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ABSTRACT 

Precision Livestock Farming (PLF) is a system that allows real-time monitoring of animals, which comes 
with many benefits and ensures maximum use of farm resources, thus controlling the health status of 
animals. Decision support systems in livestock sector help farmers to take actions in support of animal 
health and better product yield. Due to the complexity of decision making processes, modeling and 
simulation tools are being extensively used to support farmers and decision makers in livestock industries. 
Modeling and simulation approaches minimize the risk of making wrong decisions and helps to assess the 
impact of different strategies before applying them in reality. In this paper, we highlight the role of modeling 
and simulation in enhancing decision-making processes in precision livestock farming, and provide a 
comprehensive overview and categorization with respect to the relevant goals and simulation paradigms. 
We, further, discuss the associated optimization approaches and data collection challenges. 

1 INTRODUCTION 

As population and incomes increase, there will also be a growth in demand for greater food variety. Studies 
on human nutrition have shown that worldwide a nutrition transition is taking place, in which people shift 
towards more affluent food consumption patterns (Bruinsma 2003; Popkin 2002). This change of demand 
patterns from food of plant origin to livestock products such as meat, eggs and milk, together with sizeable 
population growth, needs to be addressed in a sustainable manner without causing irreparable 
environmental damage or exceeding global resources. 

Precision Livestock Farming (PLF) is one of the most powerful developments amongst livestock 
farming industry, offering real-time monitoring and management tools for farmers. Modelling and 
Simulation (M&S) approaches help decision makers and farmers in their decisional problems by providing 
insights into their managerial practices. Indeed, M&S formalize the real world into a computer-based 
environment and then imitate the processes and the operations of the real world. Traditionally, simulation 
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modeling converts expert knowledge into dynamic models and simulates them to understand more about 
systems. Most recent M&S approaches utilize observational datasets or real-time data to extract models, as 
well as the parameters needed to perform the simulation.  

The contribution of the paper is to provide an overview and categorize the existing simulation and 
modeling studies on PLF according to different simulation paradigms and the goals they aim for. There are 
three main M&S paradigms: discrete-event simulation, continuous simulation (also known as system 
dynamics) and agent-based simulation; and we consider two major goals in Livestock Farming: improving 
animal welfare/production and reducing GHG (Greenhouse Gas) emission. Aside from simulation 
modeling, we also discuss other simpler decision support tools in PLF that use calculators to analyze data. 

The paper is structured as follows. We begin by providing a background on decision support in livestock 
farming, including Precision Livestock Farming, as enabler for the sophisticated decision support 
approaches, in Section 2. We then provide overview of the different decision support approaches that can 
be of interest in livestock farming. We review the existing modeling, simulation, and data analytics 
approaches in Section 3. In Section 4, we discuss the challenges related to the data collection for the M&S. 
Finally, in Section 5 we conclude the paper. 

2 DECISION SUPPORT IN LIVESTOCK FARMING 

In this section we introduce the basic concepts of  precision livestock farming and the use of decision 
support approaches in PLF. Modelling and Simulation and its application as a decision support approach in 
PLF is discussed later in Section 3. 

2.1 Precision Livestock Farming 

Increased demand for animal products has led to increase in the sizes of farms. Managing large number of 
livestock, ensuring that production demands are met and environmental concerns are not discounted are 
factors that have caused a shift from traditional to technology-driven farming. Technology can be used to 
measure the behavior and welfare of the animals. PLF encompasses various aspects of continuous livestock 
monitoring, such as collection and analysis of data and reporting of certain notable events. The condition 
(physical and mental) of the animal is continuously changing due to external stimuli. These changes are 
continuously recorded, stored and transmitted using sensors that measure bio-signals. Typical sensors used 
in PLF include accelerometer, gyroscope, temperature sensors and biosensors. The type of data collected 
by these sensors include animal gait, speed, position, temperature, sounds, heart rate etc. In addition to the 
sensors, modelling, simulation and decision support using machine learning models are also being 
successfully used in PLF.  
 The benefits reaped by adopting PLF in the livestock industry has been tremendous (Hostiou et al. 
2017). They include increase in productivity, real-time supply chain management, better marketing and 
reduction in GHG. Examples of successful PLF projects include: BrightAnimal (Lehr 2011), BioBusiness 
(Romanini et al. 2011) and EU-PLF (Guarino et al. 2017). 
 PLF consists of the following components: Continuous or real-time processing of sensor data; 
integration and storage of data; data analysis, simulation and modelling; event detection and signaling. 
These components help farmers in their decision-making process by enhancing both the management of 
their daily tasks and the supervision of their herd. 

