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ABSTRACT

We consider stochastic gradient estimation when only noisy function evaluations are available. Central
finite-difference scheme is a common method in this setting, which involves generating samples under
perturbed inputs. Though it is widely known how to select the perturbation size to achieve the optimal
order of the error, exactly achieving the optimal first-order error, which we call asymptotic optimality,
is considered much more challenging and not attempted in practice. In this paper, we provide evidence
that designing asymptotically optimal estimator is practically possible. In particular, we propose a new
two-stage scheme that first estimates the required parameter in the perturbation size, followed by running
finite-difference based on the estimated parameter in the first stage. Both theory and numerical experiments
demonstrate the optimality of the proposed estimator and the robustness over conventional finite-difference
schemes based on ad hoc tuning.

1 INTRODUCTION

In this paper, we consider finite-difference stochastic gradient estimation (e.g., Glasserman 2013; Asmussen
and Glynn 2007; Fu 2006; L’Ecuyer 1991), commonly used when only noisy simulation observations are
available to evaluate the function value or model output. In stochastic optimization, such setting is known
as black-box or zeroth-order (Ghadimi and Lan 2013; Nesterov and Spokoiny 2017). Finite-difference
estimators are in contrast to unbiased derivative estimators, which include the infinitesimal perturbation
analysis (Ho et al. 1983; Heidelberger et al. 1988), the likelihood ratio or the score function method (Glynn
1990; Rubinstein 1986; Reiman and Weiss 1989), measure-valued or weak differentiation (Heidergott and
Vázquez-Abad 2008; Heidergott et al. 2010), and other variants such as the generalized likelihood ratio
method (Peng et al. 2018).

Finite-difference estimators consist of generating samples under perturbed input parameters. This
perturbation size is chosen with consideration of controlling the bias and variance that contributes to
the overall mean squared error (MSE). As the perturbation size increases, bias increases while variance
decreases (and vice versa). To minimize the MSE, the perturbation size is determined by balancing the
magnitudes of the two error sources. It is widely known (Zazanis and Suri 1993; Fox and Glynn 1989) that,
for twice continuously differentiable functions, the optimal perturbation size of the central finite-difference
(CFD) scheme turns out to be of order n−1/6 which leads to an optimal MSE order n−2/3, where n
refers to the number of differencing pairs in the simulation. On the other hand, in forward or backward
finite-difference scheme, the optimal perturbation size is of order n−1/4 and the corresponding optimal
MSE order deteriorates to n−1/2. Note that although the optimal order of error, in terms of n, is widely
known and achievable, it is considered much more challenging to obtain an estimator that achieves the
exact optimal first-order MSE (i.e., the “constant” in front of the n). This is because it requires additional
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model information such as higher-order derivatives and the noise variance, which are unknown a priori.
Indeed, as far as we know, there have been no mainstream estimators that attempt to optimize the MSE at
this level of accuracy.

In this paper, we provide some evidence that it is, in fact, practically possible to obtain finite-difference
estimators that guarantee to exactly optimize the first-order MSE. We call such estimator asymptotically
optimal. More precisely, we propose a new, conceptually simple, two-stage scheme to obtain such an
estimator. This scheme first estimates the parameters required to tune the perturbation size that optimizes
the first-order MSE (the “Estimation” phase). Then, at the second stage, we use the estimated parameters
to obtain a nearly optimal perturbation size (the “Minimization” phase) and run standard finite-difference
(we will focus on CFD due to its superiority over other variants, though our framework can be readily
generalized). The key reason for the implementability of this approach is that the parameter estimation
that allows a nearly optimal CFD only requires a loose accuracy, so that few samples need to be allocated
to the Estimation phase. We materialize the above intuition and show that this two-stage scheme, which
we call Estimation-Minimization Central Finite-Difference (EM-CFD), is nearly asymptotically optimal
(where “nearly” means that asymptotic optimality can be achieved when the allocation to the Estimation
phase is relatively negligible). Compared to conventional CFD using the right order of perturbation size,
but with the underlying constant chosen in an ad hoc fashion, our estimator is more robust as it performs
consistently close to an “oracle” CFD that assumes knowledge of unknown model parameters. We support
our theory with empirical results.

The rest of the paper is organized as follows. In Section 2, we introduce the setting of CFD and
the challenge in achieving asymptotic optimality. Section 3 proposes a two-stage scheme to optimize the
performance of CFD. Sections 4 and 5 discuss the asymptotic properties of parameter estimation and the
overall MSE, respectively. Section 6 presents numerical results, and Section 7 concludes the paper and
outlines future directions.

