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ABSTRACT

Discrete-event modelling and simulation languages can be classified based on their world view: event
scheduling, activity scanning, or process interaction. To study the semantics of these languages one may
investigate the relationship between them, and in particular translate models between languages in different
world views. A translation approach also lets one re-use all the simulation tooling available for the target
language. We describe a translation of the classic process interaction language GPSS developed by Gordon
in the early 1960s onto DEVS, a modular discrete-event modelling and simulation language with precise
semantics developed by Zeigler in the late 1970s. We specify and implement a translation that produces,
for each GPSS model, a behaviourally equivalent DEVS model. As GPSS has no formal semantics, there
is no proof of equivalence. Rather, we describe the structure of the translation, starting from Gordon’s
informal description, centered around the main data structures called chains and the scanning algorithm.
We build a working prototype for a representative subset of GPSS blocks found in most tools implementing
the language. Finally, we exhaustively test the translation by comparing simulation results of the generated
DEVS model with a those obtained by the GPSS World simulator. GPSS World is a popular GPSS variant.
We also demonstrate our approach on a small but representative example from the manufacturing domain.

1 INTRODUCTION

Modeling and Simulation (M&S) allows system engineers to tackle the inherent complexity of designing
and deploying complex, software-intensive, cyber-physical systems, as well as to analyze existing systems.
Multi-Paradigm Modeling (MPM) (Mosterman and Vangheluwe 2004) advocates explicit modeling all
relevant aspects of the system using the most appropriate modeling language(s), at the most appropriate
level(s) of abstraction. A requisite for these approaches is that modelling languages’ syntax (the allowable
constructs, as well as their textual/visual representation) and semantics (to unambiguously evaluate the
models) are unambiguously specified. Modelling Language Engineering models language explicitly.

As a plethora of modeling languages exist and are used today, it becomes important to classify them
according to their characteristics, so we can reason about them. (Overstreet and Nance 2004) provide
a characterization of the three discrete-event “world views” that were previously introduced in (Zeigler
1976). In particular, they state that the three world views attempt to capture different types of locality: event
scheduling provides locality of time, activity scanning provides locality of state, and process interaction
provides locality of object. The authors describe the relation between the world views, and examine whether
they can be transformed into each other. They conclude that these transformations are complicated since
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each world view makes certain implicit assumptions which need to be explicitly represented in the other
world view(s).

In this paper, we study GPSS (Gordon 1978; Schriber 1974) as a representative example of the
process interaction world view, and describe a translation onto DEVS (Zeigler, Praehofer, and Kim 2000),
a representative example of the event scheduling world view. Both languages have a long history over
45 years ago. In GPSS, the life-cycle of structured entities called transactions is modelled as a network
of blocks. During the life of a transaction, it passes through blocks which may change those entities’
attribute values and may keep them from moving. A transaction may be held in a block for a duration of
time as it competes for limited resources, thus forming queues. Automatic gathering of statistics is also
supported. DEVS is a general-purpose discrete-event modeling language, which has been described as a
“assembly language” onto which other (discrete-event) languages can be mapped (Vangheluwe 2000a). Its
main building blocks are atomic models that can be connected and that can exchange events. Models can
be hierarchically composed into coupled models.

Structure Section 2 briefly introduces modelling language engineering, GPSS and DEVS. Section 3
describes GPSS to DEVS translation. Section 4 describes the translation of a GPSS model of a manufacturing
system, a representative use case. Section 5 describes related work and Section 6 concludes the paper.

2 BACKGROUND

In this section, we explain the background necessary to understand the remainder of the paper. We start
by introducing modeling language engineering, a framework that supports the design of modeling and
simulation languages. Next, we explain the two formalisms used in the paper: GPSS and DEVS.

2.1 Modeling Language Engineering

Model-Driven Engineering (MDE) tries to bridge the gap between an engineer’s knowledge of what a system
should do and how that behavior is implemented. To achieve this, it advocates the use of models (abstractions)
that specify aspects of the system’s structure and behavior, created using modelling languages. Following
modeling language engineering (Kleppe 2007) terminology, a modeling language is fully defined by: (1) its
abstract syntax, defining the language constructs and their allowed combinations (typically captured in a
metamodel); (2) its concrete syntax, specifying the textual/visual representation of the different constructs;
and (3) its semantics, defining the meaning of models created in the language (Harel and Rumpe 2004).

