
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

DEVS-SCRIPTING: A BLACK-BOX TEST FRAME FOR DEVS MODELS

Matthew B. McLaughlin
Hessam S. Sarjoughian

Arizona Center for Integrative Modeling and Simulation
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, AZ 85281, USA

ABSTRACT

Experimental frames have been used in DEVS-based simulations to drive scenarios through injecting
inputs and interpreting outputs. This design has traditionally called for separate models with distinct roles:
generator, acceptor, and transducer. In certain controlled experiments such as model testing, sequential
programming offers a simpler design with many benefits, specifically: code reduction, test case development
throughput, and diagnostics for failed tests. This research offers a test framework that is derived from atomic
DEVS and facilitates testing through scripting. The challenge for this research is to prove DEVS semantics
are maintained when the experimental frame is tightly controlled by a script. Our solution uses a separate
thread for this script and synchronizes program execution switching with a nest lock. Synchronization is
key in showing that this design maintains DEVS semantics by nesting script code within the state transition
functions of DEVS modeling components.

1 INTRODUCTION

Testing is a critical on-going process of software development to break the system and expose as many
failures as possible toward satisfying all user requirements. To make effective use of a test developer’s
time, each test should be small, focused, and cover unique execution paths (Srikanth and Banerjee 2012).
In black-box testing, tests are developed based on a requirements model and the inherent complexity within
the requirements. Testers must also consider operational profiles, customer priority, fault proneness, and
requirements volatility to improve testing efficiency and coverage.

Rich concepts, methods, processes, and frameworks help develop simulation models that can be useful
for their intended purposes, e.g., Ören (1981), Balci (1994), Zeigler et al. (2000). The results of these
efforts have led to model validation, verification, and testing. Considering simulation models, test cases are
defined and used to test their proper behaviors. Software testing concepts and frameworks are commonly
used to develop tests. The results are used for validating model structure and behavior. Tests can also be
defined and used for verifying the accuracy of model transformation from one form into another.

Black-box software testing with test oracles (input, expected vs. actual output) is not original research
(Peters and Parnas 1994), but the test oracle problem is increasingly more present than ever before because
the complexity of some models prevent us from knowing what our expected output should be (Garousi and
Felderer 2016). In simulation, we add another dimension that may also not be known, timing. Metamorphic
testing is just one technique to address the test oracle problem and is usually scripted due to the complex
nature of representing these types of tests.

The research in this paper proposes a robust black-box testing framework based on and for the Discrete
Event System Specification (DEVS) formalism (Zeigler et al. 2000). This framework is developed for and
integrated into the DEVS-Suite simulator (ACIMS 2020). The resulting simulator supports integrated (i)

2196978-1-7281-9499-8/20/$31.00 ©2020 IEEE

McLaughlin and Sarjoughian

JUnit testing with code debugging, (ii) black and white box component animation (I/O messages with states),
and (iii) configurable input, output, and state trajectories for run-time visual debugging. This proposed
testing framework has been designed to be scalable from unit testing for atomic models to integrated testing
for modular, hierarchical coupled models specified in the DEVS formalism. It supports multiple individual
test scripts using the same collection of models to manage complexity. Though this framework has a DEVS
approach, its principles can be a basis for developing testing frameworks for other modular, hierarchical
modeling and simulation approaches (Alur 2015).

1.1 Parallel Atomic and Coupled DEVS I/O System Formalism

The parallel DEVS formalism is a universal discrete event, modular, hierarchical set-theoretic modeling
language (Zeigler et al. 2000). It supports developing models for systems-of-systems using basic atomic
and coupled models. The basic atomic model is specified as DEV S =

(
Xb,Y b,S,δext ,δint ,δcon f ,λ , ta

)
. The

state S changes as a response to a received bag (or multiset) of input messages xb ∈ Xb via δext : Q×Xb 7→ S
where Q = {(s,e) | s∈ S,0≤ e≤ ta(s)}. State transitions due to internal events are specified as δint : S 7→ S.
The order of simultaneous δext and δint executions is specified as δcon f : S×Xb 7→ S. For any state change,
the amount of time to advance before the next internal state transition is specified as ta : S 7→R+

0,∞. Output
messages are specified as yb ∈Y b via λ : S 7→Y b. Output messages may be produced prior to any internal
state change. Every input and output is specified as a bag of messages that pair a port name and a value.
The behavior of every atomic model follows an abstract execution protocol responsible for advancing a
clock and updating the elapsed time e, the time period since the occurrence of the last state change.