2 SETTING AND MOTIVATION

In this paper, we focus our discussions on the single-dimensional case. Let f(·) : R→ R be a performance
measure of interest, where we have access to an unbiased estimate f̂(x) for any chosen x ∈ R. In other
words, f̂(·) is a family of random variables indexed by x such that E[f̂(x)] = f(x) and V ar(f̂(x)) = σ2(x)

for any x ∈ R. Suppose we do not apply common random numbers (CRNs) in generating f̂(x), and thus
f̂(x)’s are assumed to be independent across different points x. We would like to estimate the first-order
derivative f (1)(x0) where x0 ∈ R is the point of interest.

In estimating f (1)(x0), the CFD scheme elicits the output

Y (δ) =
f̂(x0 + δ)− f̂(x0 − δ)

2δ
,

where δ > 0 is the perturbation size. Suppose that f(x) is thrice continuously differentiable with non-zero
third-order derivative f (3)(x0), we have as δ → 0

Y (δ) = f (1)(x0) + (Bδ2 + o(δ2)) +
ε(δ)

δ
,

where B = f (3)(x0)/6 and ε(δ) ∈ R is a random variable such that E[ε(δ)] = 0 and V ar(ε(δ)) = η2(δ).
Suppose we do not apply common random numbers (CRNs) in generating f̂(x0 + δ) and f̂(x0 − δ), and
that V ar(f̂(x0 ± δ)) → V ar(f̂(x0)) as δ → 0. Then η2(δ) → σ2(x0)/2 as δ → 0. Given the capability
to output independent runs of Yi(δ), i = 1, . . . , n, the CFD scheme obtains an estimate of f (1)(x0) by
taking the sample average, i.e., θ̂ = (1/n)

∑n
i=1 Yi(δ).
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The MSE of θ̂ can be expressed as

MSE = E[(θ̂ − f (1)(x0))2]
= (E[θ̂ − f (1)(x0)])2 + V ar(θ̂ − f (1)(x0))
= (B + o(1))2δ4 + (σ2(x0)/2 + o(1))/(nδ2),

where o(1) means a term that goes to zero as δ goes to zero. Consider choosing the optimal δ, in relation to
n, in order to minimize the MSE. First, it is well-known and easy to see that, in order to obtain the optimal
order of the MSE, one should balance the squared bias term B2δ4 and the variance term (σ2(x0)/2)/(nδ2)

to the same order in terms of n. This amounts to setting δ to be order n−1/6 (since otherwise by perturbing
the order of δ either one of the two terms would increase), which leads to an optimal MSE order n−2/3.

Next, to get the optimal δ more precisely, note that the MSE depends on the priori unknown parameters
B and σ2(x0). Note that by Holder’s inequality

B2δ4 + (σ2(x0)/2)/(nδ2) ≥ 3
(
B2σ4(x0)/(16n2)

)1/3
and equality holds if δ =

(
σ2(x0)/(4nB

2)
)1/6. That is, the MSE with an exactly optimal first-order term

is
MSEopt = 3

(
B2σ4(x0)/(16n2)

)1/3
(1 + o(1)) (1)

with the dominating order n−2/3 and the frontal constant 3(B2σ4(x0)/16)1/3. We call a scheme asymp-
totically optimal if it achieves (1).

Thus, though it is easy to find the optimal order of δ by setting δ = αn−1/6 for some α > 0 as in
the conventional CFD scheme, exactly achieving the optimal first-order MSE, or asymptotic optimality,
requires α =

(
σ2(x0)/(4B

2)
)1/6 and hence knowing the model informationB and σ2(x0). In the literature,

extracting this information is often viewed as challenging, in the sense that doing so is not easier than
estimating the gradient directly. Our main contribution is to propose a scheme that extracts and utilizes this
information efficiently. Our key insight is that, in order to tune α close to optimal, it suffices to obtain only
moderately accurate estimates of B and σ2(x0). Thus, one do not need to devote too much computational
effort into this task, in order to achieve (1). This makes our procedure readily implementable.