2.2 Decision Support Approaches 

The need for decision support is vital in PLF due to its inherent challenges like large heterogeneous data, 
monitoring of complex systems involving animals and the need for fulfilling multiple goals. Benefits of 
such a system are manifested in the form of attainment of two ultimate goals: (a) improving animal welfare 
and (b) GHG reduction. Improving animal welfare is closely related to the livestock production (meat, milk, 
eggs, etc.), because for a fixed farm size, products from healthy animals surpass those of less healthy ones, 
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both in quality and quantity. Aside from the fact that this affects the farmers income, optimizing animal 
welfare also reduces the emissions intensity of producing livestock products (i.e. emissions per unit of 
product) (Herrero 2016).  

 Animal welfare: Detection and prevention of animal health issues, and compliance with medical 
regulations are some of the factors that are considered while aiming towards improved production or yield. 
Research into animal welfare generally falls into the categories of modelling and simulation-based 
optimization methods. In the modelling-based methods, Machine Learning (ML) and/or statistics based 
methods are commonly found: identification and classification of chewing patterns in calves (Pegorini et 
al. 2015), estimation of cattle weight trajectories (Alonso et al. 2015) and anomalous activity identification 
(Vázquez-Diosdado et al. 2019). In the simulation-based optimization category, simulation methods are 
combined with optimization to achieve goals in animal welfare. Discussion about the research in this 
category is provided in Section 4.5.  

GHG emissions: Improving production is often done in combination with other factors such as reducing 
energy consumption, profit maximization and reducing GHG emissions. Compliance with environmental 
regulations and optimized energy usage are some of the factors in reducing GHG emissions. The 
Intergovernmental Panel on Climate Change (IPCC) proposed “tiers” for classifying the various approaches 
for combating climate change due to GHG emissions (Yan et al. 2009). A tier represents a level of 
methodological complexity and three tiers are provided. Tier 1 is the basic method, Tier 2 intermediate and 
Tier 3 the most demanding in terms of complexity and data requirements. Tier 1 consists of  simple methods 
that have various underlying assumptions and are, hence, subject to high uncertainties, while Tier 2 methods 
have more region/country specific data and are less prone to uncertainties. Tier 3 consists of methods that 
are detailed and data-driven and have, hence, even lower degree of uncertainties. Among the decision 
support models proposed in the past, there are models that are simple and conform to IPCC Tiers 1 and 2, 
but, M&S based models along with data-driven ML and/or statistics based methods are categorized as Tier 
3 methods. Table 1 lists some of the decision support models which are based on Tier 1 and Tier 2 
methodologies for estimating GHG emissions from livestock.  

Table 1: Decision support models for GHG emission estimation. 

Model Farm Type Work 
AgRE Calc Cattle (Scotland’s Rural College 2014) 
COMET-Farm Cattle (Paustian et al. 2017) 
Cool Farm Tool Cattle (Hillier 2012) 
Carbon Navigator Cattle (Murphy et al. 2013) 
ValorE Cattle, Pigs (Acutis et al. 2014) 
IPCC inventory software Not limited (SPIRIT  Inc. 2020) 
ALU software Not limited (Colorado State University 2010) 

 
 In summary, there have been many different kinds of studies into improving animal welfare, production 
yield and reducing GHG emissions of livestock farms. Incorporating ML and deep learning algorithms in 
decision support for PLF helps achieve several goals.  

3 M&S FOR DECISION SUPPORT IN LIVESTOCK FARMING 

Decision management is becoming increasingly important in today’s livestock farming, and decision 
support systems (DSS) play a vital role in management and making the right decision at the right moment. 
DSS integrate optimization, modeling and simulation in a computer-based environment, in order to provide 
the required level of insight in the decisional problem. Simulation refers to imitating the operations and 
processes of a system in the real world; while modeling is the process of understanding and describing the 
behavior of a system (Banks et al. 2010).  

To assist farm managers in their decision processes, M&S delivers valuable insights on the potential 
impact of various decisions they make before actually implementing them in the real-world. M&S can be 
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combined with optimization techniques and shape other methodologies, also known as Hybrid Modelling. 
Most of the studies concerning M&S approaches in PLF, are process-oriented simulation methods. On a 
farm, various objects or subroutines represent processes. Some examples of major processes in a farm are: 
feed availability, the herd, manure handling, and gas emissions.  