DEVS requires that state transition functions (operations) can only generate new states based on its
current internal state, elapsed time, and input. This forbids the use of shared or global resources such
as the simulator clock. Any behavior on these resources would create an ambiguous state change for the
parameters given to state transition functions. Any stochasticity must be seeded and maintained internal to
the DEVS model to guarantee I/O modularity and repeatable behavior.

The basic coupled model is specified as N =
(
Xb,Y b,D,{Md},{Id},{Zi,d}

)
. The input Xb and output

Y b have the same specifications as those given for the basic atomic DEVS model. D specifies a list of
unique names for referencing in the components of a coupled model N. Md is either an atomic or a coupled
DEVS model component. Id ⊆D∪{N} contains the names of the influencers for d. For d ∈D, the DEVS
model by this name is Md . The coupled model has inputs and outputs which can be coupled to its immediate
children (components). {Zi, j} describes the external I/O couplings (EIC/EOC) and internal couplings (IC).
N satisfies closure under coupling which is essential for model reuse and allowing any number of levels
in a hierarchical decomposition of systems-of-systems. The behavior of the highest level coupled model
N and all of its atomic and coupled model components is according to the abstract coupled simulator and
the abstract coordinator protocols.

1.2 Experimental Frame and Test Frame

The concept of Experimental Frame (EF) is aimed at specifying some conditions under which a model of
a given system can be evaluated toward the verification and validation goals (Zeigler et al. 2000). Well-
formulated experimental frames can show the degree to which a model’s dynamics satisfy the expected
or actual system’s behavior. It can also be strictly used for “testing” the behavior of a model’s observed
output matches exactly the expected or actual system outputs. The EF can have three types of components:
generator, acceptor, and transducer. A generator stimulates a model of interest with a set of input trajectories.
These inputs can be used to subject the model through a finite number of intermediary state changes until
the acceptor is triggered. An acceptor discriminates the intermediary states from steady states. It is useful
for extracting a select collection of possible experiment trajectories. Finally, a transducer receives and
evaluates the inputs and outputs of the model under some experiments. The components of the EF have

2197

McLaughlin and Sarjoughian

set-theoretic specifications akin to the DEVS formalism. The main experimental frame role is to explore
possible dynamics of a model (or more generally software systems).

Unlike validation (showing the right model is built) and verification (showing the model is built right),
testing checks for inaccuracies or errors in the model (Balci 1994). Thus, a test frame is a special type
of experimental frame where the objective is to show for a given input to a model, the resulting output
matches the expected output. The primary result for this type of experiment is either pass or fail. A
test frame can also use assertions for debugging code at the exact moment any test fails. A test frame’s
objective is to stimulate and observe a model under test according to a prescribed test plan. Software unit
testing frameworks support defining tests and assertions (Garousi and Felderer 2016). In unit testing, the
test frame targets a single atomic or coupled model. For integration testing, a test frame is applied to a
multi-component model as in a hierarchical coupled DEVS model. For complex models, it is beneficial to
write many independent tests using the same test frame. Section 2 will address scalability and complexity
by making the test frame extensible for different levels of testing and using Java annotations for running
a different test script in each iteration.

1.3 Automated Test Scripts

Consider the elements of a software test plan and the role each model will have in an automated test script
(Garousi and Felderer 2016) and simulation.

• Test documentation. For scripted test plans, test documentation may be the same as code docu-
mentation. It should clearly communicate to the tester input specifications, expected behaviors and
results, environment for executing tests, and any inter test case dependency.

• Setup. The goal of this phase is to create the test, construct inputs, construct models, their coordinators
and simulators, and guide the system to the correct initial state for testing.

• Exercise. This phase injects inputs, propagates time, and collect outputs from the system.
• Verify Results. Compare results with expected results. For automated script test plans, this is

usually done with logical assertions. If an exception is raised, a debugger will capture it and halt
the simulation at the exact moment a test fails. This offers developers the diagnostics they might
need to solve any failures.

• Teardown. This phase resets the system and frees up resources.

Experiment frames that separate the generator, acceptor, and transducer behaviors also separate the
elements of a test plan. This abstract, high-level design is limiting in terms of test development, software
complexity, and diagnosing failed tests. In a scripting design, all elements—documentation, setup, exercise,
verify results, and teardown—reside in one location. Scripting combines the generator, acceptor, and
transducer into a single model enabled through a script. Similar to the @Test annotation in JUnit, scripts
are annotated with @TestScript to run independent tests using the same test frame.

