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ABSTRACT

This article develops confidence intervals (CIs) and confidence regions (CRs) for quantiles based on
independent realizations of a simulation response. The methodology uses a combination of conditional
Monte Carlo (CMC) and the generalized likelihood ratio (GLR) method. While batching and sectioning
methods partition the sample into nonoverlapping batches, and construct CIs and CRs by estimating the
asymptotic variance using sample quantiles from each batch, the proposed techniques directly estimate the
underlying probability density function of the response. Numerical results show that the CIs constructed
by applying CMC, GLR, and sectioning lead to comparable coverage results, which are closer to the targets
compared with batching alone for relatively small samples; and the coverage rates of the CRs constructed
by applying CMC and GLR are closer to the targets than both sectioning and batching when the sample
size is relatively small and the number of probability levels is relatively large.

1 INTRODUCTION

For a random variable. with the cumulative distribution function (c.d.f.) �. (·), the ?-quantile (0 < ? < 1) is
defined as H? = �−1. (?) ≡ inf{H : �. (H) ≥ ?}; and if �. (H) is continuous at each H ∈ R, then �. (H?) = ?
for each ? ∈ (0, 1). Quantiles, also known as values-at-risk, are used as benchmarks in financial risk
management (Jorion 2001), e.g., to regulate capital sufficiency of banks for sustaining losses from their
trading activities (Glasserman 2004). Quantiles are also used as performance measures in service systems
(Gélinas et al. 1995, Seila 1982) as well as for safety and uncertainty analysis of nuclear power plants. For
instance, the U.S. Nuclear Regulatory Commission uses the 95/95 criterion, which requires plant licensees
to verify, with 95% confidence, that the 0.95-quantiles of certain performance measures lie below mandated
thresholds (U.S. Nuclear Regulatory Commission 2011).

If {.8 : 8 = 1, . . . , =} is a sequence of independent and identically distributed (i.i.d.) simulation responses,
then H? can be estimated by Ĥ? (=) ≡ .( d=?e) , where .(1) ≤ · · · ≤ .(=) are the respective order statistics
and d·e denotes the ceiling function. If the c.d.f. �. (·) is twice differentiable at H? so that the associated
probability density function (p.d.f.) 5. (·) is differentiable and 5. (H?) = d

dH�. (H)
��
H=H?

= � ′
.
(H?) > 0, then

Ĥ? (=) is a consistent estimator and satisfies the following central limit theorem (CLT):
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=1/2
(
Ĥ? (=) − H?

)
⇒ f# (0, 1) as =→∞, (1)

where f2 ≡ ?(1 − ?)/ 5 2
.
(H?) is the asymptotic variance, # (0, 1) is the standard normal distribution, and

“⇒” denotes convergence in distribution (Serfling 1980, Corollary B, p. 77).
Unfortunately, the density 5. (·) in (1) is typically unknown. Although there are several distribution-free

methods to construct a CI for a quantile (Serfling 1980, Section 2.6), the generalization of these methods
for constructing CRs is not straightforward. An alternative methodology is based on batching. For given
1 ≥ 2, one forms 1 nonoverlapping batches of simulation responses, each of size < (= = 1<), and computes
the sample quantiles Ĥ? ( 9 , <) ( 9 = 1, . . . , 1) from each batch. The quantile H? is estimated by the sample
average Ĥ? (1, <) = 1

1

∑1
9=1 Ĥ? ( 9 , <), and the asymptotic variance is estimated by < times the sample

variance (2(1, <) ≡ 1
1−1

∑1
9=1

[
Ĥ? ( 9 , <) − Ĥ? (1, <)

]2. The 100(1−U)% CI for H? based on the batching
method (BM) is

CBM(<, U) =
[
Ĥ? (1, <) − C1−1,1−U/2((1, <)

/√
1, Ĥ? (1, <) + C1−1,1−U/2((1, <)

/√
1

]
, (2)

where Ca,V denotes the V-quantile of Student’s C distribution with a degrees of freedom. The CLT (1)
implies that as < → ∞, the CI (2) is asymptotically valid—i.e., lim<→∞ Pr{ H? ∈ CBM(<, U) } = 1 − U.
The method of sectioning improves upon the batching method by replacing the average batch quantile
estimator Ĥ? (1, <) in Equation (2) with the overall quantile estimator Ĥ? (=) (Asmussen and Glynn 2007,
Nakayama 2014, Dong and Nakayama 2017). Both the batching and sectioning methods suffer from the
trade-off between the bias and variance of their point estimators of H?: the bias decreases as < increases,
whereas the variance decreases as 1 increases.

