for each system in the job queue. In GSP, the master records
the number of contenders after each time a worker finishes a screening job, and often multiple systems are
eliminated. bi-PASS starts eliminating immediately after each system obtains n0 observations, and all of
its paths begin before the paths of GSP, which is delayed due to waiting for each worker to finish a large
number of pairwise comparisons. Also, the bi-PASS curves have much less variance compared to GSP.

ACKNOWLEDGEMENTS

Nelson’s work is partially supported by National Science Foundation Grant Number DMS-1854562. Hunter’s
work is partially supported by National Science Foundation Grant Number CMMI-1554144.

APPENDIX

Algorithm 7: DataCollectionMaster(RequestedStats)

1 while some worker w idle do
2 Pop first i from head of J and Send(i,RequestedStats) to worker w
3 while some worker w busy do
4 Receive(i,ComputedStats) from any worker w that has completed its job i
5 if |J|> 0 then
6 pop first i from head of J and Send(i,RequestedStats) to worker w
7 else
8 Send(EndDataCollectionMessage) to worker w

Algorithm 8: DataCollectionWorker()

1 while EndDataCollectionMessage not yet received do
2 Receive(i,RequestedStats) from master
3 Initialize set of outputs L = /0
4 for ni = 1,2, . . . ,n0 do
5 Simulate(i,1) and store in set L
6 Set ComputedStats as all calculated statistics in RequestedStats based on observations in L
7 Send(i,ComputedStats) to master

Algorithm 9: RinottStageMaster()

1 Compute Rinott’s constant h = h(1−α2,n0,k)
2 for each i ∈Q do
3 Compute Ni = max{nmax,d(hσ̂i/δ)2e}
4 while some worker w idle do
5 Pop first i from head of J and Send(i,Ri,Ni−ni) to worker w
6 while some worker w busy do
7 Receive(i,Ri) from any worker w that has completed its job i
8 if |J|> 0 then
9 pop first i from head of J and Send(i,Ri,Ni−ni) to worker w

10 else
11 Send(EndRinottStageMessage) to worker w

Algorithm 10: RinottStageWorker()

1 while EndRinottStageMessage message not yet received do
2 Receive(i,Ri,Ni−ni) from master
3 Ri = Ri +Simulate(i,Ni−ni)
4 Send(i,Ri) to master

2970

Pei, Nelson, and Hunter

REFERENCES

Fan, W., L. J. Hong, and B. L. Nelson. 2016. “Indifference-Zone-Free Selection of the Best”. Operations Re-
search 64(6):1499–1514.

Frazier, P. I. 2010. “Decision-theoretic Foundations of Simulation Optimization”. In Wiley Encyclopedia of Operations
Research and Management Sciences. New York: Wiley.

Hunter, S. R., and B. L. Nelson. 2017. “Parallel Ranking and Selection”. In Advances in Modeling and Simulation,
edited by A. Tolk, J. Fowler, and G. Shao, and E. Yücesan, Chapter 12, 249–275. New York: Springer.

Kim, S.-H., and B. L. Nelson. 2006. “Selecting the Best System”. In Handbooks in Operations Research and
Management Science, edited by S. G. Henderson and B. L. Nelson, Volume 13, Chapter 17, 501–534. New
York: Elsevier.

Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 2001. “Simple Procedures for Selecting the Best Simulated
System when the Number of Alternatives is Large”. Operations Research 49(6):950–963.

Ni, E. C., D. F. Ciocan, S. G. Henderson, and S. R. Hunter. 2017. “Efficient Ranking and Selection in Parallel
Computing Environments”. Operations Research 65(3):821–836.

Pei, L., S. R. Hunter, and B. L. Nelson. 2020. “Parallel Adaptive Survivor Selection”. Technical report, Department
of Industrial Engineering & Management Sciences, Northwestern University, Evanston, IL.

Pei, L., B. L. Nelson, and S. Hunter. 2018. “A New Framework for Parallel Ranking & Selection using an Adaptive
Standard”. In Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee,
A. Skoogh, S. Jain, and B. Johansson, 2201–2212. Piscataway, New Jersey: IEEE.

Rinott, Y. 1978. “On Two-Stage Selection Procedures and Related Probability-Inequalities”. Communications in
Statistics-Theory and methods 7(8):799–811.

Semelhago, M., B. L. Nelson, A. Wächter, and E. Song. 2017. “Computational Methods for Optimization via
Simulation using Gaussian Markov Random Fields”. In Proceedings of the 2017 Winter Simulation Conference,
edited by W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, 2080–2091.
Piscataway, New Jersey: IEEE.

AUTHOR BIOGRAPHIES

LINDA PEI is a Ph.D. student in the Department of Industrial Engineering and Management Sciences at North-
western University. Her research interests are simulation optimization and simulation analytics. Her e-mail address
is lindapei2016@u.northwestern.edu.

BARRY L. NELSON is the Walter P. Murphy Professor in the Department of Industrial Engineering and Man-
agement Sciences at Northwestern University. He is a Fellow of INFORMS and IIE. His research centers on the
design and analysis of computer simulation experiments on models of stochastic systems, and he is the author of
Foundations and Methods of Stochastic Simulation: A First Course, from Springer. His e-mail address and website
are nelsonb@northwestern.edu and http://www.iems.northwestern.edu/∼nelsonb/, respectively.

SUSAN R. HUNTER is an associate professor in the School of Industrial Engineering at Purdue Univer-
sity. Her research interests include Monte Carlo methods and simulation optimization, especially in the pres-
ence of multiple performance measures. Her e-mail address is susanhunter@purdue.edu, and her website is
http://web.ics.purdue.edu/∼hunter63/.

2971

mailto://lindapei2016@u.northwestern.edu
mailto://nelsonb@northwestern.edu
http://www.iems.northwestern.edu/~nelsonb/
mailto://susanhunter@purdue.edu
http://web.ics.purdue.edu/~hunter63/

	INTRODUCTION
	SETTING AND STATISTICAL GUARANTEES
	PSEUDOCODE AND COMPARISONS
	Implementation of bi-PASS
	Modified GSP Implementation
	Parallel Subset Selection Implementation
	Discussion

	EXPERIMENTS
	Cluster Specifications and Implementation Details
	Inventory Cost Minimization Problem
	Throughput Maximization Problem