3 OVERVIEW OF THE TWO-STAGE PROCEDURE

We propose a new two-stage scheme, which we call Estimation-Minimization Central Finite-Difference
(EM-CFD), to obtain an asymptotically optimal estimator. The first stage is the Estimation stage (E-stage).
At the E-stage, we allocate n1 = bλnc, 0 < λ < 1 samples, each with a possibly different perturbation
size, to estimate B and σ2(x0). The detailed estimation method will be discussed in Section 4. The second
stage is the Minimization stage (M-stage). Here, we plug the estimated parameters B̂ and σ̂2(x0) into
the optimal perturbation size δ =

(
σ2(x0)/(4nB

2)
)1/6. Then allocate n2 = d(1− λ)ne samples and run

standard CFD to estimate f (1)(x0). The full implementation of EM-CFD is shown in Algorithm 1.

4 ESTIMATING MODEL PARAMETERS

We present in detail the E-stage, namely on the estimation of B and σ2(x0). We use linear regression.
Since B is related to the third order derivative of f(x), we take the Taylor expansion of f(x) to justify the
estimation accuracy of B. Suppose that f(x) is five-times continuously differentiable with non-zero finite
f (5)(x0) (the non-zero assumption can be dropped, but we put this to streamline our results), we have as
δ → 0

f̂(x0 + δ)− f̂(x0 − δ) = f (1)(x0)2δ +B2δ3 + (D2δ5 + o(δ5)) + ε(δ)
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Algorithm 1: Estimation-Minimization Central Finite-Difference
The total number of samples is n, the allocation ratio for the E-stage is λ > 0;
E-stage: Allocate n1 = bλnc samples whose perturbation sizes δi, i = 1, . . . , n1, are i.i.d.
generated from a distribution P . Then estimate B and σ2(x0) by B̂ and σ̂2(x0).

M-stage: Allocate n2 = d(1− λ)ne samples with perturbation size δ =
(
σ̂2(x0)/(4n2B̂

2)
)1/6

.

Then estimate f (1)(x0) by

θ̂EM =
1

n2

n2∑
i=1

f̂i(x0 + δ)− f̂i(x0 − δ)
2δ

.

return the gradient estimate θ̂EM.

where B = f (3)(x0)/6, D = f (5)(x0)/120, and ε(δ) ∈ R is a random variable such that E[ε(δ)] = 0 and
V ar(ε(δ))→ 2σ2(x0) as δ → 0. Let

y =
[
f̂(x0 + δ1)− f̂(x0 − δ1), . . . , f̂(x0 + δn1)− f̂(x0 − δn1)

]′
,

X =

[
2δ1 · · · 2δn1

2δ31 · · · 2δ3n1

]′
,

β =
[
f (1)(x0), B

]′
,

E =
[
D2δ51 + ε(δ1), . . . , D2δ5n1

+ ε(δn1)
]′
,

where δ1, . . . , δn1 are the perturbation sizes of samples at the E-stage. Then, y = Xβ + E , and we can
estimate β given by β̂ = (X ′X)−1X ′y. Specifically, we have

B̂ =

∑n1
i=1 δ

2
i

∑n1
i=1 δ

3
i yi −

∑n1
i=1 δ

4
i

∑n1
i=1 δiyi

2(
∑n1

i=1 δ
2
i

∑n1
i=1 δ

6
i − (

∑n1
i=1 δ

4
i )

2)
(2)

where yi represents the i-th component in y.
Correspondingly, we have

B̂ −B =

∑n1
i=1 δ

2
i

∑n1
i=1 δ

3
i Ei −

∑n1
i=1 δ

4
i

∑n1
i=1 δiEi

2(
∑n1

i=1 δ
2
i

∑n1
i=1 δ

6
i − (

∑n1
i=1 δ

4
i )

2)
.

Without loss of generality, suppose δi is i.i.d. generated from a distribution withE[δ0] = 0 andV ar[δ0] = Σ0,
and Σ0 → 0 as n1 → +∞. Additionally, any order moment of δi is assumed to be finite, which allows us
to apply the Central Limit Theorem. Then we have

√
n1(


(1/n1)

∑n1
i=1 δiEi

(1/n1)
∑n1

i=1 δ
3
i Ei

(1/n1)
∑n1

i=1 δ
2
i

(1/n1)
∑n1

i=1 δ
4
i

(1/n1)
∑n1

i=1 δ
6
i

−

2DE[δ60 ]
2DE[δ80 ]
E[δ20 ]
E[δ40 ]
E[δ60 ]