Our approach for constructing a CI for H? involves direct estimation of the unknown 5. (H?) = � ′. (H?)
based on the fact that the c.d.f. can be expressed as the expectation �. (H?) = E[1(. ≤ H?)], where
1(. ≤ H?) is the indicator random variable that takes the value 1 when the condition . ≤ H? is true,
and 0 otherwise. Classical infinitesimal perturbation analysis (IPA) and the likelihood ratio (LR) method
cannot be applied to estimate 5. (H) because the random variable 1(. ≤ H) is never a continuous function
of H, and the derivative d

dHE[1(. ≤ H)] is taken with respect to the quantity H, which is not a parameter
of the density function 5. (H) (Peng et al. 2020). Although methods based on finite-differences (FD) and
kernel density estimation have been used to construct CIs for H? (Nakayama 2014), the latter two methods
induce bias and require the choice of certain tuning parameters. Moreover, the FD method requires extra
simulations and typically leads to large variance. Unlike the FD and kernel methods that rely solely on
output-sample information, the conditional Monte Carlo (CMC) method (L’Ecuyer et al. 2019) and the
generalized likelihood ratio (GLR) method (Peng et al. 2020) utilize direct information from the underlying
simulation model, and yield unbiased density estimators.

Simultaneous estimationofmultiple quantiles corresponding to a vector p ≡ (?1, . . . , ?3) of probabilities
requires the construction of a confidence region. Specifically, we want to construct a region R (=, U) ⊂ R3
such that lim<→∞ Pr[(H?1 , . . . , H?3 ) ∈ R (=, U)] = 1 − U for given confidence coefficient U ∈ (0, 1) and
batch count 1 ≥ 2. Ming-hua and Glynn (2002) use a combination of batching and sectioning to construct
CRs for stochastic approximation algorithms; but to the best of our knowledge, there is no previous research
studying confidence regions for quantiles. In this paper, we discuss the formation of CRs for the four
aforementioned methods, batching, sectioning, GLR, and CMC. We will show that CMC and GLR in CRs
construction perform better than batching and sectioning methods when 3 is large and the sample size
is small. While the choice of the batch size (for fixed sample size) affects the performance of batching
and sectioning, this issue does not affect CMC and GLR. On the other hand, the CMC and GLR methods
require more information about the structure of the problem and stronger conditions.

The rest of the paper is organized as follows. Section 2 describes the quantile estimation problem and
an ideal CI for the conventional quantile point estimator. This result lies at the basis of the CI construction
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we develop by using CMC and GLRs. Section 2 also discusses CMC and GLR estimators for the density
function, which are required for construction of CIs by those methods. Section 3 describes the derivation
of CRs for each method under study. Section 4 performs a preliminary evaluation of the four methods
based on two examples. The results indicate that the estimated coverages of all the CIs and CRs are
close to the target coverage rate when the sample size is sufficiently large, demonstrating their asymptotic
validity. In particular, the CMC, GLR and sectioning methods outperform classical batching with regard
to the construction of both CIs and CRs when the sample size is relatively small, while the CMC and GLR
methods dominate their counterparts based on batching with regard to CR construction when the sample
size is small and the dimension of the probability vector becomes large. Finally, Section 5 offers some
concluding remarks.

2 CONSTRUCTION OF CONFIDENCE INTERVALS

Assume that the output random variable . can be expressed as

. = 6(-1, . . . , -B)

for a given, finite number of inputs B so that 6 : RB → R; and -1, . . . , -B are continuous random variables
so that the random vector - ≡ (-1, . . . , -B) has the joint p.d.f. 5 (G) for all G = (G1, . . . , GB) ∈ RB. Let IV
denote the V-quantile of the # (0, 1) distribution. Based on the CLT (1), we see that the ideal 100(1−U)%
CI for H?,

Ĥ? (=) ± I1−U/2

√
?(1 − ?)
5. (H?)

√
=
, (3)

is asymptotically valid as = → ∞. Of course the latter CI (3) cannot generally be applied in practice
because the p.d.f. 5. (·) is usually unknown.

One way to construct a CI for H? is to consistently estimate the unknown constant 5. (H?). The CI
in Equation (2) bypasses this problem by “cancelling” the asymptotic variance f2 = ?(1 − ?)/ 5 2

.
(H?).

The literature contains a variety of methods based on finite differences and kernel density estimation (Chu
and Nakayama 2012, Nakayama 2014); but both methodologies suffer from trade-offs between bias and
variance, i.e., a small perturbation or bandwidth size reduces bias while increasing variance. We propose
two unbiased estimators, i.e., CMC and GLR, to estimate 5. (H?), and then we construct asymptotically
valid CI estimators for the selected quantiles.

Since the p.d.f. 5. (H) is the derivative of the c.d.f. �. (H), a natural approach to estimate 5. (H) is to
express the c.d.f. as the expected value of an indicator random variable:

�. (H) = E[1{. ≤ H}] = E[1{6(-1, . . . , -B) − H ≤ 0}] .

Under certain conditions, Peng et al. (2020) showed that

5. (H) =
d
dH
E[1(. ≤ H)] = E[1(. ≤ H) · Ψ8], (4)

where

Ψ8 = Ψ8 (-) =
[ (
m6(G)
mG8

)−1
m log 5- (G)

mG8
−

(
m6(G)
mG8

)−2 (
m26(G)
mG2
8

) ] �����
G=-

.