Many M&S test frameworks focus on using a platform independent model (PIM) that structure tests
into a test oracle. This is beneficial in that non-programmers can write tests in formats like XML and
JSON. However, not all tests have well-defined test oracles. Scripting offers flexibility that these rigid
formats cannot easily emulate.

1.4 Multithreading and DEVS

DEVS formalism by design makes no assumption about the number of threads or processes used for
processing models concurrently in simulation (Zeigler et al. 2000). The code for a DEVS model only
executes as a response to an internal state transition or when an input is received. Another design for
modeling may generate a thread or process for each model and allow each model to control when it
executes code or when it sleeps. There are benefits and consequences to both designs. The following are
disadvantages for each model to control its execution via its own thread:

2198

McLaughlin and Sarjoughian

• Resource limitations. Operating systems and available memory will limit the number of processes
and threads than can be created. A simple DEVS model that takes a few bytes of memory can
expect to allocate a much larger stack space for execution.

• Thread switching. The number of threads is not usually limited by the number of cores for the
processor. Therefore threads must share processor time with other threads with performance cost.

• Synchronization. With models running in parallel, synchronization is required to address issues with
parallel execution such as a race condition to a shared resource like time and message coordination.

We can immediately see that a thread-per-model design will not be scalable. In this research, we
explore the usefulness of scripting the behavior of a model in a thread—more specifically, a test frame
because it will typically have one instance in any scenario and thus avoids issues with scalability. Now
consider the advantages of scripting its behavior:

• Reduced lines-of-code and complexity. Models that move sequentially through code can do so
without leaving the routine. Without using a separate thread and stack frame, a DEVS model would
require the same routine to save intermediate variables and use logic statements to rebuild each
phase of the overall sequence.

• Exceptions versus Logging. Logging a pass/fail to an output file is one way to capture results, but
raising exceptions can be caught by a test framework or debugger. This practice may be more
useful when programmers need to diagnose failed tests.

• Persistent Scope. Generator and transducer behaviors can be contained in a single persistent scope.
If a test case fails or program execution hits a breakpoint, variables within the scope will still be
initialized and used for diagnostics within a debugging environment. If the generator was separate,
the injected problematic message has likely lost its reference from generator’s scope.

Parallel processing is not an advantage for this double threaded design because nest lock synchronization
only permits one thread to have the lock (Waddell and Leathrum 2019). The concepts of threading and
synchronization do not exist in DEVS formalisms, but a goal for this research is to prove automated test
scripts are a useful and viable substitute testing tool for DEVS models. However, if we challenge the
conceptual design of a test frame, we must show the DEVS semantics are not broken for DEVS-Scripted
models. A proof for this is offered in Section 2. Recall that state variables can only change in state
transition functions. Therefore, program control must wait inside the thread running the script while the
model is outside its state transition function. This is accomplished with synchronization.

1.5 Nest-Lock Synchronization

Program execution is considered blocked when a caller must wait on the results of the called function.
In a single thread, either an atomic simulator, a coupled coordinator, or one of the models has control
of program execution. Synchronization is not required because the simulator hands off program control
when it calls a model’s state transition method and therefore cannot advance simulation time, coordinate
message I/O, or carryout any other roles until the model hands program control back to the last caller.

A single-thread DEVS enforces an encapsulated design. Given that only one state transition may be
executed at any time, there is little need for a locking mechanism to protect the model’s private data.
In multi-threaded DEVS simulators, multiple DEVS models are permitted to execute simultaneously.
Synchronization within multi-threaded DEVS simulators is key to promoting repeatability. The proposed
script-based testing used in this research will run a script in a separate thread and use a nest lock to
synchronize events. A typical nest lock is used to synchronize two threads: outer thread and inner thread—
also named source thread and sink thread, respectively. Since only one of these threads can be active at
any time, it will behave as if the code executed in the inner thread was executed in sequence within the
outer code. We can observe the synchronization of a typical nest lock within the left graphic of Figure 1.

2199

McLaughlin and Sarjoughian

enter

enter

leave

leave

Entering cycle
blocking on entry

semaphore.

One cycle of
DEVS δ

int,ext,con

Release entry
semaphore and
wait on exit
semaphore.

Outer Thread/
SimulationNest Lock

Inner Thread/
Test Script

Outer ThreadInner Thread Nest Lock

● Prepare
inputs

● assert outputs
● set sigma and

phase

Figure 1: Sequence of coordination in nest lock.