) d−−−−−−→
n1→+∞

N(


0
0
0
0
0

 ,

4D2Cov(δ60 , δ

6
0) + 2σ2(x0)E[δ20 ] 4D2Cov(δ60 , δ

8
0) + 2σ2(x0)E[δ40 ] 2DCov(δ60 , δ

2
0) 2DCov(δ60 , δ

4
0) 2DCov(δ60 , δ

6
0)

4D2Cov(δ80 , δ
6
0) + 2σ2(x0)E[δ40 ] 4D2Cov(δ80 , δ

8
0) + 2σ2(x0)E[δ60 ] 2DCov(δ80 , δ

2
0) 2DCov(δ80 , δ

4
0) 2DCov(δ80 , δ

6
0)

2DCov(δ20 , δ
6
0) 2DCov(δ20 , δ

8
0) Cov(δ20 , δ

2
0) Cov(δ20 , δ

4
0) Cov(δ20 , δ

6
0)

2DCov(δ40 , δ
6
0) 2DCov(δ40 , δ

8
0) Cov(δ40 , δ

2
0) Cov(δ40 , δ

4
0) Cov(δ40 , δ

6
0)

2DCov(δ60 , δ
6
0) 2DCov(δ60 , δ

8
0) Cov(δ60 , δ

2
0) Cov(δ60 , δ

4
0) Cov(δ60 , δ

6
0)

).
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With the multivariate delta method, we obtain

√
n1

(
(B̂ −B)− D(E[δ20 ]E[δ80 ]− E[δ40 ]E[δ60 ])

E[δ20 ]E[δ60 ]− E[δ40 ]E[δ40 ]

)
d−−−−−→

n1→+∞
N(0,

σ2(x0)E[δ20 ]

2(E[δ20 ]E[δ60 ]− E[δ40 ]E[δ40 ])
)

where we use Σ0 → 0 to argue the negligibility of higher-order terms.
The following theorem gives the expression for the MSE of B̂ when using δi that is randomly drawn

from a normal distribution in an i.i.d. fashion. It shows that the MSE vanishes to zero as n1 → +∞. In
other words, the estimate B̂ is consistent.
Theorem 1 Suppose f(·) is five-times continuously differentiable, and f̂(·) has a finite second moment at
any point with V ar(f̂(x0±δ))→ V ar(f̂(x0)) as δ → 0. If we randomly draw δ1, . . . , δn1 from N(0,Σ0),
and consider B̂ in (2), we have

E[(B̂ −B)2] =

[
(10DΣ0)

2 +
σ2(x0)

12n1Σ3
0

]
(1 + o(1)),

where o(1) means a term that goes to zero as n1 → +∞. Moreover, for any Σ0 = Θ(nk1), −1/3 < k < 0,

lim
n1→+∞

E[(B̂ −B)2] = 0.

Proof. For δi ∼ N(0,Σ0), i = 1, . . . , n1,

E[(B̂ −B)2] =

(
D(1 + o(1))(E[δ20 ]E[δ80 ]− E[δ40 ]E[δ60 ])

E[δ20 ]E[δ60 ]− E[δ40 ]E[δ40 ]

)2

+
σ2(x0)(1 + o(1))E[δ20 ]

2n1(E[δ20 ]E[δ60 ]− E[δ40 ]E[δ40 ])

=

[
(10DΣ0)

2 +
σ2(x0)

12n1Σ3
0

]
(1 + o(1)).

When Σ0 = Θ(nk1), −1/3 < k < 0, we have lim
n1→+∞

(10DΣ0)
2 = 0 and lim

n1→+∞

σ2(x0)

12n1Σ3
0

= 0. Therefore,

lim
n1→+∞

E[(B̂ −B)2] = 0.

Note that we can generalize the above to non-normal mean-zero δi, though normal distribution is a
natural choice. Moreover, we can show further that choosing Σ0 = Θ(n

−1/5
1 ) leads to an optimal order

n
−2/5
1 of E[(B̂−B)2]. Therefore, at the E-stage, we randomly take perturbation size δi = αin

−1/10
1 where

αi is i.i.d. generated from a fixed normal distribution.
As for σ2(x0), we use the sample variance of outputs

(
f̂(x0 + δi)− f̂(x0 − δi)

)
to estimate it, i.e.,

σ̂2(x0) =
1

2

‖y − ȳ1n1×1‖22
n1 − 1

(3)

where ȳ =
∑n1

i=1 yi/n1 and 1n1×1 is a column vector with all elements equal to one. The following
theorem provides the consistency of σ̂2(x0). This holds as long as Σ0 → 0 as n1 →∞, and is not limited
to the case that δi = αin

−1/10
1 .