The CMC density estimator requires the following regularity condition:
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Regularity Condition (A) Assume there exists a sigma-field F such that for all realizations of F , the
function �. (H |F ) ≡ Pr{. ≤ H |F } is continuous at each H ∈ R; also the function �. (H |F ) is differentiable
at each H ∈ R \ � (F ), where � (F ) ⊂ R is a denumerable set of points. Moreover, there is a random
variable Γ defined on the same probability space as �. (H |F ) such that E[Γ2] ≤ � for some constant � < ∞,
and sup

{
� ′
.
(H |F ) ≡ d

dH�. (H |F ) : H ∈ R \ � (F )
}
≤ Γ at every point in the underlying sample space.

Under this condition, L’Ecuyer et al. (2019) proved that

5. (H) =
d
dH
E[1(. ≤ H)] = E[� ′. (H |F )] for each H ∈ R \ � (F ). (5)

Equation (5) is the basis for the CMC estimator of 5. (H) at each H ∈ RB \ � (F ); and in practice we
have to appropriately choose F to condition on. For example, if for some ; ∈ {1, . . . , B}, the sigma-field
defined by F; = (-1, · · · , -;−1, -;+1, · · · , -B) satisfies the condition and the function

6; (G; |F;) ≡ 6(-1, . . . , -;−1, G;, -;+1, . . . , -B) for each G; ∈ R
is strictly increasing in G; for all possible realizations of F;, then the inverse function 6−1

;
(H |F;) exists at

each point in the underlying sample space; and we have

�. (H |F ) = Pr
{
6; (-; |F;) ≤ H

��F;

}
= Pr

{
-; ≤ 6−1; (H |F;)

��F;

}
= �; [6−1; (H |F;) ] . (6)

From Equation (6) and the change-of-variables formula (Rudin 1964, Theorem 6.33), we have

5. (H) = E[� ′. (H |F )] = E
{
5;
[
6−1; (H |F;)

]
·
���� ddH 6−1; (H |F;)

���� },
where 5; is the density function of -;. Clearly the conditions required by GLR and CMC are stronger than
those of batching and sectioning.

Suppose the c.d.f. �. (·) and p.d.f. 5. (·) are differentiable at H? and 5. (H?) > 0. With Equations
(4) and (5) and the consistent point estimate of H?, i.e., Ĥ? (=) ≡ .( d=?e) , we obtain the GLR and CMC
estimators for 5. (H?) as follows:

5̂ GLR,=
(
Ĥ? (=)

)
=
1
=

=∑
9=1

1
(
. ( 9) ≤ Ĥ? (=)

)
· Ψ( 9)

8

where the pairs
(
. (1) ,Ψ(1)

8

)
, . . . ,

(
. (=) ,Ψ(=)

8

)
are = independent realizations of (.,Ψ8), and

5̂ CMC,=
(
Ĥ? (=)

)
=
1
=

=∑
9=1

� ′.
(
Ĥ? (=)

��F ( 9) ) ,
where F (1) , . . . ,F (=) are = independent realizations of F . Under an additional moment condition for
Ψ8 in Peng et al. (2017), it can be shown that 5̂ GLR,= ( Ĥ? (=)) → 5. (H?) almost surely (a.s.); further
5̂ CMC,= ( Ĥ? (=)) → 5. (H?) a.s. when =→∞.

Then we have the approximate 100(1 − U)% CIs

CGLR(=, U) =
[
Ĥ? (=) − I1−U/2

√
?(1 − ?)

5̂ GLR, = ( Ĥ? (=))
√
=
, Ĥ? (=) + I1−U/2

√
?(1 − ?)

5̂ GLR,= ( Ĥ? (=))
√
=

]
based on the GLR method and

CCMC(=, U) =
[
Ĥ? (=) − I1−U/2

√
?(1 − ?)

5̂ CMC, = ( Ĥ? (=))
√
=
, Ĥ? (=) + I1−U/2

√
?(1 − ?)

5̂ CMC,= ( Ĥ? (=))
√
=

]
based on the CMC method, respectively.
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3 CONSTRUCTION OF CONFIDENCE REGIONS

In the preceding section, we discussed CI construction for the point-wise quantile at one probability level ?.
We may also be interested in estimating not only the quantile at one probability level but also simultaneously
estimating a vector of quantiles at probability levels ?1, . . . , ?3 , in which case a CR is needed to measure
the accuracy on the vector of quantile estimates. Specifically, we want to construct a region R (=, U) ⊂ R3
such that lim=→∞ Pr

[ (
H?1 , . . . , H?3

)
∈ R (=, U)

]
= 1 − U.

For quantile estimators Ĥp (=) =
(
Ĥ?1 (=), . . . , Ĥ?3 (=)

)
, where Ĥ?8 (=) = .( d=?8 e) , 1 ≤ 8 ≤ 3, we have

the following multivariate analogue of the CLT (1).
Theorem 1 (Serfling 1980, §2.3.3, Theorem B) Let 0 < ?1 < ?2 < · · · < ?3 < 1. Suppose that
�. (H) has a density 5. (H) in neighborhoods of H?1 , . . . , H?3 and that 5. (H) is positive and continuous at
H?1 , . . . , H?3 . Then

√
=
(
Ĥp (=) − Hp

)
converges in distribution to a multivariate-normal distribution, i.e.,√

=
(
Ĥp (=) − Hp

)
⇒ #3 (0,Σ), as = → ∞, where #3 (0,Σ) is a normal 3-variate distribution with mean 0

and covariance matrix Σ defined by

Σ =

©«
f(?1, ?1) f(?1, ?2) · · · f(?1, ?3)
f(?1, ?2) f(?2, ?2) · · · f(?2, ?3)

...
...