For example, “1 + 2” and “(+ 1 2)” are both strings of characters. They act as textual concrete syntax
for the abstract syntax: a tree structure with + as root and 1 and 2 leaves. The semantics, or “meaning”, of
the strings “1 + 2” and “(+ 1 2)” is the natural number 3. We distinguish two main categories of semantic
definitions: (1) operational semantics, where the semantic mapping effectively executes, or simulates, the
model, usually producing a trace; and (2) translational semantics, where the semantic mapping translates
the model from one formalism to another. The target formalism has semantics (again, either translational
or operational). The meaning of the original model, with respect to properties of interest, is thus given by
the meaning of its translated version. In this document, we call a modelling language with well-defined
semantics a formalism. When a formalism is fully specified, metamodeling environments can generate an
interactive modeling and simulation environment from it. These techniques have been applied to synthesize
an interactive visual modelling environment for GPSS in the past. In (de Lara and Vangheluwe 2002b),
this was achieved with the AToM3 metamodeling tool (de Lara and Vangheluwe 2002a). We will use this
environment throughout the paper to model the GPSS examples that show our approach and to model and
execute a translational semantics of GPSS by specifying a rule-based model transformation to DEVS.

If the semantics of a formalism are unambiguously defined, any implementation of that formalism (in
a specific tool) needs to adhere to this specification; this means that, in theory, a model in the language
simulated by different tools should produce identical simulation traces and satisfy the same set of properties.
This is not always the case in practice, however. Problems may arise at different points: either (1) the
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specification of semantics leaves “holes” and/or (2) the different implementations of the formalism do
not produce the same results for the same model. Such “holes” in the semantic definition might include
underspecification with respect to scheduling, random number generation (distributions), etc. In this paper,
we explain that the GPSS semantics are underspecified and define the semantics formally by mapping it
onto DEVS, whose semantics are well-defined. To solve the ambiguity in the specification of the GPSS
semantics, we make pragmatic choices based on existing implementations. The goal of the semantics
presented in this paper is to be equivalent to the (precise) operational semantics of GPSS.

2.2 GPSS

GPSS (Gordon 1978) provides abstractions to model systems where entities compete for limited resources.
The basic concepts are messages (transactions) traveling from a source (GENERATE block) to a sink
(TERMINATE block) through a chain of connected blocks that perform modification operations. Its textual
syntax follows a punch card format, while its graphical syntax consists of a network of blocks connected
by arrows. There is no a strict, unambiguous, mathematical description. The semantics of all building
blocks comes from a human-understandable meaning that was given to all blocks.

In GPSS, the notion of time is user-defined and can be anything that is required for the models to be
simulated. When global information about the model is required, standard numerical attributes (SNAs)
are used to obtain a snapshot value of an attribute of the system at that point in time. In this section we
give a broad overview of GPSS and discuss a limited set of blocks (i.e. only the ones mentioned in this
paper); the interested reader is referred to (Gordon 1978) for a complete discussion of GPSS.

Transactions in GPSS move through the modeled system. Each transaction stores information and al-
lows state changes on this information. During execution, at most one transaction can be active at any
given time, and it is the task of the simulator to update its state according to the specification in the
model. A transaction stores a number of parameters, including a priority (PR), and the time at which it was
spawned (M1). These parameters can be set upon creation, or later on, using the ASSIGN or MARK blocks.

Chains allow GPSS to coordinate the transactions and events that are being sent. Each transaction must
either be on the current events chain (CEC), which contains all transactions that are scheduled for the
current simulation time; the future events chain (FEC), which contains all transactions that are due to move
at some future time; the interrupt chain, which contains all transactions that have seized a facility, but were
interrupted during execution; a user chain (see later); or the match chain (out of scope).

The Scanning Algorithm is the heart of a GPSS simulation. This algorithm identifies which transaction
is allowed to move when and how. It moves transactions over the different chains, keeping track of the
overall system state and can be summarized as follows. All transactions in the system are sorted on the
CEC by decreasing priority. One by one, they will travel as far as possible (within the current clock time)
through a sequence of blocks. When a transaction is blocked, it is copied to a delay chain and the next
unblocked transaction on the CEC is selected. A transaction that is scheduled to move at some point in
the future (due to a GENERATE or an ADVANCE block) is placed on the FEC. When all transactions
have been moved, the scan is restarted as long as there are transactions that can continue to the next block.
If that’s not possible anymore, the algorithm waits until the first transaction leaves the FEC before rescanning.

