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ABSTRACT

This paper considers a new approach for constructing metamodels for capturing tail behavior in stochastic
systems, e.g., simulation outputs. Specifically, we are concerned with the problem of global estimation
of the conditional value-at-risk (CVaR) surface, given (stochastic) responses from a collection of design
points. The approach combines stochastic kriging, which has previously been shown to work well for
metamodeling of discrete-event simulation output, with extreme value theory, which is a powerful statistical
tool for estimating tail behavior. We present the general methodology and promising results of preliminary
computational experiments.

1 INTRODUCTION

Executing and analyzing high-fidelity simulation models covering a wide range of parameters are often
quite computationally expensive, leading to significant attention paid in the literature to the area of
metamodeling, or surrogate modeling, for simulation. Applications that are concerned with characterizing
risk are particularly in need of such efforts. In these applications, the decision-makers are interested in
accurately describing tail behavior for the underlying distributions, which usually requires proportionally
more computational effort to observe sufficient rare events.

This paper proposes a metamodeling approach for globally characterizing a particular tail measure,
Conditional Value-at-Risk (CVaR), combining two relevant methodologies: stochastic kriging (SK) and
the peaks-over-threshold (POT) method for tail estimation. Stochastic kriging has been shown to be a
powerful modeling tool for predicting discrete-event simulation outputs, including forecasting tail measures
(Chen et al. 2012). While Chen et al. (2012) demonstrated promising results, their methodology is
based on empirical (nonparametric) estimators of risk measures. An alternative approach to characterizing
tail behavior has been studied under the umbrella of extreme value theory (EVT). Widely used in many
computational areas, it so far has received rather limited attention in the operations research community
in general and simulation applications in particular. EVT is known to improve tail estimates for various
stochastic systems (McNeil and Saladin 1997). Consequently, in this paper, we are interested in evaluating
whether this improvement persists if used within a metamodeling framework, such as stochastic kriging.
To this end, we propose a two-stage metamodeling framework, which employs the peaks-over-threshold
(POT) method from EVT to estimate CVaR for a set of given design points on the response surface and
then applies stochastic kriging to the estimated values to enable global predictions.
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Note that in this research, we explicitly concentrate on CVaR as the primary measure of risk and tail
behavior. While other approaches exist, CVaR is widely accepted as a de facto standard in many stochastic
modeling and optimization applications (Krokhmal et al. 2011). At the same time, it is worth emphasizing
that our methodology is also applicable for predicting other measures of tail behavior, such as Value-at-Risk
(VaR), quantiles or higher moment measures, as long as a corresponding expression can be derived for the
peaks-over-threshold estimator.

The remainder of this paper is organized as follows. In Section 2, we briefly discuss relevant literature,
focusing on recent developments in stochastic kriging and EVT applications. Section 3 presents an overview
of the relevant aspects of EVT, risk measures, and stochastic kriging. In Section 4, we present the proposed
method and then describe its performance in computational experiments in Section 5. Section 6 gives
concluding remarks.

2 LITERATURE REVIEW

The problem of interpolating a response surface over a design space given stochastic observations has
received significant attention from numerous perspectives, see Barton (1998) for a seminal paper. In this
section, we concentrate only on the literature directly related to the two components of our proposed
approach: stochastic kriging for estimating tail measures and EVT approaches to interpolation. The former
has been recently emerging in the simulation community, and the latter have found success in various
applied fields, such as hydrology. Note that we also provide a general introduction and overview (with the
corresponding references) of EVT, stochastic kriging, and measures of risk in the next section.

Use of simulation experiments paired with surrogate models with the goal of predicting tail measures
has been proposed by Chen and Kim (2016) and Chen et al. (2012) where they achieved global estimators
of CVaR and its derivative by using stochastic kriging and explored VaR and CVaR estimation methods
by fitting nonparametric estimators to a SK model. These methods showed promising results for creating
global estimators for VaR and CVaR but only employed empirical nonparametric estimators. In 2009 (Liu
and Staum 2009) used an adaptive allocation technique for allocating computational effort to approximate
CVaR using stochastic kriging in a nested Monte Carlo environment.