. . .
...

f(?1, ?3) f(?2, ?3) · · · f(?3 , ?3)

ª®®®®¬
,

with

f(?8 , ? 9) =
min(?8 , ? 9) − ?8? 9
5. (H?8 ) 5. (H? 9 )

, 1 ≤ 8, 9 ≤ 3. J (7)

Therefore, the key to constructing an asymptotically valid CR for Hp is to estimate Σ consistently, and
the form of f(?8 , ? 9) in (7) shows that a natural estimation of Σ can be obtained by estimating 5. (H?8 )
for 8 = 1, . . . , 3. As discussed in Section 2, we know that f(?8 , ? 9) can be estimated consistently by

f̂GLR,= (?8 , ? 9 ) =
min(?8 , ? 9 ) − ?8 ? 9

5̂ GLR,= ( Ĥ?8 (=)) 5̂ GLR,= ( Ĥ? 9 (=))
or f̂CMC,= (?8 , ? 9 ) =

min(?8 , ? 9 ) − ?8 ? 9
5̂ CMC,= ( Ĥ?8 (=)) 5̂ CMC,= ( Ĥ? 9 (=))

. (8)

Under the assumptions of Theorem 1 and the conditions justifying unbiasedness of GLR and CMC,
we have that for Σ̂GLR,= and Σ̂CMC,= defined by (8),

=
(
Ĥp (=) − Hp

)
Σ̂−1GLR,= ( Ĥp (=) − Hp)

T ⇒ j23 , and =
(
Ĥp (=) − Hp

)
Σ̂−1CMC,=

(
Ĥp (=) − Hp

)T ⇒ j23 ,

as =→∞, where j2
3
is a chi-squared random variable with 3 degrees of freedom. Therefore, 100(1−U)%

asymptotic confidence regions for Hp are given by

RGLR(=, U) =
{
H ∈ R3 : =

(
Ĥp (=) − G

)
Σ̂−1GLR,= (=)

(
Ĥp (=) − H

)T ≤ j2(3,U)
}

and
RCMC(=, U) =

{
H ∈ R3 : =

(
Ĥp (=) − G

)
Σ̂−1CMC,= (=)

(
Ĥp (=) − H

)T ≤ j2(3,U)
}
,

where j2(3,U) is the (1 − U)-quantile of the chi-squared distribution with 3 degrees of freedom.
Alternatively, we can construct confidence regions via the batching and sectioningmethods. Specifically,

the = samples are split into 1 nonoverlapping batches, each consisting of < observations. We obtain the
9 th batch quantile estimator of Hp by

Ĥp ( 9 , <) =
(
Ĥ?1 ( 9 , <), . . . , Ĥ?3 ( 9 , <)

)
=

(
. 9 , ( d<?1 e) , . . . , . 9 , ( d<?3 e)

)
,
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where . 9 , (1) ≤ · · · ≤ . 9 , (<) are the sample’s order statistics within the 9 th batch for 9 = 1, . . . , 1. Then

Ĥp (1, <) =
1
1

(
1∑
9=1

Ĥ?1 ( 9 , <), . . . ,
1∑
9=1

Ĥ?3 ( 9 , <)
)

is the batching estimator of Hp and the sample covariance matrix Σ̂1,< is given by

Σ̂1,< =
1

1 − 1

1∑
9=1

(
Ĥp ( 9 , <) − Ĥp (1, <)

)T (
Ĥp ( 9 , <) − Ĥp (1, <)

)
.

To the best of our knowledge, Proposition 1 below formally establishes the asymptotic validity of the
batching method for quantile CRs for the first time.
Proposition 1 If 1 ≥ 2 is fixed and 1 > 3, then

1
(
Ĥp (1, <) − Hp

)
Σ̂−11,<

(
Ĥp (1, <) − Hp

)T ⇒ 3 (1 − 1)
(1 − 3) �(3,1−3) as < →∞ ,

where �(3,1−3) has an � distribution with 3 and 1 − 3 degrees of freedom. J
Proof For 9 = 1, . . . , 1, let & 9 = <

1/2 [ Ĥp ( 9 , <) − Hp ]
so the {& 9} are i.i.d. For each 9 , Theorem 1

ensures that & 9 ⇒ / 9 ∼ #3 (0,Σ) as < →∞; hence the {/ 9} constitute a random sample from #3 (0,Σ).
We take & = (&1, . . . , &1); and we let &1 = 1−1

∑1
9=1& 9 and (& = (1 − 1)−1

∑1
9=1

(
& 9 −&1

)T (
& 9 −&1

)
respectively denote the sample mean and sample covariance matrix of the {& 9}. Similarly, we define / ,
/1, and (/ from the {/ 9}. Next we observe that the mapping o : & ↦→ 1&1 (

−1
&
& T
1
is continuous at each

point & ∈ R1 such that det((&) > 0. Because the {/ 9} are i.i.d. #3 (0,Σ) with

det(Σ) =
?1

[∏3−1
8=1 (?8+1 − ?8)

]
(1 − ?3)∏3

8=1 5
2
.