Theorem 2 Suppose f̂(·) has a finite second moment at any point with V ar(f̂(x0 ± δ))→ V ar(f̂(x0))
as δ → 0. Suppose we randomly draw δ1, . . . , δn1 from N(0,Σ0), with Σ0 → 0 as n1 → ∞. Consider
σ̂2(x0) in (3). We have

lim
n1→+∞

σ̂2(x0) = σ2(x0), a.s.
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Proof. This follows quite immediately from the consistency of sample variance. To give more details,
since Σ0 → 0 as n1 → +∞, we have lim

n1→+∞
δi = 0, a.s. for any i. For each n1 ∈ N+,

σ̂2(x0) =
n1

2(n1 − 1)

(
1

n1

n1∑
i=1

y2i − (
1

n1

n1∑
i=1

yi)
2

)
.

Combining lim
n1→+∞

δi = 0, a.s. and the strong Law of Large Numbers, we have

lim
n1→+∞

1

n1

n1∑
i=1

y2i = E[ε2(0)], a.s.

and

lim
n1→+∞

1

n1

n1∑
i=1

yi = E[ε(0)], a.s.

Therefore,

lim
n1→+∞

σ̂2(x0) =
1

2

(
E[ε2(0)]− (E[ε(0)])2

)
=

1

2
V ar(ε(0)) = σ2(x0), a.s.

5 OPTIMIZING FINITE-DIFFERENCE PERFORMANCE

At the E-stage, we estimate unknown model parameters B and σ2(x0) by (2) and (3). Then, at the M-stage,
we use these parameter estimates to obtain a nearly optimal perturbation size and estimate f (1)(x0) by
standard CFD. The error in parameter estimation will propagate to the MSE of CFD. The following theorem
provides the expression for the MSE of the resulting gradient estimator from EM-CFD. It also shows that this
MSE closely matches the optimal in the first order, in turn implying that EM-CFD is nearly asymptotically
optimal, when the allocation assigned to the E-stage is relatively small.

Theorem 3 Suppose f(·) is five-times continuously differentiable, and f̂(·) has a finite second moment at
any point with V ar(f̂(x0 ± δ)) → V ar(f̂(x0)) as δ → 0. Suppose we randomly draw δ1, . . . , δn1 from
N(0,Σ0), with Σ0 = Θ(nk1), −1/3 < k < 0. Consider EM-CFD in Algorithm 1. The MSE of θ̂EM is

MSEEM = E[(θ̂EM − f (1)(x0))2]

=

((
E
[
B
(
σ̂2(x0)/(4B̂

2)
)1/3

n
−1/3
2

])2

+ E

 σ2(x0)

2n
2/3
2

(
σ̂2(x0)/(4B̂2)

)1/3


+V ar

(
B
(
σ̂2(x0)/(4B̂

2)
)1/3

n
−1/3
2

))
(1 + o(1)),

which is a function of B and σ2(x0). Moreover,

lim
λ→0

lim
n→+∞

n2/3
∣∣∣MSEEM −MSEopt

∣∣∣ = 0, (4)

where MSEopt is defined in (1).
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Proof. The M-stage uses the standard CFD scheme, and thus conditional on any given δ we have

√
n2

(
θ̂EM − (f (1)(x0) +Bδ2)

)
d−−−−−→

n2→+∞
N

(
0,
σ2(x0)

2δ2

)
.

We use δ =
(
σ̂2(x0)/(4B̂

2)
)1/6

n
−1/6
2 where both B̂ and σ̂2(x0) are random variables estimated from the

E-stage. Therefore, for the overall EM-CFD scheme, we have

E[θ̂EM] = E
[
E[θ̂EM|B̂, σ̂2(x0)]

]
= f (1)(x0) + E

[
B
(
σ̂2(x0)/(4B̂

2)
)1/3

n
−1/3
2 + o(δ2)

]
and

V ar(θ̂EM)

= E
[
V ar(θ̂EM|B̂, σ̂2(x0))

]
+ V ar

(
E[θ̂EM|B̂, σ̂2(x0)]

)
= E

 σ2(x0)

2n
2/3
2

(
σ̂2(x0)/(4B̂2)

)1/3 + o(δ4)

+ V ar

(
B
(
σ̂2(x0)/(4B̂

2)
)1/3

n
−1/3
2 + o(δ2)

)
.