Beguerı́a and Vicente-Serrano (2006) employed regression techniques to the parameters of a generalized
Pareto distribution (GPD) to model the extremes via a Peaks-Over-Threshold model. They were then able
to achieve a spatial model for rainfall based on the parameters for the extreme distribution. Reza Najafi
and Moradkhani (2013) modeled the GPD scale parameter using a hierarchical Bayesian model with a
homogeneous shape parameter. Their work was based on real rain data sampled from gauges across the
Columbia river basin. Their work focused on fitting the GPD parameters, which vary based on the spatial
dimensions of their study; this work is similar to what we perform here; however, we will not assume
a prior distribution for the parameters of the extreme distribution. Wu et al. (2019) conducted a similar
analysis for China, and Bracken et al. (2018) proposed a multivariate nonstationary model where the
parameters that are being estimated by the Bayesian process vary in time. Lima and Lall (2010) performed
similar work by designing a Bayesian hierarchical model for seasonal maxima and showed effective results.
Their results rely on the seasonal extreme (i.e., block-maxima methods, not peaks over threshold), so the
ability to analyze the lower level extreme limits the analysis relative to the work done by Reza Najafi and
Moradkhani (2013).

3 BACKGROUND OF TECHNICAL COMPONENTS

3.1 Extreme Value Theory

Extreme Value Theory (EVT) commonly describes one of two classes of theoretical results describing the
asymptotic behavior of extreme events. The first branch (Block Maxima method) results from the limiting
distribution of max/min of a sample, which is characterized by the Fisher-Tippet-Gnedenko Theorem. The
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second branch (Peaks over Threshold, POT, method) characterizes the limiting behavior of exceedances
beyond a threshold via the Generalized Pareto Distribution (GPD).

The Generalized Pareto Distribution is a family of continuous probability functions defined by the
following cumulative distribution function:

Gξ ,β (x) =

{
1− (1+ ξ x

β
)
−1
ξ if ξ 6= 0

1− e
−x
β if ξ = 0

(1)

where ξ is the shape parameter and β > 0 is the scale parameter. This family of distributions describes
the behavior of observations exceeding some (high) threshold, as follows from the following result.
Theorem 1(Balkema and de Haan 1974; Pickands III 1975) Let x0 be the right endpoint (finite or infinite)
of a distribution F(x) and 0≤ u < x0, then we can find a positive measurable function β (u) such that,

lim
u→x0

sup
0≤x≤x0−u

|F(x)−Gξ ,β (u)(x)|= 0 (2)

if and only if F ∈MDA(Hξ ) (the maximum domain of attraction of distributions with tail parameter ξ )
i.e., F ∈MDA(Hξ ) if there exist sequences an and bn such that Fn(anx+bn)→ Hξ (x) as n→ ∞, for all
x ∈ R.

The power of this result comes from being able to describe the distribution of large values of a random
variable by fitting the corresponding generalized distribution. There exists a rich variety of literature dedicated
to best strategies to organize this calculation, most importantly, rules for selection of the threshold u. See
for example Scarrott and MacDonald (2012), Ho and Wan (2002), Ferreira* et al. (2003). In this effort we
consider a simple approach to allow for easy implementation, that is, setting a u threshold equal to some
pre-set quantile (90% in our experiments).

3.2 Conditional Value at Risk and Its POT Estimates

A rigorous methodology for evaluating risk in stochastic models was proposed in Artzner et al. (1999). It
describes risk measures in terms of coherence, which relies on several axioms such as translation invariance,
subadditivity, positive homogeneity, and monotonicity. The most popular coherent measure is Conditional
Value-at-Risk, which is a widely used way of estimating risk, especially in finance. For a random variable
X , the quantity Value-at-Risk at level α is defined as the corresponding quantile: VaRα(X) = F−1

X (1−α),
where F−1

X is the right continuous inverse of the cumulative distribution of X . In the case of continuously
distributed X , CVaR is then defined as the expectation of values above the value-at-risk, i.e.,

CVaRα(X) = E
[
X |X >VaRα(X)

]
.