(
H?8

) > 0,

it follows that det((/ ) > 0 with probability 1 (Dykstra 1970); and since & ⇒ / as < →∞, we see by the
continuous-mapping theorem (Whitt 2002, Theorem 3.4.3) that

1
(
Ĥp (1, <) − Hp

)
Σ̂−11,<

(
Ĥp (1, <) − Hp

)T
= o(&) ⇒ o(/) = 1/1(−1/ / T

1 as < →∞ .

Finally by Anderson (2003, Corollary 5.2.1), we have

1/1(
−1
/ /

T
1 ∼

3 (1 − 1)
(1 − 3) �(3,1−3) .

Therefore, as < →∞, an asymptotically valid 100(1 − U)% CR for Hp based on the batching method
is given by

RBM(=, U) =
{
H ∈ R3 : 1

(
Ĥp (1, <) − H

)
Σ̂−11,<

(
Ĥp (1, <) − H

)T ≤ 3 (1 − 1)(1 − 3) �(3,1−3,U)
}
, (9)

where �(3,1−3,U) is the (1 − U)-quantile of the � distribution with 3 and 1 − 3 degrees of freedom.
For the sectioning method, the samples are also split into 1 batches, but the quantile estimator of Hp

is obtained as
Ĥp (=) =

(
.( d=?1 e) , . . . , .( d=?3 e)

)
,
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and the sample covariance matrix is given by

Σ̃1,< =
1

1 − 1

1∑
9=1

(
Ĥp ( 9 , <) − Ĥp (=)

)T (
Ĥp ( 9 , <) − Ĥp (=)

)
.

Then the approximate 100(1 − U)% CR for Hp based on the sectioning method (SM) is given by

RSM(=, U) =
{
H ∈ R3 : 1

(
Ĥp (=) − H

)
Σ̃−11,<

(
Ĥp (=) − H

)T ≤ 3 (1 − 1)(1 − 3) �(3,1−3,U)
}
. (10)

Although we have found that in practice the empirical coverage probability of the sectioning-based CR (10)
is close to that of the batching-based CR (9), we have not been able to prove a convergence property for
sectioning that is comparable to Proposition 1. However, we have recently proved the following analogue
of Proposition 1 in which we use (i) the sectioning point estimator Ĥp (=) of the true quantile vector Hp; and
(ii) the batch-means estimator Σ̂1,< of the asymptotically true covariance matrix Σ/< based on batches of
size <. In item (ii), the phrase “asymptotically true” means that in the matrix E

[
Σ̂1,<

]
, the (:, ℓ) element

Cov
[
Ĥ?: (1, <), Ĥ?ℓ (1, <)

]
is asymptotic to f(?: , ?ℓ)/< for 1 ≤ :, ℓ ≤ 3 as < →∞.

Proposition 2 If 1 ≥ 2 is fixed and 1 > 3, then

1
(
Ĥp (=) − Hp

)
Σ̂−11,<

(
Ĥp (=) − Hp

)T ⇒ 3 (1 − 1)
(1 − 3) �(3,1−3) as < →∞ . J

The proof of Proposition 2 exploits multivariate Bahadur representations of Ĥp (1, <) and Ĥp (=) (Bahadur
1966); complete details will be given in follow-up work. Proposition 2 implies the asymptotic validity as
< →∞ of the following “hybrid” sectioning/batch-means confidence region,

RSBM(=, U) =
{
H ∈ R3 : 1( Ĥp (=) − H)Σ̂−11,<( Ĥp (=) − H)

T ≤ 3 (1 − 1)(1 − 3) �(3,1−3,U)
}
.

We plan to examine the performance characteristics of RSBM(=, U) in follow-up work.

4 NUMERICAL RESULTS

In this section, we use three examples to test the performance of the BM, SM, CMC, and GLR methods
with regard to CI construction (Example 1) and CR construction (Examples 2 and 3). We estimate the
coverage rate of 100(1 − U)% CIs (or CRs) by the proportion of the constructed CIs (or CRs) that contain
the true quantile (or vector of quantiles) from 105 independent trials. In Example 1 we report the coverage
rate with parenthesized average CI half-widths. In Examples 2 and 3 we divide the 105 trials into 100
replications with 103 trials in each replication and report the point estimates and standard errors of the
coverage rates.
Example 1 Consider the simple example where -1 ∼ # (0, 1) and -2 ∼ # (0, 4) are independent, and
. = -1 + -2. We are interested in estimating the ?-quantile H? of . and constructing CIs for different
values of ? via different methods (BM, SM, CMC, GLR). We know that . ∼ # (0, 5), so the true value of
the ?-quantile of . is H? =

√
5 I?.