In this research, the DEVS-Script will take the role of the inner thread. The script thread has control
until it attempts to read inputs, generate outputs, or enters waiting. These interactions release control back
to the outer thread. The outer thread is the DEVS model and simulation thread. The script depicts how the
model should behave over time and is enabled by atomic DEVS state transition and output functions. A
nest lock uses two semaphore locks, one for entry and one for exiting nested code. Note that the test thread
does not execute until the simulation thread reaches δint,ext,con f . The response from δint,ext,con f is passed
to the test script and yields control of the nest lock. When the test script performs its next command, it
yields control back to δint,ext,con f . A closeup of this behavior is observed on the right side of Figure 1.

1.6 Black-box Testing of DEVS models

Black-box testing is a type of test driven development. The code may not be available or not written
yet. Black-box testing can be designed and developed based on requirements. The greater the inherent
complexity of requirements is, the more number of tests that should be developed to test these models.

When modeling Figure 2 in DEVS, the upper self transition arc on busy represents δext , which assumes
in?. The lower self transition arc on busy represents δcon f . The arc from busy to idle represents δint . The
only state transitions from the idle phase is δext , which is shown by the arc from idle to busy.

The existence of state variables is implied by the required behaviors, but the number of state variables,
their data structures, and names, are unknown. Even the type of model, atomic or coupled, cannot be
assumed. With this encapsulation, the only way to interact and test the proper behaviors of this model
is via its ports. In software testing, a test oracle defines the inputs and expected outputs. Since time can
be another metric to test, tests for the processor model shown in Figure 2 should also verify timing. The
following tests visit all states and arcs from the extended state machine described in Figure 2:

1. Allow the system to initialize and assert no messages leave the processor.
2. Send a job to the processor and assert the job leaves the processor at e = proc time and matches

the job sent in.
3. Send a job to the processor. While the processor is busy, send another job to it. Assert the first job

is released on schedule and the second job is not released.
4. Send a job to the processor. Wait and send another job at the time the first job would be released.

Assert the first job is available and assert the second job leaves the processor at e = proc time.

Ideally, we would like to test as few states and arcs as possible in each test, but also offer coverage
across all states and arcs when combined. However, the model we are testing is a black box and we can

2200

McLaughlin and Sarjoughian

Atomic Processor Modeling Requirements

1. The model shall implement the following extended state machine design:

idle busy

entity job := null;
real σ := ∞

¬in e = σ ∧ in? → out! job;
job := in; σ := proc time

e<σ→ σ :=σ−e
in?→ job := in;
σ := proc time

e = σ ∧¬in → out! job;
σ := ∞; job := null;

2. The model shall have an input port—"in"—and output port—"out".

3. The model shall have a constructor with the signature proc(name:String, proc time:double).

4. Messages received and sent from this model shall be of a generic entity type GenCol.entity.

The Process model accepts a job and delays its release. Jobs received while the model is busy are balked.
Internal state transitions occur when e = σ . External state transitions occur when in?. Confluent state
transitions occur when both conditions are met. Arcs are annotated with Guard→U pdate.

Figure 2: Requirements for a simple processor model. The concept of round for this extended state machine
is triggered by each call to δ f un(S,e,Xb) : δ f un ∈

{
δint ,δext ,δcon f

}
.

only achieve confirmation of results when the system under testing produces outputs. In other words, we
cannot prove a processor was busy or working on the correct job until it finishes and passes the job back
to the test frame. Many practices in testing software translate over to testing models including boundary
value analysis and equivalence partitioning (Reid 1997). Visiting states and arcs achieves the same goals as
statement and branch coverage. A simple coverage standard for testing coupled models is to ensure every
internal and external coupling has transmitted at least one message. Black-box testing also has applications
in education, service oriented architectures, and crowd sourcing. Suppose Figure 2 was used as a homework
assignment. We receive numerous designs and implementations. Automated test scripts can be written to
interact with each model to ensure the proper I/O behaviors are observed—assigning a pass/fail for each
student. This concept is demonstrated in the reference for Section 3.