Resources can be accessed by a transaction, entering a critical section. If a transaction is denied access to
a resource, it will be blocked and it will continue waiting in the block that requested access to that resource,
except when using a GATE block that points to an alternative location. Whenever a resource is freed, all
currently blocked transactions can retry to gain access to the resource. (Gordon 1978) states that this event
triggers an immediate rescan, yet, after some experimentation, GPSS World (the implementation we used
to simulate our models) appears to move the first item on the CEC to the next block before this rescan is

2223



Paredis, Van Mierlo, and Vangheluwe

fired. In the remainder of the paper, we will employ the GPSS World semantics. There are three types of
resources: facilities (single access), storages (multiple access), and logic switches (boolean states).

Time can only be advanced by two blocks (by adding transactions to the FEC): GENERATE and AD-
VANCE. GENERATE blocks create transactions at a future point in time, while ADVANCE blocks delay
each incoming transaction until some future point. Based upon a random number generator (RNG), the
inter-arrival time between the messages in a GENERATE block, as well as the delay time for all incoming
transactions in the ADVANCE are determined. The default distribution from which a value is chosen is
A±B, with A a central point and B (possibly zero) the spread around it (Gordon 1978). Other distributions
can be obtained using the FUNCTION statement that should identify the inverse cumulative distribution
function. In that case, the RNG from GPSS generates a random value i.i.d. U(0,1).

Statistics Gathering is natively supported by GPSS. The QUEUE, DEPART, MARK and TABULATE
blocks can be used to monitor certain aspects of a model. Because of the lack of access to a resource,
transactions may be blocked, implicitly forming a queue. To make this explicit, all transactions that find
themselves between a QUEUE block and a DEPART block are monitored. To avoid confusion, we’ll call
this group of transactions a “queue”, but note that this is not equal to the implicit queue that is formed due
to blocking. The queue keeps track of the current and maximal queue length, the average transit time, the
total number of entries and the number of entries that spent no time in the queue.

Other statistics, such as the rate of transactions traveling through a certain point and the total transit
time can be recorded in tables, using the TABLE statement and the TABULATE block. The MARK block
can be used to initialize a value to measure, while tables store gathered values in a set of buckets. The
exact values will be lost, but the mean, standard deviation and counts for each bucket can be used for
statistical analysis. Depending on the size of the buckets and the number of entries, the distribution of the
statistic can be estimated as well.

Basic Example To demonstrate the use of GPSS, we model a store with a single cash registry. Each
minute, a person enters the store; each person takes 15 minutes to buy their groceries. The checkout takes
another two minutes. Figure 1 shows a possible solution to model this example system. The comments in
Figure 1b provide an explanation for each line of the textual code, which each correspond to a block in
the visual notation.

1

CASH

LINE

CASH

LINE

2
15

1

1

(a) Visual Notation in AToM3.

* Simple Store Example

GENERATE 1 ; People entering the store.

ADVANCE 15 ; Shopping takes 15 minutes.

QUEUE LINE ; Wait in line before the registry.

SEIZE CASH ; There is but one cash registry.

DEPART LINE ; The person is not in the queue anymore!

ADVANCE 2 ; Checkout takes 2 minutes.

RELEASE CASH ; No need to keep the store clerk busy.

TERMINATE ; People exit the store.

GENERATE 1 ; Make sure the simulation ends after a

TERMINATE 1 ; certain time period.

(b) Textual Notation.

Figure 1: Basic GPSS Example.
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2.3 DEVS

DEVS (Zeigler, Praehofer, and Kim 2000) is used to model the behaviour of discrete event systems. The basic
building blocks of a DEVS model are atomic DEVS models, which are structures < X ,Y,S,δint ,δext ,λ , ta >,
where the input set X denotes the set of admissible input events of the model. The output set Y denotes
the set of admissible output events of the model. The input and output set of events define a set of input
and output ports. These ports are used by a model to receive input events on or send output events to.
The state set S is the set of sequential states of the model. The internal transition function δint : S→ S
defines the next sequential state, depending on the current state. The output function λ : S→ Y defines
the output to be raised for a given sequential state, upon triggering the internal transition function. The
external transition function δext : Q×X → S with Q = {(s,e) | s ∈ S,0≤ e≤ ta(s)} gets called whenever
an external input (∈ X) is received. The time advance function ta : S→ R+

0,+∞
defines the duration the

system remains in the current state before triggering its internal transition function.
A network of atomic DEVS models is defined by the structure < X∆,Y∆,D,Mi, Ii,Zi, j,select > where

∆ is the DEVS network. The input set X and output set Y denote the sets of admissible input/output events
of the network, similar to atomic DEVS models. D is a set of component references. Mi is the DEVS
atomic model of component i, for all i ∈ D. Ii is the set of influencees of component i, for all i ∈ D∪{∆}
(with i /∈ Ii). Zi, j is the transfer function, for all i ∈ D∪{∆}, and for all j ∈ Ii, where Z∆, j: X∆→ X j; Zi,∆:
Yi→Y∆; and Zi, j: Yi→ X j. select: 2D→D is the select function. DEVS is closed under coupling; coupled
models can be nested to arbitrary depth.