We write the density 5. (H) as d
dHE

[
1(. ≤ H)

]
= d

dHE
[
1(-1 + -2 ≤ H)

]
. The GLR estimator (4) is not

unique because we can choose either value of 8. The derivatives in the estimator (4) are given by m6 (G)
mG8

= 1

and m26 (G)
mG2
8

= 0 (for 8 = 1, 2), m log 5- (G)
mG1

= −G1, and m log 5- (G)
mG2

= −G2/4. We have two GLR estimators
(namely, GLR1 and GLR2) for estimating the density 5. :
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5̂ GLR1 ,=
(
Ĥ? (=)

)
=
1
=

=∑
9=1

1
(
. ( 9) ≤ Ĥ? (=)

)
·
(
− - ( 9)1

)
and 5̂ GLR2 ,=

(
Ĥ? (=)

)
=
1
=

=∑
9=1

1
(
. ( 9) ≤ Ĥ? (=)

)
·
(
− - ( 9)2 /4

)
where - (1)

8
, . . . , -

(=)
8

are = realizations of -8 for 8 = 1, 2. FromPeng et al. (2020), if there are ; unbiasedGLR
estimators 1(. ≤ H)Ψ8ℓ , ℓ = 1, . . . , ;, then any linear combination

∑;
ℓ=1 Fℓ1(. ≤ H)Ψ8ℓ with nonnegative

weights {Fℓ} such that
∑;
ℓ=1 Fℓ = 1 is also an unbiased estimator; and the optimal weights for minimizing

the variance of the estimator can be obtained from

(F∗1, . . . , F
∗
; ) = argmin

F1,...,F;

Var

[
;∑
ℓ=1

Fℓ1(. ≤ H)Ψ8ℓ

]
s.t.

;∑
ℓ=1

Fℓ = 1,

which has an analytical form:

F∗8 =
4)
8
Σ−1
;
4

4)Σ−1
;
4
, 8 = 1, . . . , ;,

where 4 = (1, . . . , 1)T, 48 is a ;-dimensional unit vector in 8th direction, i.e., 41 = (1, 0, 0, . . . , 0), 42 =
(0, 1, 0, 0, . . . , 0), and Σ; is the covariance matrix of (1(. ≤ H)Ψ81 , . . . , 1(. ≤ H)Ψ8; ). We estimate the
optimal weights from the same data and obtain the optimal assignment (F∗1, F

∗
2) = (0.2, 0.8) in this example.

Hence the optimal GLR estimator (GLR∗) is

5̂ GLR∗,= ( Ĥ? (=)) =
1
=

=∑
9=1

1(. ( 9) ≤ Ĥ? (=)) ·
(
− F∗1-

( 9)
1 − F

∗
2-
( 9)
2 /4

)
.

For CMC in this example, we can use either F = -1 or F = -2. Assume that we choose F = -2, then
� (H |F ) = P(. ≤ H |-2) = P(-1 ≤ H − -2) = �1(H − -2) and 5. (H?) = E[� ′1 (H? |-2)] = E[ 51(H? − -2)].
Therefore the density estimator at H? is

5̂ CMC,= ( Ĥ? (=)) =
1
=

=∑
9=1

51
(
Ĥ? (=) − - ( 9)2

)
,

where �1 and 51 are the c.d.f. and the p.d.f. of the standard normal distribution, respectively.
Table 1 displays the coverage rates and average half-widths (AHWs) of the constructed CIs for the BM,

SM, CMC, and GLR methods. For large =, the estimated coverages of all the CIs are close to the target
coverage rate, demonstrating their asymptotic validity. GLR∗ has a slight edge over GLR1 and GLR2 in
both estimated CI coverage probability and AHW, especially when = is small. In general, SM, CMC, and
GLR exhibit better estimated coverage than BM, especially for small =. Finally, CMC, GLR∗, and SM
show comparable coverage in different cases.
Example 2 This example has the same setting as Example 1, but we are interested in the experimental
evaluation of the CRs obtained by the four competitors (BM, SM, CMC, and GLR). The probabilities ?8
are spaced uniformly: ?8 = 8/(3 + 1), 8 = 1, . . . , 3. The density estimators of CMC and GLR at ?8 are
the same as described in Example 1, and we only show the results corresponding to the optimal GLR
estimator. The experimental results displayed in Table 2 indicate significant advantages for the CMC and
GLR methods with regard to CR construction for quantiles compared to SM and BM, especially when the
sample size is relatively small and the dimension of the probability vector is relatively large. Asmussen and
Glynn (2007) suggest choosing 1 ≤ 30 for both BM and SM in CI construction, but for CR construction,
we have to choose 1 such that 1 > 3. The results in Table 2 show cases where 3 = 9, 3 = 19, and 3 = 49.
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Table 1: Coverage rates (with parenthesized average CI half-widths) for the BM, SM, GLR, and CMC
methods based on Example 1.