In this section we first describe different M&S paradigms, then we categorize M&S studies in PLF 
regarding two goals: animal welfare and GHG emission and the simulation paradigms. Finally, applications 
of simulation-based optimization or hybrid models in PLF are discussed in section 3.4. 

3.1 Traditional M&S Paradigms 

Simulation modeling is a process that generally involves converting expert knowledge into dynamic models 
and simulating them to understand more about the system. This traditional simulation modeling has the 
advantage that a modeler can use existing knowledge to create meaningful simulation models representing 
the system. These handcrafted models are also useful for testing theories about how a system works. If a 
model faithfully represents a system, then it will produce the same behavior as the real system. In this 
scenario the model can be thought of as a hypothesis for how the real system works. The most popular 
simulation paradigms are: discrete-event simulation, continuous simulation (also known as system 
dynamics) and agent-based simulation, which we elaborate in the following. 

3.1.1 Discrete-Event Simulation 

A discrete-event simulation (DES) models the operation of a system as a (discrete) sequence of events in 
time. Each event occurs at a particular instant in time and marks a change of state in the system (Robinson 
2004). Traditionally, DES models are based on data extracted from a physically existing system or a system 
that has been developed and tested before (i.e. historical data). This data can be enhanced with a set of 
experimental rules and mathematical algorithms to enable prediction of system behaviors well in advance.  

To improve animal welfare, modeling the spread of disease in a large farm can help to simulate the 
disease behavior and make the best decision to prevent it from spreading more. Considering finite number 
of infectious stages (i.e. Susceptible, Intermittent and Persistent), transiting from one stage to another with 
a given rate, is an event which makes changes to the herd system (Sørensen et al. 2017; Bruijnis et al. 2010). 
Considering GHG emissions, DES approaches can again be used to simulate diseases and production of an 
animal over time. Life Cycle Assessment (LCA) methods can then be applied to quantify the GHG impact 
of the disease (Mostert et al. 2018).  

3.1.2 Continuous Simulation 

Continuous simulation (CS), also known as System Dynamics, is a methodology to recognize and solve the 
system problems by analyzing the information feedback, dealing with the dynamic structure and feedback 
mechanism between the qualitative and quantitative factors of the complex system, to obtain the overall 
cognition and problem solving of the system (Bayer 2004). In the CS methodology, a problem or a system 
(e.g., ecosystem, farming system or mechanical system) may be represented as a causal loop diagram 
(Bayer 2004). Causal loop diagrams aid in visualizing a system’s structure and behavior, and analyzing the 
system qualitatively. To perform a more detailed quantitative analysis, a causal loop diagram is transformed 
to a stock and flow diagram. A stock is the term for any entity that accumulates or depletes over time (i.e. 
milk production, feed intake, manure production or GHG emission). A flow is the rate of change in a stock, 
in terms of formulas or equations with stocks as the variables in the formula. Depending on the problem at 
hand, modeling the equations can be done in continuous or discrete time. 

In (Rotz et al. 2011) the major components or processes of the model include available feeds, animal 
intake and manure production, and manure handling. The feeds available and their nutrient contents are 
provided through user input. Balanced rations are prepared for each animal group on the farm and their feed 
intake is determined to meet their energy and protein requirements. Based upon feed intake, growth and 
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milk production, the nutrient output in manure is predicted. From this nutrient excretion, emissions are 
predicted as a function of weather conditions and management practices. 

Regarding animal welfare, stocks in CS can be defined as bacteria concentration which are transported 
via surface water or air (Widgren et al. 2019). Other studies of use of CS in modelling the dynamics of 
GHG emissions or animal welfare can be found in Table 2. 

3.1.3 Agent-Based Modeling 

Agent-based modeling (ABM) is commonly used to study the dynamic movement behaviors of various 
types of systems, such as flocks of birds, pools of fish, pedestrian crowds, road traffic and livestock. A 
system can be simulated using a mobile agent-based model if it contains many similar agents, such as people 
who move around in a shared environment, act autonomously, and only have local knowledge (and possibly 
global knowledge about the environment: like a familiar building’s layout). 

On a dairy herd, agents can be defined as individual cows. Al-Mamun and Grohn (2017) developed a 
multiscale agent based simulation model of a dairy herd. In their model each cow was tracked from birth 
to death, residing at different management operations: adult/milking, calf and heifer. Their model was 
successfully applied to estimate critical parameters (i.e. insemination time) for management decisions. 