2 DEVS-SCRIPTING

A test frame atomic model contains generator, acceptor, and transducer behaviors. The model(s) under
testing are coupled with the test frame inside a test fixture that serves as the root model in the simulation.
However, the test frame—an atomic model—contains all the elements of a test. Therefore, it is responsible
for generating the fixture model, inserting itself and all relevant internal models into the fixture, and
establishing couplings. Once the fixture is generated, a coordinator is generated for it to run the simulation
and ultimately the underlying test thread. During initialization of the test frame, the thread shown in
Figure 4 is created.
test_thread = new Thread(){

public void run(){
nest_lock.innerSectionAcquire();
script.run(); // may make multiple calls to nest_lock.leave()

setPhase("done");
setSigma(Double.POSITIVE_INFINITY);
nest_lock.innerSectionRelease();

}
}

2201

McLaughlin and Sarjoughian

The initializing phase is held for σ = 0. The first action by this thread is to synchronize with the
simulation and block until the model enters the δint state change at e = 0 where it enters the inner section.
The test script is then called. Once the test script exits, the model passivates (σ = ∞). The base TestFrame
model implements its δint , δext , and δcon f methods and child classes extend by implementing test scripts.
Since test scripts are run in a different thread from the main simulation, the script and the TestFrame
model must coordinate using a nest lock to safely exchange the method’s parameters and state variables.

It is important to note that program control within the test script only occurs while inside either δint , δext ,
or δcon f as shown in Figure 1. Even though the nature of the test scripting design does not appear to follow
DEVS formalisms, it proves that an implementation can be made to conform to a DEVS model—albeit, far
more complicated than a single test script. The blocks of code executed when the test thread has control
can be written in δint,ext,con f and guarded by a large switch statement to identify the stage of testing the
frame is currently in. This practice would not be very useful because it increases the complexity of the
test case—potentially introducing bugs in testing—and past diagnostics are lost to the debugger when local
variables are freed at the end of each call to a state transition method for the test frame. The class diagram
depicted in Figure 3 highlights the versatility of the DEVS Scripting for several testing applications. The
Methods and attributes for the TestFrame are shown in Figure 4.

Figure 3: UML class diagram for DEVS-Scripting in DEVS-Suite.

2.1 Scripting Methods

The TestFrame methods shown in Figure 4 are intended to mimic instructions similar to a software test
procedure (STP). The user usually follows instructions like ‘do this action/input’, ‘wait until a specific
event’, and ‘check the output.’ Common methods include Inject, Wait, and WaitForOutput. If the
modeling requirements are lenient on timing, testers may want to inspect on a range of time. These methods
include WaitForOutputAround and WaitUntilOutputBetween. On the other extreme, to effectively
test superdense trajectories (Sarjoughian and Sundaramoorthi 2015), we need the ability to read the next
imminent message. This is done by ReadOutput using a sigma greater than zero, but asserting that zero
time has elapsed when an output is received.

Some methods are required to effectively test the confluent state transitions of parallel-DEVS models.
Such behaviors like wait and inject must be merged into a single cycle. Without the method, WaitAndInject,
a message received by the end of Wait would be cleared during the call to Inject.

The implementations of each method above controls one or more cycles through the nest lock and the
phases the test script will enter (McLaughlin and Sarjoughian 2020). At the core of each scripting method
is the following low-level method, # ReturnToDeltFunc(). This function performs basic checks on the

2202

McLaughlin and Sarjoughian

Figure 4: UML TestFrame methods and attributes.

thread, nest lock, and output ports of the message bag. It sets the phase, sigma, and output for the test
frame before surrendering control back to the simulation thread.

2.2 Writing Tests

Similar to the @Test annotation used in JUnit, each test that can be run using the same test fixture—i.e.
same components and couplings—can be written as separate methods and identified with annotations. The
@TestScript annotation has been created under the TestFrame class to identify individual tests in child
classes. The four test case scripts generated for the processor described in Section 1.6 are:
@TestScript
public void TestPassivated(){

entity e = WaitUntilOutput(100.0, "out", true);
assertNull(e);

}

@TestScript
public void TestNormal(){

entity job_in = new entity("job");
Inject("in", job_in);

entity job_out = WaitForOutputAt(10.0, "out", false, false, false);
assertEquals(job_in, job_out);

}

@TestScript
public void TestBalked(){

entity job_in1 = new entity("job1");
entity job_in2 = new entity("job2");

Inject("in", job_in1);
WaitAndInject(5.0, "in", job_in2, false);

entity job_out = WaitForOutputAt(5.0, "out", false, false, false);

assertEquals(job_in1, job_out);

job_out = WaitUntilOutput(100.0, "out", true);
assertNull(job_out);

}

@TestScript
public void TestConfluence(){

entity job_in1 = new entity("job1");
entity job_in2 = new entity("job2");