Note that in the case of a discrete distribution, the formal definition is somewhat less intuitive, but allows
for a similar interpretation, see Rockafellar and Uryasev (2002) for details. Parameter α is usually taken
to be small, less than 5%, thus an accurate empirical approximation of CVaR requires at least n� 1/α

observations. However, EVT provides a method of approximating it by fitting a model to only the tail of the
distribution and then extrapolating the conditional expectation directly from it. The following description
is discussed in more detail in McNeil (1999). This is achieved by considering the conditional probability
of X above a threshold value, say u, with the corresponding exceedance distribution given by

Fu(x) =
F(x+u)−F(u)

1−F(u)
→ F(x) = Fu(x−u)[1−F(u)]+F(u). (3)

Since the distribution function is often unknown, we can approximate the exceedance distribution with a
GPD with estimated values for ξ < 1 and β . Given Nu exceedances and N total observations above the
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threshold we can approximate 1−F(u) by Nu/N. This gives a tail estimator of F for a value larger than
u as

F̂(x) = Gξ ,β (x−u)[1−F(u)]+F(u)≈ 1− Nu

N

(
1+

ξ̂ (x−u)

β̂

)− 1
ξ̂ (4)

where ξ and β are estimates of the GDP parameters. Thus, we can estimate the value at risk by inverting
equation (4). To calculate the conditional value-at-risk the parameter β is shifted by ξ (VaRα −u), giving
the following estimate of CVaRα(X)

CVaRα(X)≈ VaRα(X)

1− ξ̂
+

β̂ − ξ̂ u

1− ξ̂
. (5)

This estimate is known as the peaks over threshold model for conditional value at risk (POT CVaR). The
estimation of ξ̂ also informs the modeler of the tail behavior of the distribution and its finite moments. See
McNeil (1997) for more details on this approach. It should be noted that the methods for estimating the
GPD parameters range widely and, depending on the data available and underlying distribution, can achieve
different levels of bias and variance, see de Zea Bermudez and Kotz (2010), and Mackay et al. (2011).
For the purposes of this paper we do not discuss these in any more detail or consider other approaches.

The other, more readily intuitive, method for estimating CVaR, that is not based on EVT, is the empirical
average exceedance. Empirical CVaR is calculated by taking the expectation of the samples that exceed
the value at risk threshold, say q(α). More specifically, for a sample {xi}N

i=1 the empirical CVaRα(X) is
defined as

ĈVaRα(X) =
∑

N
i=1 xi1{xi≥q(α)}

∑
N
i=1 1{xi≥q(α)}

. (6)

3.3 Stochastic Kriging

Ankenman et al. (2010) extended the theory of kriging to the stochastic simulation setting by considering
both intrinsic and extrinsic uncertainties, where the former is inherent to the stochasticity of the simulation
itself, and the latter is due to the unknown response surface. Given a training set X = [x(1),x(2), ...,x(k)]T ,
where x(i) = [x(i)1 ,x(i)2 , ...,x(i)d ], i= 1,2, ...,k are d-dimensional decision variables, the corresponding observed
response vector is Ȳ = [Ȳ (1),Ȳ (2), ...,Ȳ (k)]T and Ȳ (i) is the average of observations over the entire number
of replications at design point i. A linear model, a realization of a mean 0 random field that represents
fluctuations around the trend and exhibits spatial correlation, and a noise term are the three components
representing the output of a stochastic simulation model of replication j at design point x:

y j(x) = f (x)T
β +M(x)+ ε(x) (7)

where M(x) is referred to as extrinsic uncertainty, ε(x) is intrinsic noise, and f (x)t is a (m×1) vector of
polynomial basis functions.

Let ΣM(x,x′) = Cov[M(x),M(x′)] be a k× k extrinsic covariance matrix achieved using the spatial
correlation function rM(x,x′ : θ) assuming that M is second-order stationary, then ΣM(x,x′) can be rewritten
as τ2rM(x,x′ : θ). And let∑M(x0, .) be a k×1 vector containing the covariance between x0 and all of the
k design points. Also, let Σε be the k× k intrinsic covariance matrix. Given the mean and covariance
function of the GRF, the prediction at a new point x is:

ŷ(x) = f (x)T
β +ΣM(x0, .)

T [ΣM +Σε ]
−1(ȳ−Fβ ) = f (x)T

β + r(x)
[
R+

C
τ2

]−1
(ȳ−Fβ ), (8)

where R is ΣM/(τ2), C is the intrinsic noise, and Fi = f (xi). Note that in extreme cases where C (the intrinsic
covariance matrix) is negligible compared to the extrinsic variance, the above equation becomes the same
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as that of kriging. Additionally, if τ2 (otherwise known as extrinsic variance) is negligible and close to zero,
then the above equation approaches ŷ(x) = f (x)T β which is the same as a regression equation. (β ,θ ,τ2)
can be estimated using maximum likelihood, assuming Σε is known and equal to Diag{V1,V2, ...,Vk} where
Vi =V (xi)/ni. ni shows the number of replications at the design point xi and the log-likelihood function
of (β ,θ ,τ2) is:

`(β ,θ ,τ2) =− ln[(2π)
k
2 ]− 1

2
ln[|τ2RM(θ)+Σε |]−1/2(ȳ−βB)T [τ2RM(θ)+Σε ]

−1(ȳ−βB) (9)

The estimated parameters then can be used to predict ŷ(x).