3.2 Data-Driven M&S 

Data-Driven Simulation (DDS) is an approach where the simulation models are parameterized by data, 
allowing users to create and run a simulation model without the need to do explicit modelling. The goal of 
DDS is to generate simulation models directly from external data sources using data structuring and analysis 
algorithms for creating and configuring the model. The degree of parameterization within data-driven 
simulation in research varies, affecting the flexibility of scenarios which can be modelled. Some DDS 
approaches use data only to estimate the model parameters (Al-Mamun et al. 2018), but other studies also 
drive the model structure from observational data (Widgren et al. 2019). 
 Dynamic Data-Driven Simulation (DDDS) is a type of data-driven simulation which uses real-time data 
to detect the system model and feeds the simulation results back into the model continuously to gain more 
accurate and on time results. 

3.3 Simulation Approaches with Respect to Goals in Livestock Farming 

M&S approaches in livestock are applied to either improve animal welfare or reduce GHG emissions.  The 
bulk of GHG emissions by livestock originate from four main categories of activities: enteric fermentation, 
manure management, feed production and energy consumption (FAO 2020). M&S approaches applied to 
estimate GHG emissions, are mostly CS, and each emission source is considered as a process to be 
modelled. Some CS models in PLF, consider manure management processes in their modules (Holzworth 
et al. 2014), some have processes for enteric fermentation (Bannink et al. 2010), and some also consider 
the emissions in the farm level (i.e. energy consumption) (Schils et al. 2007), which is the main difference 
between CS approaches. The addition of new processes to an existing model structure, requires much time 
and effort to develop or to adapt, and that is a weakness compared to the simpler and more flexible DS 
models  of Table 1.  Table 2 illustrates M&S studies on livestock according to three simulation paradigms: 
DES, CS and ABM; and the most relevant PLF goals: welfare and GHG reduction. 

Table 2: M&S approaches regarding different simulation paradigms and PLF goals. 
Literature Goal M&S 

type 
Description 

(Bruijnis et al. 2010) welfare DES Use dynamic stochastic Monte Carlo simulation model to assess the effect of disease on 
income. 

(Sørensen et al. 2017)  welfare DES Use dynamic mechanistic Monte Carlo simulation model for disease in pigs using R 
software. 

(Bannink et al. 2008)  welfare CS Use mechanistic simulation model on rumen fermentation. 
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We observe that most of the M&S research in livestock, are process-based which are mostly categorized 

as continuous simulation. The reason is that there are typically variables for which a continuous description 
is more natural: GHG emission, feed intake, milk production, temperature, concentration of bacteria in an 
infectious environment. For these variables individual counting would clearly not be feasible. Also, DES 
are mostly applied for improving animal welfare, rather than GHG emissions, due to the fact that most 
diseases have finite number of stages. Data-driven and dynamic data-driven simulation approaches has 
received much less attention since data availability has been a challenge in livestock sector, as elaborated 
in Section 4. We expect the studies in these fields to be highly rising since animal sensors are being used 
more widely.  

3.4 Simulation-Based Optimization 

Goals, such as profit maximization and GHG emission reduction are driving factors behind any ethical 
farming practice. Casting these goals as an optimization problem is natural and widely accepted. M&S, 
combined with optimization can be a powerful decision support approach (Ólafsson and Kim 2002). The 

(Widgren et al. 2016) welfare CS SimInf: R package. 
(Widgren et al. 2019) welfare CS SimInf extended: to support data-driven spatio-temporal simulations of disease 

transmission in wildlife. 
(Tedeschi et al. 2011)  welfare CS Applied for small ruminants. 
(Conrad 2004)  welfare CS For cattle and crop production. 
(Guimarães et al. 2009)  welfare CS For goats. 
(Kahn and Lehrer 1984)  
 

welfare CS Reproductive performance of beef cows. 

(Parsons et al. 2011)  welfare CS APSIM and System dynamic. 
(Pomar et al. 2011) welfare ABM  
(Al-Mamun and Grohn 
2017) 

welfare ABM MABSDairy: a multiscale agent based simulation of a dairy herd. 
 