Inject("in", job_in1);
WaitAndInject(10.0, "in", job_in2, false);

2203

McLaughlin and Sarjoughian

entity job_out = GetOutput("out", false, false);
assertEquals(job_in1, job_out);

job_out = WaitForOutputAt(10.0, "out", false, false, false);
assertEquals(job_in2, job_out);

}

Similar to writing tests in JUnit, these test cases can be written in a single test script, however if a failure
occurs in the first case, any following test cases will not be executed. It is generally better to keep test cases
separate for this reason, but other limitation should be considered. Each test case created in JUnit creates
a simulation and constructs all models. If the model under testing loads large databases or the simulation
has heavy overhead, the setup and teardown consume significant resources including processing time. If
there are a large number of test cases, a comprehensive regression testing may no longer be feasible. For
managing this issue, an attribute called canSequence under @TestScript should be set to true so that
all sequencible tests—ones that return the model to a common initial state—are run in one instance during
regression testing. Only failures within the sequence would warrant independently testing each script.

2.3 Running DEVS-Scripts in JUnit Jupiter

The DEVS-Suite simulator allows users to run simulations without the overhead for run-time visualization
and animation by creating a facade-less coupled model coordinator around the test fixture. The simulation
runs indefinitely allowing the test frame to inject messages into and receive messages from the system
under testing. If the test frame throws an AssertionError, JUnit will capture it and fail the test.

Typically Java software tests are written using the @Test annotation in a separate class. However, each
test is already recorded as a @TestScript within a derived class of TestFrame. To simplify testing,
we will take advantage of the @TestFactory annotation in JUnit Jupiter. Any new tests can be created
without modifying the following code:
class procTest{

@TestFactory
@DisplayName("Test Case Generator")
Stream<DynamicTest> getTestCases(){

return TestFrame.getTestCases(procFrame.class);
}

}

The method, + getTestCases(Class<? extends TestFrame>):Stream<DynamicTest>, shown
in Figure 4 runs through the specified class for public methods using the @TestScript annotation and
generates dynamic tests for JUnit to execute. Each dynamic test first constructs the test frame, builds a
test fixture, assigns the fixture to a coordinator, and runs the simulation. Exceptions caught by JUnit are
handled by showing a back-trace, but breakpoints can be inserted and the conditions that caused the failure
be observed. Running test frames inside a JUnit test case are especially useful for running automated
regression tests.

3 DEMONSTRATION AND USE CASES

DEVS-Scripting is introduced to the DEVS-Suite simulator version 6.0 (ACIMS 2020). Details covering
exemplars, creating black-box test scripts, performing white-box debugging, and the DEVS-Scripting
API can be found online (McLaughlin and Sarjoughian 2020). The models in Figure 5 demonstrate the
extensiblility of test frame shown in Figure 3.

The components presented in the first row of Figure 5 represent a few elements of manufacturing:
FIFO buffer, CONstant Work-In-Process (CONWIP) control system, Work Station (WS), and the simple
processor model developed from Figure 2. Each of the models are tested by the components in the second
row using scripting in DEVS. The third row interfaces JUnit in support of automated regression testing.

The HomeworkTestFrame is an extension of SimpleTestFrame, but imports multiple implementa-
tions annotated by the @Student annotation. This specialized test frame tests each implementation against

2204

McLaughlin and Sarjoughian

Figure 5: Demonstrative models included in DEVS-Suite.

each test script. These implementations could have been acquired by crowd sourcing, evaluation of similar
web-service models, or homework solutions as highlighted in Figure 5. This is one of many ways that
DEVS-Scripting demonstrates extensibility.

3.1 Loading the Test Frame into DEVS-Suite

The model loader in DEVS-Suite identifies TestFrame objects (see the Test drop down menu in “model
configuration” UI snippet in Figure 6. DEVS-Suite will construct the frame, but use its fixture as the root
model for the simulation. This redirection is shown by the [Test Fixture] in Figure 6. DEVS-Suite also
recognizes the test scripts and allows testers to observe any annotated test script.

Figure 6: Buffer test frame, test case, and a coupled testframe and simulation component view.

DEVS-Suite allows operators to step through the simulation, watch animated message traffic, interact
and inspect with models, and plot superdense input, output, and state trajectories. In terms of the testing,
it serves as another diagnostics tool for debugging failed tests.

Figure 7: Debugging a failing test using JUnit in Eclipse.