4 METHODOLOGY

The overall metamodeling framework is given in Figure 1. First, in the Initialization step, we select
metamodel parameter values, which affect the model accuracy and computational effort. The two main
phases are: Estimation and Metamodeling. In the estimation phase, after obtaining the simulation response
for each design point, we apply the POT CVaR estimator. Then, the intrinsic variance of this estimator
is evaluated by replicating this step. Given these observations, we can then construct the SK metamodel.
Note that instead of the POT estimator in Step 4 we can also use a more naive empirical estimator (and
will do so in our computational comparisons in Section 5), which results in the same model as the one
proposed in Chen and Kim (2016). Finally, the whole process can be repeated if the desired accuracy is
not achieved.

To estimate the GPD parameters, we use the probability-weighted moments method, which has been
shown to be more reliable over the MLE estimates for sample sizes less than 500 (Hosking and Wallis
1987). For the experiments reported below, the threshold for exceedances is selected to be constant across
the entire design space, set as the 90th percentile of the samples taken at each design point.

In the next section, we use a test case function with different kinds of random noise to represent a
complex simulation, and sample from the design space using different computational budgets. The intent is
to demonstrate the capability of POT-CVaR estimates compared to empirical CVaR estimates. The test case
consists of different scenarios to capture potentially different behaviors of the randomness of a simulation.

5 EXPERIMENTATION

We demonstrate the capability of SK surrogate models for the proposed methodology with a test case of
three different scenarios. We use a test case function with three kinds of random noise to represent a
complex simulation, and sample from the design space using different computational budgets. The test
case then represents a complex surface, and the scenarios represent various forms of randomness that will
affect the estimation of CVaR, namely a finite tailed, a heavy-tailed, and a normal (thin-tailed) distribution
of noise. The experiment consists of a fixed design strategy for selecting test points in the design space
and is repeated for different computational budgets, employing both empirical and POT-CVaR estimation
methods, and then fitting the surrogate models. For each computational budget we develop two stochastic
kriging metamodels based on the same framework: one as described on Figure 1, and one based on empirical
CVaR estimate, as proposed in Chen and Kim (2016). We then compare the two models in terms of the
accuracy for a set of common test points (separate from the design points used in model construction), as
measured against the known true values of CVaR.

5.1 Test Case Design and Experimental Parameters

The test case for the experiment is a well-known two-dimensional function with an additive noise term:

fi(x1,x2) = x1 sin(πx2)+ x2 sin(πx1)+ εi(x1,x2), (10)

where εi(x1,x2) is random noise and x1,x2 ∈ [−π,π]. The scenario description is as detailed in Table 1
below. The function, as well as true CVaR values, are as described in Norton et al. (2019).
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1

Choose axes and correlation function r

2

Choose design points using LHS

Initialization

 

3

Simulate: for each i=1, …, k

CVaR Estimation

4

Use POT to estimate CVaR

5

Estimate intrinsic variance v(xi)

6

 Estimate parameters β, θ, τ2

Metamodeling

7

Predict ŷ(x) for any desired x

8

Validate and test model performance 

Not Satisfied 9
Use the surrogate model 

for estimating CVaR

Figure 1: Proposed metamodeling framework

Table 1: Description of noise terms and expressions for the true CVaR values

Scenario Description εi(x1,x2) True CVaR [εi(x1,x2)]

normal (thin) tail N(µ = 0,σ =
√
(x2

1 + x2
2)

√
(x2

1+x2
2)φ(Φ

−1(α))

α

finite tail Tri(min = 0,max =
√

(x2
1 + x2

2))
√
(x2

1 + x2
2)−

2α1/3

3

√
(x2

1+x2
2)

2

heavy tail Pareto(a = 2,xm = 2+
√

(x2
1 + x2

2))
2(2+
√

(x2
1+x2

2))