An abstract simulator for DEVS is described in (Muzy and Nutaro 2005). Tools such as Python-
PDEVS (Van Tendeloo and Vangheluwe 2016) and adevs (Nutaro 2015), implement these semantics. A
simulation step in the algorithm for the classic version of DEVS, as implemented by these tools, can
be summarized as follows: (1) compute the set of atomic DEVS models whose internal transitions are
scheduled to fire (imminent components); (2) select one imminent component with the select tie-breaking
function; (3) execute the imminent component’s output function, generating an output event; (4) route
events from sending components to receiving components; (5) determine the type of transition to execute
for each atomic DEVS model, depending on it being imminent or receiving input; (6) execute, in parallel,
all enabled internal and external transition functions; (7) compute, for each atomic DEVS model, the time
of its next internal transition.

3 TRANSLATING GPSS TO DEVS

In this section, we explain the main contribution of the paper: a translation procedure that maps GPSS
models onto equivalent DEVS models. We start by explaining the choices made for implementing this
translation, and then explain for each category of GPSS entities how they are translated to DEVS.

General Principles When translating GPSS to DEVS, multiple options for the translation are possible. A
first option is to translate the complete GPSS model onto a single atomic DEVS model that implements
the behavior of the GPSS simulator. The advantage of this approach is its high performance, since no
communication overhead is introduced, while still allowing the model to be approached as a DEVS model.
The disadvantage of this approach is that debugging the translated model is difficult, since any connection
to the original model is lost. An alternative to this approach consists of translating the separate entities in
the GPSS model onto separate (one or multiple) DEVS models in the target model. While performance
decreases due to the introduced communication overhead, understandability is increased; domain experts
can inspect the translated model and assert that it is correct, or debug it when an unexpected result is
observed. We choose this second option for our translation.

As a result, each GPSS block in the source model will have an equivalent atomic or coupled DEVS
model in the target model. No blocks will be lost in translation, but rather multiple blocks and connections
will be added to allow for coordination of the transactions. To avoid confusion, we’ll use the same naming
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conventions that GPSS uses. To keep in line with the GPSS syntax, this paper will refer to GPSS blocks
using all caps (e.g. GENERATE, ADVANCE...). Their corresponding DEVS blocks will be written in italics
(e.g. GENERATE, ADVANCE...). Operands for GPSS blocks will be provided in DEVS in a similar fashion
as parameters to a class constructor. For example, “GENERATE 5” is translated to “GENERATE(5)”. A
GPSS transaction will be modeled as a DEVS event, seeing as both represent messages traveling through
a model. With the exception of the ADVANCE block, every DEVS block will only apply its events on at
most one transaction that travels through. SNAs will be modeled as function calls that yield the required
value at the time of the call.

Scanning Algorithm To allow for a valid translation of GPSS to DEVS, a central Controller block is
introduced that implements a variation of the scanning algorithm by working together with a group of Hold
blocks, that will be placed between all sequential blocks in the translation. This means that every GPSS
block will be translated to two DEVS blocks on average. Additional blocks for handling resources and
obtaining statistics will also be added. Hold blocks will listen to coordination messages that the Controller
sends. Whenever a transaction enters such a block, it will be stored internally until the block is told by the
Controller to release a specific transaction, which is done by a notify event. This internal storage makes it
possible for the DEVS blocks to only be part of a single transaction at a time. All necessary chains need to
be present in our translation. This is done by providing the Controller block with the following four lists:

active The list of transactions that are neither blocked, delayed, or terminated. The scanning algorithm
iterates over these transactions until the list is empty. The transactions on this list are ordered by
priority (and time of arrival).

delayed The unordered list of transactions that are delayed until further notice. All transactions on the
FEC can be found here, as well as transactions that enter a LINK.

created The list containing all transactions that are created by GENERATE blocks during an iteration
over the active list. We need to make sure all GENERATE blocks have called their output function
λ before the Controller starts with the scan. Additionally, all transactions that were delayed or
blocked, but have moved, will be placed in this list, anticipating the rescan (hence, their λ needs
to have been called as well).

blocked The list of transactions that cannot move to the next block due to some blocking condition. If
a resource is released, the Controller will move all transactions on this list to the created list before
rescanning. For performance reasons, the coordination of blocked transactions happens in groups
instead of individually: if a single transaction of a group is blocked, the Controller can mark all
remaining transactions in the group as blocked.