= 1 = 16 1 = 32
BM SM BM SM CMC GLR∗ GLR1 GLR2

? = 0.9, 1 − U = 0.9

210 0.885
(0.203)

0.899
(0.206)

0.649
(0.193)

0.897
(0.199)

0.901
(0.197)

0.897
(0.201)

0.882
(0.234)

0.892
(0.202)

212 0.899
(0.103)

0.904
(0.103)

0.878
(0.101)

0.903
(0.101)

0.899
(0.098)

0.898
(0.098)

0.897
(0.102)

0.897
(0.099)

214 0.901
(0.051)

0.903
(0.052)

0.883
(0.050)

0.900
(0.050)

0.899
(0.049)

0.898
(0.049)

0.898
(0.049)

0.897
(0.049)

216 0.898
(0.026)

0.898
(0.026)

0.899
(0.025)

0.901
(0.025)

0.900
(0.024)

0.897
(0.024)

0.897
(0.024)

0.894
(0.024)

? = 0.9, 1 − U = 0.95

210 0.938
(0.247)

0.950
(0.249)

0.757
(0.232)

0.948
(0.239)

0.949
(0.234)

0.942
(0.239)

0.925
(0.232)

0.938
(0.242)

212 0.949
(0.125)

0.951
(0.126)

0.936
(0.121)

0.951
(0.122)

0.950
(0.117)

0.950
(0.118)

0.943
(0.121)

0.950
(0.118)

214 0.950
(0.063)

0.951
(0.063)

0.939
(0.060)

0.949
(0.060)

0.948
(0.058)

0.950
(0.058)

0.949
(0.059)

0.950
(0.059)

216 0.950
(0.031)

0.951
(0.031)

0.949
(0.030)

0.950
(0.030)

0.951
(0.029)

0.951
(0.029)

0.952
(0.029)

0.953
(0.029)

(Entries with “NA” indicate that the respective method is not applicable because 1 ≤ 3.) Clearly, for fixed
relatively small sample sizes, the gap between the estimated coverage rates and nominal rates for BM- and
SM-based CRs widens as 3 increases. It should be clear that, if 3 is large, 1 has to be significantly larger
to achieve a high accuracy for the target coverage rates of CRs. Since the CMC and GLR methods are
immune to this issue, the sample size needed by CMC and GLR to achieve the same accuracy would be
much smaller than BM and SM for large 3. Notice that the estimated coverage of CMC-based CRs when
= = 212 is as accurate as SM-based CRs and better than BM-based CRs when = = 214 and 1 = 64.

Example 3 This example is taken from Shields and Zhang (2016) and was also analyzed in L’Ecuyer et al.
(2019). It models the buckling strength of a steel plate by

. =

(2.1
Υ
− 0.9
Υ2

) (
1 − 0.75-5

Υ

) (
1 − 2-2-6

-1

)
,

where Υ = (-1/-2)
√
-3/-4 and -1, . . . , -6 are independent random variables whose distributions are

given in Table 3, which also displays the respective mean and coefficient of variation (CV).
Again, we write the density 5. (H) as d

dHE
[
1(. ≤ H)

]
. For the GLR estimator (4) we choose 8 = 5,

so the derivatives in the estimator (4) are given by m6 (G)
mG5

=
( 2.1
Υ
− 0.9

Υ2

) (
− 0.75

Υ

) (
1 − 2-2-6

-1

)
, m

26 (G)
mG25

= 0,
m log 5- (G)

mG5
= −(G5 − `5)/f25 , where `5 and f5 is the mean and standard deviation of -5. If we denote

+1 =
( 2.1
Υ
− 0.9
Υ2

)
, +2 = 1 − 3-54Υ , and +3 =

(
1 − 2-2-6

-1

)
, we have the following GLR estimator for the density

5. :

5̂ GLR,=
(
Ĥ? (=)

)
=
1
=

=∑
9=1

1
(
. ( 9) ≤ Ĥ? (=)

)
·
(
Υ( 9) (- ( 9)5 − `5)/(0.75f

2
5+
( 9)
1 +

( 9)
3 )

)
.
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Table 2: Coverage rates for confidence regions (means ± standard errors) based on 100 independent runs
with 103 independent experiments in each run for BM, SM, GLR and CMC methods based on Example 2.