(Al-Mamun et al. 2018) welfare ABM Data-driven (only parameters) individual-based model of infectious disease. 
(Mostert et al. 2018) GHG 

reduction 
DES The impact of foot lesions in dairy cows on GHG emissions of milk production: Using 

LCA method and mechanistic simulation model (developed in R). 
(Bannink et al. 2010)  GHG 

reduction 
CS A dynamic, mechanistic model of enteric fermentation in dairy cows based on the model 

of (Mills et al. 2001). 
(Holzworth et al. 2014) GHG 

reduction 
CS APSIM: Applications, including support for on-farm decision making, development of 

waste management guidelines. 
(Johnson et al. 2008) GHG 

reduction 
CS DairyMod and EcoMod: Biophysical process simulation of the dairy pasture system. 

(Chardon et al. 2012) GHG 
reduction 

CS MELODIE: Dynamic simulation of the flows of carbon, nitrogen, phosphorus, copper, 
zinc and water within animal, pasture, crop and manure components. 

(Li et al. 2012) GHG 
reduction 

CS Manure-DNDC: A biogeochemical process model for quantifying greenhouse gas and 
ammonia emissions from livestock manure systems. 

(Berntsen et al. 2003)  GHG 
reduction 

CS FASSET: Process simulation used to evaluate consequences of changes in regulations, 
management, prices and subsidies on farm production, profitability, nitrogen losses, 
energy consumption and GHG emission. 

(Little et al. 2010) GHG 
reduction 

CS Holos: Process-based emission factors estimate all important direct and indirect sources 
of GHG emissions of livestock operations.  

(Rotz et al. 2011) GHG 
reduction 

CS DairyGEM: a software tool for whole farm assessment of emission mitigation strategies 
from manure. 

(Schils et al. 2007) GHG 
reduction 

CS DairyWise:  Combines already existing simulation models of specific subsystems into a 
whole farm model for use in interdisciplinary studies. 

(van den Pol-van Dasselaar 
et al. 2014) 

GHG 
reduction 

CS FarmAC: Process-related emission factors represent carbon and nitrogen flows on arable 
and livestock farms quantifying GHG, soil C sequestration, and N losses to the 
environment (EU AnimalChange project). 

(Rotz 2012) GHG 
reduction 

CS IFSM: Process simulation of all important farm components representing the 
performance, economics, and environmental impacts including direct and indirect GHG 
emissions and carbon footprint. 

(Del Prado et al. 2011) GHG 
reduction 

CS SIMS(Dairy): Process simulation of the effects of management, climate and soil 
properties on nitrogen, phosphorus, and carbon losses along with profitability, 
biodiversity, soil quality, and animal welfare. 

(Matthews and Bakam 
2007) 

GHG 
reduction 

ABM,  
CS 

A combined agent-based and biophysical modelling approach to address GHG 
mitigation policy issues 
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objective and the constraints of the optimization problem are evaluated solely via simulations. Advantages 
of adopting simulation-based optimization include ability to solve optimization problems without being 
affected to a large extend by the complexity of the system and the power to change the objective function 
and constraints dynamically as the system changes (Azadivar 1999). In the domain of livestock farming, 
we have found the following optimization approaches that have been used in combination with M&S, as 
shown in Table 3.  

Table 3: Previous research in simulation-based optimization for livestock farming. 

Work Optimization objective Constraints Farm type Simulation done with respect to: 
(Morel and Hill 2011) Profit and GHG emissions Feeding cost Pigs Growth 
(Ecim-Djuric and 
Topisirovic 2010) 

Ventilation (energy) Wind velocity and 
direction 

Pigs Ventilation and fluid dynamics  

(Bajardi et al. 2012) Reduction in epidemic 
spread 

Animal movements Cattle Bovine movements 

(Soufi et al. 2013) Energy Livestock shelter 
parameters 

Cattle Stand-alone photovoltaic systems 
for livestock shelters 

(Fawaz et al. 2014) Temperature and air 
quality 

CO2, NH3 
concentrations 

Chicken Thermal flow, CO2, NH3 
concentrations 

(Halachmi 2015) Yearly turnover 
(production) 