The Controller will notify the first transaction in the active list that it may move. Whenever it is
to be delayed or blocked, it will be removed from the active list and placed on the corresponding list.
When the transaction is terminated, the termination counter of the Controller is updated as required by the
TERMINATE block and the transaction is removed from the active list. Because of the removal from this
list, the next transaction in the active list will be selected for the next notification automatically. Whenever
the termination counter reaches the desired value, the DEVS simulation of the GPSS model is halted.

DEVS Structure Each DEVS block that is created in the translation will get a name that is a result of
name mangling. Using the select function of coupled DEVS, we can execute a set of translated blocks in a
predefined order, which is required to implement the GPSS semantics correctly. We use the lexicographical
order of the mangled name to select which DEVS blocks need to execute their δint first.

The translation of a model from GPSS to DEVS is done in three steps: first, a Controller block
with name GPSS2DEVS 2 Controller is created, as well as a block that handles all logic switches, called
GPSS2DEVS 3 LogicSwitches. Then, all facilities, storages, user chains, queues and tables are created with
prefix GPSS2DEVS 3 . Last, a set of transformation rules are executed to create a DEVS structure based
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on the GPSS block. Each name of the translated DEVS block is prefixed with GPSS2DEVS 5 and each
Hold block is prefixed with GPSS2DEVS 4 . Exceptions to this rule are the GENERATE block (which is
prefixed with GPSS2DEVS 0 instead) and the ADVANCE and the UNLINK blocks (these latter two are
prefixed with GPSS2DEVS 1 ).

Time The GENERATE and ADVANCE blocks can cause simulation time to advance. The GENERATE
block must halt if a transaction is blocked in the following block and the ADVANCE can pause a transaction
(or a set thereof) for an unspecified amount of time. In the translation, an additional connection is required
for GENERATE blocks, and ADVANCE blocks will continuously be notified by the Controller about which
transactions must (or mustn’t) be paused.

For each transaction it generates, the GENERATE block sets the creation time, a user-defined priority
(or zero if omitted) and a unique identifier (uid) to n · i+g, where n identifies the amount of GENERATE
blocks in the model, g the index of the GENERATE block that creates the transaction and i the amount of
transactions the GENERATE block has created already, to ensure uniqueness.

Example

Figure 2: Sequence diagram for all
messages in the translation of the ex-
ample model.

Consider the GPSS model with visual concrete syntax in
Figure 3a. Figure 3b shows the model in textual concrete syn-
tax. Starting from time 10, every 10 time units, a transaction is
created with a uid that follows the sequence {0,1,2...}. Each
transaction waits for 5 time units before being destroyed. The
simulation runs until the termination counter becomes zero
(i.e., until a given number of messages was destroyed). Fig-
ure 3c shows the structure of the DEVS model generated from
this GPSS model. Every block (except for the TERMINATE) is
followed by a Hold block that interacts with the Controller. Fur-
thermore, the generated transactions are sent to the Controller
on the create port, adding them to its created list. The termina-
tion counter is decreased through the connection between the
TERMINATE and the Controller. Finally, the Controller can
pause the ADVANCE block, and it is also notified of transac-
tions entering and leaving it. These transactions will be moved

from the active list to the delayed list or from the delayed list to the created list. Figure 3d shows the
generated Python(P)DEVS code for this model. For clarity, the block names are underlined in the figure.

Figure 2 shows a sequence diagram of all events that are being sent in the translated example at time
10, 20, 30, . . . In the diagram, T x identifies the transaction that is created in that time unit.

The process goes through the following phases:

1. When the GENERATE block creates T x, it sends a message to the Controller stating that the
transaction has been created. Next, it will pass the message on to a Hold block.

2. The Controller notifies all Hold blocks that T x may move. Because T x is only in “Hold 1”, it
moves from there to the ADVANCE block, while also messaging the Controller that T x should be
moved to the delay list, because it’s entering an ADVANCE.

3. After five time units, T x is freed from the ADVANCE block and makes its way into the “Hold
2” block. The Controller is notified that T x is not delayed anymore and remembers that the
last notification allowed T x to pass, so no notify is sent. “Hold 2” also remembers the previous
notification and sends T x to the TERMINATE block.