1 = 16 1 = 32 1 = 64
= BM SM BM SM BM SM CMC GLR∗

3 = 9, 1 − U = 0.95

212 0.9300
± 0.0085

0.9501
± 0.0069

0.8773
± 0.0105

0.9504
± 0.0067

0.1565
± 0.0115

0.9454
± 0.0068

0.9492
± 0.0070

0.9457
± 0.0083

214 0.9442
± 0.0071

0.9500
± 0.0070

0.9289
± 0.0083

0.9496
± 0.0067

0.7630
± 0.0133

0.9500
± 0.0069

0.9508
± 0.0069

0.9497
± 0.0072

216 0.9496
± 0.0068

0.9504
± 0.0066

0.9461
± 0.0082

0.9502
± 0.0071

0.9128
± 0.0087

0.9500
± 0.0066

0.9502
± 0.0064

0.9503
± 0.0061

3 = 19, 1 − U = 0.95

212 NA NA 0.5708
± 0.0170

0.9493
± 0.0071

0.0085
± 0.0028

0.9338
± 0.0093

0.9486
± 0.0068

0.9419
± 0.0071

214 NA NA 0.8814
± 0.0108

0.9515
± 0.0061

0.5696
± 0.0166

0.9518
± 0.0079

0.9498
± 0.0062

0.9482
± 0.0074

216 NA NA 0.9355
± 0.0083

0.9498
± 0.0069

0.8820
± 0.0102

0.9500
± 0.0070

0.9500
± 0.0068

0.9493
± 0.0071

3 = 39, 1 − U = 0.95

212 NA NA NA NA 0
± 0

0.8797
± 0.0094

0.9449
± 0.0075

0.9306
± 0.0081

214 NA NA NA NA 0.0280
± 0.0046

0.9498
± 0.0073

0.9495
± 0.0068

0.9459
± 0.0070

216 NA NA NA NA 0.6605
± 0.0170

0.9535
± 0.0072

0.9494
± 0.0071

0.9492
± 0.0068

For the CMC method in this example, we choose F = F6 = {-1, -2, -3, -4, -5}; hence � (H |F6) =
�6

( (
1 − H

+1+2

) -1
2-2

)
and 5. (H?) = E[� ′6 (H? |F6)]. The respective density estimator at H? is

5̂ CMC,= ( Ĥ? (=)) =
1
=

=∑
9=1

q

( (1 − Ĥ? (=)/(+ ( 9)1 +
( 9)
2 ))-

( 9)
1 /(2-

( 9)
2 ) − 5.25

0.3675

)
-
( 9)
1

0.735 · - ( 9)2 +
( 9)
1 +

( 9)
2

,

where q is the p.d.f. of the standard normal distribution.
The probabilities ?8 are spaced uniformly as in Example 2 and the true values of the quantiles are

estimated from 226 samples. The experimental results displayed in Table 4 also indicate significant advantages
for the CMC and GLR methods with regard to CR construction for quantiles compared to SM and BM,
especially when the sample size is small and the dimension of the probability vector is relatively large.

Table 3: Distribution of each parameter for the buckling strength model.

Parameter Distribution Mean CV

-1 normal 23.808 0.028
-2 lognormal 0.525 0.044
-3 lognormal 44.2 0.1235
-4 normal 28623 0.076
-5 normal 0.35 0.05
-6 normal 5.25 0.07
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Table 4: Coverage rates for confidence regions (means ± standard errors) based on 100 independent runs
with 103 independent experiments in each run for BM, SM, GLR and CMC methods based on Example 3.

1 = 16 1 = 32 1 = 64
= BM SM BM SM BM SM CMC GLR

3 = 9, 1 − U = 0.95

210 0.8502
± 0.0105

0.9479
±0.0072

0.4549
± 0.0149

0.9314
± 0.0078

0
± 0

0.8827
± 0.0102

0.9509
± 0.0063

0.9307
± 0.0074

212 0.9305
± 0.0073

0.9517
± 0.0058

0.8773
± 0.0113

0.9504
± 0.0074

0.1570
± 0.0106

0.9438
± 0.0075

0.9541
± 0.0063

0.9438
± 0.0067

214 0.9455
± 0.0071

0.9508
± 0.0066

0.9287
± 0.0075

0.9503
± 0.0067

0.7648
± 0.0138

0.9493
± 0.0075

0.9571
± 0.0061

0.9497
±0.0061

3 = 19, 1 − U = 0.95

210 NA NA 0.0026
±0.0015

0.8959
± 0.0098

0.3120
± 0.0152

0.3126
± 0.0138

0.9434
± 0.0069

0.9045
± 0.0096

212 NA NA 0.5689
± 0.0168

0.9485
± 0.0063

0.0086
± 0.0025

0.9336
± 0.0070

0.9535
± 0.0071

0.9363
± 0.0083

214 NA NA 0.9513
± 0.0072

0.9513
± 0.0072

0.5742
± 0.0515

0.9511
±0.0065

0.9557
± 0.0065

0.9472
± 0.0067

3 = 39, 1 − U = 0.95

210 NA NA NA NA 0
± 0

0
± 0

0.9339
± 0.0077

0.8562
± 0.0114

212 NA NA NA NA 0
± 0

0.8805
± 0.0112

0.9493
± 0.0064

0.9194
± 0.0094

214 NA NA NA NA 0.0279
± 0.0048

0.9486
± 0.0060

0.9522
± 0.0068

0.9418
± 0.0082

5 CONCLUSION

In this article, we have proposed two new methods for constructing confidence intervals and confidence
regions for quantiles in i.i.d. data. The techniques are based on the frameworks of generalized likelihood
ratios (GLR) and conditional Monte Carlo (CMC), and their validity has been established under a set of
sufficient conditions. Two numerical examples illustrated the potential of the proposedmethods over classical
counterparts based on batching and sectioning. Future work will focus on additional experimentation in
more complex settings and potential extensions to stationary processes.
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