Space/culture volumes Fish Fish growth phases 

(Mančić et al. 2016) Polygeneration system 
configuration 

Temperature, GHG 
emissions 

Pig Energy demand, polygeneration 
system 

(Zhang et al. 2016) Milk production forecast Climate, Physical 
aspects of cows 

Cattle Yield production model, herd 

(Alqaisi et al. 2017) Nutritional and economic 
feed formulation 

Feed requirements, 
Dietary nutrients 

Broiler Feed formulations for broiler life 
cycle 

(Garcia-Launay et al. 2018) Feed formulation cost Nutritional, GHG 
emissions 

Pig, broiler, 
young bulls 

Life cycle assessment 

(López-Andrés et al. 2018) Environmental impact, 
profit, resources 

Production limits, raw 
materials and energy 
requirements 

Chicken Raw material, energy 
requirements 

(Michalak 2019) Epidemic control Time, Control strategy 
parameters 

General 
livestock 

Livestock population 

(Zhang et al. 2020) Logistics cost, GHG 
emission, energy 
consumption  

Vehicle and sheep cost 
parameters 

Sheep Delivery path 

(Paul et al. 2020) Annual income, Annual 
farm balance, GHG 
emissions 

Farm size, Feed balance, 
organic matter balance 

Cattle Bio-economic model, 
FarmDESIGN  based simulation 

 
In summary, there are many works that try to optimize costs associated with livestock farms. This is 

because, costs can easily be formulated as an optimization objective. However, this is not the case with 
welfare because the overall health of livestock is harder to quantify. Sustainability of livestock farms is also 
another widely studied topic in the context of simulation-based optimization. It includes aspects such as 
optimizing energy consumption and reducing GHG emissions.  

4 DATA COLLECTION AND ASSOCIATED CHALLENGES 

One of the central problems in the management of information for PLF is integration and interpretation of 
heterogeneous data coming from different equipment and data sources. Tomic et al. (2015) defines this 
problem as a 4-Level functional model, that integrates the measurement level (Level 1); the interpretation 
level (Level 2); the integration level (Level 3); and the automation / the decision support level (Level 4) 
where farmers make decisions based on the system output or the system makes the decision autonomously. 
Therefore, there is a need to automatically integrate available data within a decision support system that 
can then provide holistic advices to farmers leading to more efficient herd management (Tomic et al. 2015). 

As such, we argue for an integrated use of wireless sensor networks, data analytics and modelling that 
enable an efficient decision support system that can enable farmers to concentrate on their daily farm 
activities and use the data for their advantage. Figure 1 illustrates the envisioned PLF platform. 
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Figure 1: Proposed precision livestock farming platform. 

 
Specifically, IoT devices can be installed in the farm for monitoring key parameters of: 1) stable 
environment (temperature, humidity, gas sensors (NOx, COx, CH4, NH3, etc.), 2) animals (accelerometer, 
motion sensor, weight sensor, etc.), and 3) feeds (flow sensor, weight sensor, humidity sensor etc.).  

A cloud-based platform can collect and analyze all the aforementioned data for providing 
recommendations to the livestock farming stakeholders (farmers, consultants, etc.) to take management 
decisions for reducing GHG emissions. In addition, blockchain technology can be used in the platform for 
developing different features such as data protection, data privacy, data sharing, traceability and smart 
contracts among the livestock farming stakeholders. Specifically, smart contracts can help livestock 
farming stakeholders to have contracts with better prices due to decreased GHG emissions.  
 There are several challenges that relate to data collection in this specific scenario as follows: 
 

 GHG estimation. It is currently not possible to correctly measure GHG emission, rather estimate 
them as accurately as possible using the different Tiers of IPCC methodology.  

 Data sharing and interoperability. The key challenge of integrating different livestock 
agricultural systems is how to deal with the heterogeneity of multiple information resources.  

 Visualization for farming stakeholders. Many initiatives have been developed presently that 
boast user-friendly UIs for non-IT skilled agriculture stakeholders. However, for an end-user it is 
highly important to be offered already insight and decision support based on data analytics. This is 
an end-goal of implementing the platform presented in Figure 1.  

5 CONCLUSIONS 

We have provided an overview of the need and use of Modelling and Simulation to support the main goals 
of Precision Livestock Farming. We have identified the main goals as enhancement of animal welfare and 
reduction of GHG emissions. Nowadays, with the availability of advanced sensing technologies, data has 
become more available, and this is also slowly changing the way in which traditional simulation is 
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performed, yielding new and more data-driven approaches. We scoped the existing approaches and 
categorized them by simulation paradigm and goals, to provide an exhaustive overview and a tool of 
deciding on a suitable approach with respect to a given problem. We, furthermore, discussed the challenges 
associated with the data collection processes, and a possible solution. PLF opens doors for more advanced 
and sophisticated approaches and fully transforms the traditional livestock farming processes, especially 
when combined with M&S and advanced data analytics approaches. It could prove to be an important piece 
of the puzzle yielded by the challenges associated with the climate changes and sustainable food production. 
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