4. TERMINATE makes the Controller remove T x from the active chain and reduce the termination
counter by 1. After 5 time units, the GENERATE block creates a new T x, restarting the process.
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(a) Visual Notation in AToM3.
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(b) Textual Notation.
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(c) Structure of the generated DEVS model.

class Model(CoupledDEVS):
def __init__(self):
super().__init__("Model")
self.GPSS2DEVS_2_Controller = self.addSubModel(Controller("GPSS2DEVS_2_Controller"))
self.GPSS2DEVS_0_L0 = self.addSubModel(GENERATE("GPSS2DEVS_0_L0", dist=dist, args=(10,),

func=lambda x, t: Transaction(x, t), dt=None))
self.GPSS2DEVS_4_L0 = self.addSubModel(Hold("GPSS2DEVS_4_L0"))
self.connectPorts(self.GPSS2DEVS_0_L0.output, self.GPSS2DEVS_4_L0.input)
self.connectPorts(self.GPSS2DEVS_0_L0.output, self.GPSS2DEVS_2_Controller.create)
self.connectPorts(self.GPSS2DEVS_2_Controller.notify, self.GPSS2DEVS_4_L0.release)
self.GPSS2DEVS_1_L1 = self.addSubModel(ADVANCE("GPSS2DEVS_1_L1", dist=dist, args=(5,)))
self.GPSS2DEVS_4_L1 = self.addSubModel(Hold("GPSS2DEVS_4_L1"))
self.connectPorts(self.GPSS2DEVS_1_L1.output, self.GPSS2DEVS_4_L1.input)
self.connectPorts(self.GPSS2DEVS_4_L0.output, self.GPSS2DEVS_2_Controller.delay)
self.connectPorts(self.GPSS2DEVS_4_L1.output, self.GPSS2DEVS_2_Controller.moved)
self.connectPorts(self.GPSS2DEVS_2_Controller.pause, self.GPSS2DEVS_1_L1.pause)
self.connectPorts(self.GPSS2DEVS_2_Controller.notify, self.GPSS2DEVS_4_L1.release)
self.GPSS2DEVS_5_L2 = self.addSubModel(TERMINATE("GPSS2DEVS_5_L2", ’1’))
self.connectPorts(self.GPSS2DEVS_5_L2.output, self.GPSS2DEVS_2_Controller.terminate)
self.connectPorts(self.GPSS2DEVS_4_L1.output, self.GPSS2DEVS_5_L2.input)

(d) Generated Python(P)DEVS code.

Figure 3: Translation of a simple model (time).

The “busy” section for the Controller identifies that T x is located in the active list in these periods.
For all other blocks, it indicates that T x is located in the block.

Custom Chains As far as the translation is concerned, LINK and UNLINK can be seen as a special kind
of ADVANCE block. The LINK enters transactions in the chain and the UNLINK takes them out again.
The delay between entry and departure of the chain depends on the correspondence between process flows,
hence all transactions that are on a chain will also be on the Controller’s delay list.

Resources In general, resources follow the same structure. Each block that gains access (be it a SEIZE,
a PREEMPT, an ENTER or a LOGIC) is immediately followed by a corresponding Hold block. In fact,
there is a double connection between the GPSS2DEVS-block and the Hold block: one for the passing
transaction and one that indicates if the transaction should be blocked. If the Controller tells the Hold
block to release a blocked transaction, the transaction retries to gain access on the GPSS2DEVS-block’s
input port. As soon as a retrying transaction is blocked, the Controller is aware that the resource cannot be
accessed anymore. The block that requests access communicates with the corresponding resource whether
or not access may be granted. Additionally, blocks that free up a resource also do a similar communication,
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besides also triggering a rescan. Furthermore, the TEST and TRANSFER blocks can be used for more
complex scenarios.

Facilities Besides the general rules that resources follow in the translation, facilities require some
additional coordination with the Controller. In GPSS, a transaction has knowledge of all the facilities it
belongs to. In the translation, this relationship is reversed: all facilities know which transactions have
access to them, interrupted or not. This statement can be made without loss of generality. To do so, we’ll
have the Controller listen to facility updates. When such an update happens, the Controller must send a
message to all ADVANCE blocks, notifying that all transactions except the last transaction that obtained the
facility must be paused. Whenever a transaction releases a facility (via either a RELEASE or a RETURN
block), this list is updated and another transaction will be resumed.