2205

McLaughlin and Sarjoughian

Figure 7 depicts a failure exposed by the TestBalked test script written in Section 2.2. Unlike other
tests, balking interrupts the processor model while it is actively busy. From the diagnostics on the left, we
see that this interrupt caused the first job to miss its deadline. Since the assertion is thrown in the test script
thread, all other threads continue to run. We can take advantage of this feature by hovering over models
in DEVS-Suite to examine the phase and sigma of the processor model among other debugger diagnostics
to find that external state changes do not advance time—effectively resetting the internal state transition to
be scheduled on a full delay. A line should be written on the right side of Figure 7 to subtract the elapsed
time from the current sigma.

4 RELATED WORK

This research gathers a plethora of software and modeling topics. DEVS-Scripting was enabled using a
separate thread for scripting the behavior of a model from initialization until it finishes. Scripting was then
used to drive automated black-box testing of models. This research focuses on creating a test frame—a type
of experimental frame—around one or more Parallel DEVS models. Scripts written for a test frame support
all elements of testing: documentation, setup, exercise, verification of results, and teardown (Garousi and
Felderer 2016). Proper synchronization (Zeigler et al. 2000) and Black-box testing techniques (Reid 1997)
are employed to ensure the semantics of the DEVS models are preserved.

Considering DEVS models, the concept of a black-box test unit is applied for debugging dynamic
structure DEVS models as a collection of static structure DEVS models (Barros 1998). Unit tests are defined
as atomic DEVS models and coupled with DEVS models of a system to form coupled DEVS models. These
tests are defined according to the DEVS formalism and must use the same simulation protocol as the one
for the DEVS models being tested. This is in contrast to the Test Frame approach proposed in this paper.
The testing and simulation are strictly separated in terms of distinct specification approaches, each with
its own executing protocol. A similar concept for black-box testing I/O behaviors is proposed (Hu et al.
2007), but rather than defining test scripts, the test frame is a coupled DEVS model containing holdSend,
processDetect, waitReceive, and waitNotReceive atomic DEVS primitives. This approach can
be difficult to apply when strongly defined inputs and expected outputs are not the focus of a test. For
example, meta-morphic properties or emergent behaviors of complex systems may need complex logic
to test them. Another framework for testing offering some unique advantages (Li et al. 2011), but the
framework is not implemented as a DEVS model and requires a test oracle.

Another possible implementation of DEVS-Scripting may be employed by a test simulator. However,
the capability would be intertwined with simulation objects and classes and thus would not be DEVS
derivable. We would not be able to step, visualize, and track the testing in DEVS simulation software—all
tools needed to help troubleshoot why tests failed. Ironically, this technique is employed in this research
as a means to test the test frame code in DEVS-Suite. In addition to the diagnostic advantages of running
test scripts in a separate thread, our test framework can scale up in complexity to support testing complex
system-of-systems. Using scripting to leverage the ease of test case development and debugging in M&S
has applications outside DEVS. In fact, this research was first implemented in FireSimXXI—a simulator
being used in US DoD. As the concepts grew, disciplined and well-known simulation formalisms were
needed to gain footing within a broader simulation community. Lastly, a test frame can be derived that loads
XML or JSON files to dynamically generate test scripts—offering the flexibility of running test oracles as
well as other types of testing.

5 CONCLUSION

The novel black-box test framework proposed in this research is derived from atomic DEVS and facilitates
testing through scripting. It provides the advantages of scripting in a separate thread without breaking the
correctness of the simulator. This approach is grounded in maintaining modularity for experimental and
testing (i.e., DEVS models can be used seamlessly with the experimental frame components or the DEVS-

2206

McLaughlin and Sarjoughian

Scripting). Synchronization was key to proving semantics of DEVS formalisms were not undermined by
nesting script code within the state transition functions of DEVS modeling components. When considering
platform independence and structured tests, DEVS-Scripting was purposefully made to be extensible as
demonstrated in Figures 3 and 5. We demonstrated the process of generating test scripts from a requirements
model for a simple processor model. We highlighted a simple prototypical CONWIP control system as
well as an example for use in educational settings. The specifics for scripting methods are excluded in
favor of accurately representing the approach behind it.