Here |o(δ2)/δ2| → 0 a.s. and |o(δ4)/δ4| → 0 a.s. when δ → 0 a.s. Then we obtain

MSEEM = E[(θ̂EM − f (1)(x0))2]

=
(
E[θ̂EM − f (1)(x0)]

)2
+ V ar

(
θ̂EM − f (1)(x0)

)
=

(
E
[
B
(
σ̂2(x0)/(4B̂

2)
)1/3

n
−1/3
2 + o(δ2)

])2

+ E

 σ2(x0)

2n
2/3
2

(
σ̂2(x0)/(4B̂2)

)1/3 + o(δ4)


+V ar

(
B
(
σ̂2(x0)/(4B̂

2)
)1/3

n
−1/3
2 + o(δ2)

)
.

We have lim
n2→+∞

E(o(δ2)/δ2) = 0, lim
n2→+∞

E(o(δ4)/δ4) = 0, and lim
n2→+∞

V ar(o(δ2)/δ2) = 0. With the

results in Theorem 1 and 2, we have, asymptotically, MSEEM satisfies

lim
n→+∞

n2/3
∣∣∣MSEEM − 3

(
σ2(x0)B

4n

)2/3 ∣∣∣ = 3

(
σ2(x0)B

4(1− λ)

)2/3

− 3

(
σ2(x0)B

4

)2/3

.

Further,

lim
λ→0

lim
n→+∞

n2/3
∣∣∣MSEEM − 3

(
σ2(x0)B

4n

)2/3 ∣∣∣ = 0.

Recall that MSEopt = 3
(
σ2(x0)B

4n

)2/3
(1 + o(1)), which concludes the theorem.
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6 NUMERICAL RESULTS

In this section, we conduct numerical experiments to test the performance of the proposed EM-CFD scheme.
We consider three examples. Example 1 aims to estimate the first-order derivative of f(x) = k sin(x) at
the point x0 = 0, where k is an a priori unknown parameter. Observations at δ follow a normal distribution,
i.e., f̂(δ) ∼ N(f(δ), 1). Therefore in this example, we have B = −k/6 and σ2(x0) = 1 but they are
unknown for EM-CFD scheme. Example 2 concerns the derivative estimation of a polynomial function
f̂(x) = 1− 6x+ 36x2 − 53x3 + 22x5 +N(0, 0.05) at different points x. We have B = 220x2 − 53 and
σ2(x) = 0.05 accordingly. Example 3 considers a generic M/M/1 queueing system. Observations are the
averaged system time of the first 10 customers, and the derivative of their expectation with respect to the
arrival rate is of interest to us. The true derivative is 0.0946 when both arrival and service rates are 4.

The proposed EM-CFD scheme is compared with an “oracle” CFD that uses the optimal perturbation
size assuming knowledge of B and σ2(x0) (CFD-opt), and the conventional CFD scheme that uses an
arbitrary α:

• CFD-opt: Both B and σ2(x0) are known for this scheme. Then it outputs n independent runs
of Yi(δ) = (f̂(x0 + δ) − f̂(x0 − δ))/(2δ) where δ =

(
σ2(x0)/(4B

2)
)1/6

n−1/6, and estimates
f (1)(x0) by θ̂ = (1/n)

∑n
i=1 Yi(δ).

• CFD: This scheme uses αn−1/6 for some arbitrarily chosen α. We do it by arbitrarily choosing
some value (B̃ and σ̃2(x0)) for each unknown parameter, and set the perturbation size δ =(
σ̃2(x0)/(4B̃

2)
)1/6

n−1/6. We take
(
B̃, σ̃2(x0)

)
= (−100/6, 1) in example 1,

(
B̃, σ̃2(x0)

)
=

(5, 0.05) in example 2 while
(
B̃, σ̃2(x0)

)
= (1/2, 1) in example 3. For each example, we output

n independent runs of Yi(δ), and estimate f (1)(x0) by θ̂ = (1/n)
∑n

i=1 Yi(δ).