Logic Switches Logic switches are the odd ones out. Instead of having a single block for each switch,
there is an all-knowing GPSS2DEVS 3 LogicSwitches block. This was done because logic switches are
more often than not accessed via SNA’s and because they represent a boolean state. Furthermore, instead
of having a block that indicates a resource request and another that represents the release of that resource,
logic switches only have a GATE block that can be blocking. For this reason, the GATE block implements
the same general logic as, for instance, an ENTER and LEAVE combined.

Example In the example of Figure 1, we make use of a single resource: a cashier, denoted with “CASH”
in the models (both in GPSS as in DEVS). Because we only have a single cashier and they can only focus
on one customer at the same time, it makes sense to represent the cashier as a facility. If we ignore all but
the SEIZE and RELEASE blocks from the example, we can represent the corresponding DEVS structure as
shown in Figure 4a. Every facility is represented by their own block, allowing the SEIZE and RELEASE to
communicate changes. Furthermore, whenever a facility is updated, it sends all changes to the Controller
and all corresponding SEIZE (or PREEMPT) blocks.
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(a) SEIZE and RELEASE translated to DEVS.
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(b) QUEUE and DEPART translated to DEVS.

Figure 4: Translation of the basic example.

Statistics During a GPSS simulation, statistics are gathered; this section explains how queues and tables are
translated. All statistics can eventually be cleared from their corresponding blocks, similar to the RESET
statement in GPSS.

Tables We add a DEVS block, namely a TABLE block, for each TABLE statement in the GPSS code.
Its constructor sets up the buckets to be empty and a TABULATE block communicates to the Table what
must be tracked. Obviously, the corresponding MARK block is also added.

Queues Because a transaction can be in multiple queues at once and because it can be entered from
multiple locations in the model, an additional atomic DEVS is used to represent the queue’s datastructure.
This block is called the Queue (note the difference with QUEUE and QUEUE). There are but two inputs
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to the Queue: enter and leave, who are respectively connected by the QUEUE and the DEPART blocks.
Figure 4b shows how the QUEUE and DEPART blocks from the basic example (Figure 1) are translated.

Limitations The translation presented here makes a few assumptions and has some limitations, preventing
its use in some contexts. Undefined behaviour that is a consequence of multiple GENERATE blocks firing
at the same time should be avoided by the modeler by extensively using priorities to control the order
of transactions. Because of name mangling and the name choices that were made in the translation, no
facilities, storages, queues, tables and chains can have the same name, which is viable in GPSS. Furthermore,
they cannot be called “LogicSwitches”, and, because this is a proof-of-concept, the DEVS TABLE blocks
will only track the time and the rate of arriving transactions. Additionally, (Paredis 2020) summarizes all
blocks for which the translation is defined.

4 MANUFACTURING EXAMPLE

We reuse the example of a simple manufacturing shop from (Gordon 1978) to demonstrate our approach.
In the example, a machine tool in a manufacturing shop produces parts at the rate of one every 5 minutes
and places them on a conveyor that carries the parts to three inspectors. It takes 2 minutes to reach the
first inspector; if he is free at the time the part arrives, he inspects it, otherwise, the part takes a further
2 minutes to reach the second inspector, who takes the part if he is not busy. Parts that pass the second
inspector may get picked up by the third inspector, who is a further 2 minutes along the conveyor belt;
otherwise parts are lost. To keep the model small, only the transit time of the parts is recorded and the
details of inspectors rejecting defective parts will be ignored. Each inspector takes 12± 9 minutes per
inspection. The model is shown (both graphically and textually) in Figure 5.

(a) Visual Notation in AToM3.

* Manufacturing shop model 5

* G. Gordon Figure 11-1/9-10

SIMULATE

L0 GENERATE 5 ; Create parts

L7 ADVANCE 2 ; Move to the first inspector

L8 TRANSFER BOTH,L5,CONV1 ; Check if first inspector is busy

L5 SEIZE INSP1 ; The first inspector becomes busy

L1 ADVANCE 12,9 ; Inspect

L9 RELEASE INSP1 ; Free inspector 1

TAB TABULATE TRANSIT ; Tabulate parts’ transit time

ACC TERMINATE 1 ; Accepted parts

CONV1 ADVANCE 2 ; Move to 2nd inspector

C2 TRANSFER BOTH,L13,CONV2 ; Check if 2nd inspector is busy

L13 SEIZE INSP2 ; The 2nd inspector becomes busy

L15 ADVANCE 12,9 ; Inspect

L17 RELEASE INSP2 ; Free inspector 2

L19 TRANSFER ,TAB ; To tabulate

CONV2 ADVANCE 2 ; Move to 3rd inspector

C3 TRANSFER BOTH,L14,TERM ; Check if 3rd inspector is busy

L14 SEIZE INSP3 ; The third inspector becomes busy

L16 ADVANCE 12,9 ; Inspect

L18 RELEASE INSP3 ; Free inspector 3

L20 TRANSFER ,TAB ; To tabulate

TERM TERMINATE ; Remain uninspected

TRANSIT TABLE M1,5,5,10

START 10,NP

RESET

START 10000

END

(b) Textual Notation.