REFERENCES
ACIMS 2020. “DEVS-Suite, Version 6.0”. https://acims.asu.edu/software/devs-suite/, accessed 15th September.
Alur, R. 2015. Principles of Cyber-Physical Systems. Massachusetts Institute of Technology Press.
Balci, O. 1994. “Principles of Simulation Model Validation, Verification, and Testing”. Technical report, Virginia Polytechnic

Institute & State University, Blacksburg, Virginia.
Barros, F. J. 1998. “Hierarchical Testing of Dynamic Structure Models: A Practical Approach”. Transactions of the Society for

Computer Simulation International 15(4):181–189.
Garousi, V., and M. Felderer. 2016, May-June. “Developing, Verifying, and Maintaining High-Quality Automated Test Scripts”.

Institute of Electrical and Electronics Engineers Software 33(3):68–75.
Hu, X., B. P. Zeigler, M. H. Hwang, and E. Mak. 2007. “DEVS Systems-Theory Framework for Reusable Testing of I/O

Behaviors in Service Oriented Architectures”. In 2007 IEEE International Conference on Information Reuse and Integration,
394–399. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Li, X., H. Vangheluwe, Y. Lei, H. Song, and W. Wang. 2011. “A Testing Framework for DEVS Formalism Implementations”. In
Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, TMS-DEVS
’11, 183–188. San Diego, CA, USA: Society for Computer Simulation International.

McLaughlin, M. B., and H. S. Sarjoughian. 2020. “Developing Test Frames for DEVS Models: Black-Box Testing with
White-Box Debugging”. Technical report, School of Computing, Informatics, and Decision Systems Engineering, Arizona
State University, Tempe, Arizona, USA.

Ören, T. I. 1981, April. “Concepts and Criteria to Assess Acceptability of Simulation Studies: A Frame of Reference”.
Communications of the Association for Computing Machinery 24(4):180–189.

Peters, D., and D. L. Parnas. 1994. “Generating a Test Oracle from Program Documentation: Work in Progress”. In Proceedings
of the 1994 ACM SIGSOFT International Symposium on Software Testing and Analysis, edited by T. Ostrand, 58–65. New
York, New York, USA: Association for Computing Machinery.

Reid, S. C. 1997. “An Empirical Analysis of Equivalence Partitioning, Boundary Value Analysis and Random Testing”. In
Proceedings Fourth International Software Metrics Symposium. November 5th-7th, Albuquerque, New Mexico, 64–73.

Sarjoughian, H. S., and S. Sundaramoorthi. 2015. “Superdense Time Trajectories for DEVS Simulation Models”. In Proceedings
of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, 249–256. San Diego, CA,
USA: Society for Computer Simulation International.

Srikanth, H., and S. Banerjee. 2012. “Improving Test Efficiency Through System Test Prioritization”. The Journal of Systems
and Software 85(5):1176–1187.

Waddell, B., and J. F. Leathrum. 2019. “A Multithreaded Simulation Executive in Support of Discrete Event Simulations”. In
2019 Winter Simulation Conference, edited by N. Mustafee, K.-H. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas,
and Y.-J. Son, 2677–2688. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation. 2nd ed. Orlando, Florida, USA:
Academic Press, Inc.

AUTHOR BIOGRAPHIES
MATTHEW B. MCLAUGHLIN graduated with a Masters of Engineering in Modeling and Simulations from Arizona State
University in the Spring of 2020. He works as a lead computer scientist for the Fires Battle Lab. His email address is
mclaughlin.matthew.2@gmail.com.

HESSAM S. SARJOUGHIAN is an Associate Professor of Computer Science & Computer Engineering at Arizona State
University and Co-Director of the Arizona Center for Integrative Modeling and Simulation. His research focuses on model
theory, polymorphic model composability, distributed co-design modeling, visual simulation modeling, real-time modeling, and
service-oriented simulation. He can be contacted at sarjoughian@asu.edu. His website is http://sarjoughian.faculty.asu.edu/.

2207

https://acims.asu.edu/software/devs-suite/
mailto://mclaughlin.matthew.2@gmail.com
mailto://sarjoughian@asu.edu
http://sarjoughian.faculty.asu.edu/

	INTRODUCTION
	Parallel Atomic and Coupled DEVS I/O System Formalism
	Experimental Frame and Test Frame
	Automated Test Scripts
	Multithreading and DEVS
	Nest-Lock Synchronization
	Black-box Testing of DEVS models

	DEVS-SCRIPTING
	Scripting Methods
	Writing Tests
	Running DEVS-Scripts in JUnit Jupiter

	DEMONSTRATION AND USE CASES
	Loading the Test Frame into DEVS-Suite

	RELATED WORK
	CONCLUSION