Additionally, in order to examine the performance of the proposed EM-CFD scheme under different
allocation ratio λ, three settings are tested, namely λ = 0.1, λ = 0.2, and λ = 0.3. In all numerical
experiments, the statistical efficiency of the estimation schemes is measured by the MSE estimated by
10,000 independent experimental replications. The MSE is reported as a function of the (unknown) model
parameter k, the value of x, or the number of samples n in each experiment.

In Figure 1, we can see that EM-CFD performs better than the conventional CFD when the model
parameter k is less than 60, which could be attributed to the reason that parameter estimation (B̂ and
σ̂2(x0)) in EM-CFD is much closer to optimal than the arbitrary choice in CFD. As the model parameter
k increases, the arbitrary choice in CFD approaches the optimal one and is equal to the true value when
k = 100. Of course, a priori we do not know this k, so that the arbitrary CFD can perform well or
can perform poorly. In other words, EM-CFD is more robust. Moreover, the performance of EM-CFD
with λ = 0.1 is still comparable to that of CFD-opt, showing that EM-CFD is close to having the best
possible performance using any CFD for the whole considered range of k. Another observation is that the
performance of EM-CFD gets better as the allocation ratio λ decreases. Although allocating more samples
in the E-stage can lead to a better parameter estimation, it would limit the sample size to estimate the
gradient, ultimately resulting in a worse MSE. Such observation is in accord with the asymptotic property
in (4).

Figure 2 further examines the performance of EM-CFD scheme with lower allocation ratio λ. Similar
to results in Figure 1, EM-CFD remains more efficient than the conventional CFD, and CFD-opt is slightly
better than EM-CFD. However, given a finite number of samples, the performance of EM-CFD becomes
worse when decreasing the allocation ratio λ from 0.01 to 0.005. It could be because the number of samples
allocated to estimate the unknown parameters is too few. In other words, we need enough samples to
guarantee the consistency of parameter estimation. The best balance in obtaining best overall performance
seems to be obtained at λ = 0.01.
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Figure 1: MSE of all tested CFD schemes in example 1.

Figure 2: MSE of all tested CFD schemes in example 1.
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Figure 3 also demonstrates the robustness of EM-CFD. The MSE of EM-CFD at x ∈ [0, 1] is generally
below 0.5, and EM-CFD performs better than the conventional CFD when x < 0.3 or x > 0.6. In contrast,
the conventional CFD can perform well when its arbitrary choice of B is close to the true value, i.e., x
is around 0.5. Unfortunately, the conventional CFD performs poorly at other times. At point x = 1, the
MSE of the conventional CFD is greater than 2.5, which is five times as large as that of EM-CFD.

Figure 3: MSE of all tested CFD schemes in example 2.

Figure 4 illustrates the performance of CFD and EM-CFD in example 3. When n = 1000, we can
see that the proposed EM-CFD achieves MSE = 3.8× 10−4 whereas the conventional CFD scheme leads
to MSE = 7.7 × 10−4. That is to say EM-CFD enhances the estimation efficiency by more than 50%
compared to this arbitrarily tuned CFD. In addition, note that unlike examples 1 and 2, simulation variance
σ2(x) varies with different points x in this example, which can be viewed as a more challenging setting.
The favorable results in Figure 4 thus demonstrate potential of EM-CFD to apply in more sophisticated
and practical settings.

7 CONCLUSION

While it is well-known how to find perturbation sizes with the optimal order for finite-difference estimators
in gradient estimation when only noisy function evaluations are available, finding the perturbation size that
matches the exact first-order MSE, or what we called asymptotic optimality, is generally considered much
more challenging as it relies on unknown model information. In this paper we derived and implemented an
asymptotically optimal CFD, henceforth providing evidence that designing such estimators is practically
possible. This estimator comprises a two-stage scheme, called EM-CFD, that first estimates the needed
but unknown model parameters and then, based on these estimates, chooses a nearly optimal perturbation
size. Its implementability hinges on the main insight that these model parameter estimates only need
moderate accuracy in order to achieve optimality, thus allowing us to allocate few samples in the estimation
stage. Besides theoretically proving near asymptotic optimality, we conducted some numerical studies to
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Figure 4: MSE of CFD and EM in example 3.

demonstrate that the proposed estimator works closely compared to an oracle benchmark and more robustly
compared to CFD with arbitrarily chosen constant in the perturbation size despite the right order. In future
work, we will investigate the multi-dimensional generalizations, investigate the higher-order convergence
rate of the MSE that allows us to further enhance the choice of perturbation size, and conduct more extensive
numerical studies.
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