Figure 5: Manufacturing Example

This example is modelled in GPSS, which seems appropriate. If it were modeled in DEVS, the cognitive
gap between the problem and its solution would be less intuitive, in particular for manufacturing domain
experts. Table 1 summarizes the results we obtain in comparison of the TRANSIT table and the facilities
between GPSS World, GPSS/H and GPSS2DEVS. We used a warm-up of 10 parts and simulated the arrival
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Table 1: Obtained metrics for the example in Section 4, ran until 10000 parts accepted.

Block Metric GPSS World GPSS/H GPSS2DEVS

TRANSIT Mean 15.734 15.7752 15.6721
Standard Deviation 5.479 5.4223 5.6909

INSP1 Utilization 0.831 0.834 0.8603
INSP2 Utilization 0.731 0.729 0.7419
INSP3 Utilization 0.549 0.559 0.5382

of 10000 parts. In a deterministic scenario, there is no difference between the metrics. We notice that for
this model, the generated DEVS models gives similar results to those obtained by direct simulation of the
original GPSS model.

5 RELATED WORK

This work contributes to Multi-Paradigm Modeling (Mosterman and Vangheluwe 2004), which advocates
explicitly modeling all relevant parts and aspects of systems at the most appropriate level(s) of abstraction,
using the most appropriate modeling language(s). It is supported by modeling language engineering,
including modelling language semantics as a basis for the evaluation of model properties. In (Vangheluwe
2000a), DEVS is considered as a common denominator, a semantic domain that can be used to specify the
semantics of a large set of modeling languages. It introduces a Formalism Transformation Graph (FTG), a
map of formalisms and transformations between them. In previous works these transformations were detailed.
Both (Borland and Vangheluwe 2003) and (Shaikh and Vangheluwe 2011) provide a mapping from Statecharts
to DEVS (with the former attempting a one-to-one translation similar to what is done in this paper and the latter
a mapping onto a single atomic DEVS model for efficiency). In (Sanz, Urquia, and Dormido 2007) a similar
mapping is implemented for SIMAN/Arena blocks by encoding their logic in a Modelica implementation
of DEVS. Additionally, (Kapos, Dalakas, Nikolaidou, and Anagnostopoulos 2014) introduces a translation
from SysML onto DEVS, allowing discrete event simulation of SysML models. GPSS (Schriber 1974;
Gordon 1978) was introduced almost 50 years ago, but it is still relevant to this day (Ståhl 2019; Ståhl, Born,
Henriksen, and Herper 2011). Many implementations of GPSS exist, such as GPSS/360 (Gould 1969),
GPSS/H (Crain and Henriksen 1999), GPSS World (http://www.minutemansoftware.com/product.htm),
JGPSS (Fonseca i Casas and Casanovas 2009), and aGPSS (http://agpss.com/index.html). Nowadays only
the last three of this list are available in practice. DEVS (Zeigler, Praehofer, and Kim 2000) also has a lively
community; the language is implemented in tools such as PythonPDEVS (Van Tendeloo and Vangheluwe
2016) and adevs (Nutaro 2015), amongst others. The relation between these two formalisms is non-trivial,
since they adhere to two different world views (Overstreet and Nance 2004; Vangheluwe 2000b).

6 CONCLUSION AND FUTURE WORK

The DEVS formalism can be used as a “common denominator” to specify the semantics of many other
formalisms. This paper presents a mapping of the GPSS language onto DEVS. By providing a mapping
that produces an equivalent DEVS model, we benefit from the advantages that DEVS offers, including
precise specification, modularity, scalable simulators, real-time execution, etc. We focused on building a
working prototype for a relevant and representative subset of GPSS blocks. In the future, the translation
can be extended to a larger set of GPSS blocks. The translation can also be made more usable, by providing
traceability between source and target model, to support interactive debugging and testing. Several space
and time optimizations are also possible, such as dependency analysis that removes unused blocks.
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