(1−α)1/2

We sample the design space using a Latin hypercube sampling (LHS) design, which is a statistical
sampling method to generate a near-random sample of parameter values. A one-dimensional LHS with n
samples partitions the CDF evenly into n regions and then randomly picks one sample in each region. The
d-dimensional LSH, on the other hand, generates one-dimensional samples for each input and then randomly
combines the samples. This design has shown favorable performance in the literature, for example, (Helton
and Davis, 2003). The computational budget for creating the SK model is divided over the number of runs,
replications, and design points. The SK model is based on observations from k design points. In each
design point, N runs (samples of the test function) are observed to obtain a POT (or empirical) estimate
as described earlier. To evaluate the noise for constructing an SK model, POT (or empirical) estimation is
repeated over m replications. Thus, the computational budget (total number of simulated values) is given
by N×m× k. For our experiment we select three budget values and consider a variety of corresponding
values for the number of runs, replications, and design points for a total of 16 trials, see Table 2.
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For all trials we use α = 0.01. Note that this implies that the lowest number of runs to empirically
estimate CVaR is 100, in which case both empirical VaR and CVaR estimates are simply the worst-case
values. We then expect that introduction of POT estimator can lead to improved accuracy at each design
point, and consequently of the metamodel itself for the cases with N = 100. For each trial, we compare
the proposed CVaR predictor (referred to as POT) with a straightforward approach based on the empirical
estimate at each design point (referred to as EMP), constructed analogously to (Chen and Kim 2016). Our
implementation relies on the Python SciPy package for minimizing the likelihood function and estimating
the SK parameters. As different components may have very different variabilities, it is helpful to normalize
the design points first. We use the Sklearn MinMaxScaler function to do so.

Table 2: Experimental trials summary

Total Budget Number of Design
Points (k)

Number of Replications of
each design Point (m)

Number of Runs for Each
Replication (N)

Budget Identifier

10000
10 10 100 1
20 5 100 2

100000

10 100 100 3
20 50 100 4
10 10 1000 5
20 5 1000 6
50 20 100 7
100 10 100 8

1000000

10 10 10000 9
20 5 10000 10
10 1000 100 11
20 500 100 12
100 10 1000 13
200 5 1000 14
100 100 100 15
200 50 100 16

A major issue in getting good predictions from kriging is choosing an appropriate spatial correlation
function and value of its parameter θ . In this study a Gaussian correlation function is used, given by
r(x− x′,θi) = exp

(
−∑i θi(xi− x′i)

2
)

. θi determines the correlation decay with distance measured along

dimension i. We choose the initial value of τ2 as the variance of the residuals. Since our test function
includes many oscillations, finding a well-specified polynomial or linear trend can be burdensome and
might result in misspecification of the model. Therefore, we perform kriging with b = 1 and this results in
estimating a constant mean over the domain, as opposed to a trend that varies over X . However, it should
be noted that SK without the trend term can still lead to good predictions if the parameters are well-chosen.

Overfitting, misspecification, and too few design points are three of the many things that can result in
an invalid and inaccurate metamodel. Posterior variance is one of the measures that can be used to validate
a metamodel along with standard error measures, such as Mean Absolute Percentage Error (MAPE) and
Mean Absolute Error (MAE). Since posterior variance can be misleading due to misspecification of GRF,
we utilize MAPE and MAE to report the performance of the surrogate models.

The same set of validation points are used to validate the metamodel corresponding to each budget
combination, which enables us to draw comparison between the different noise distributions, and also
between the different simulation budgets. The validation set contains 100 points, which are sampled from
the problem domain using LHS.
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5.2 Experimental Results

Table 3 reports the error measures (MAPE and MAE) between the estimated CVaR using the surrogate
stochastic kriging model (POT or EMP) and the true CVaR value, averaged over the 100 test points.
Additionally, Table 4 reports the outcome of the nonparametric Wilcox Signed Rank Test over the absolute
error of the empirical and POT CVaR SK models. Note that the bolded values are significant at 95%
confidence. Figure 2 give representative predicted (from trial 15) and true response surfaces for the three
noise types.

Table 3: Measures of error of the surrogate stochastic kriging models averaged over 100 random test
points. “Average improvement” row refers to the improvement achieved by the POT model over empirical,
averaged over all trials.

Noise Normal Triangular Pareto
Measures MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE
Budget POT EMP POT EMP POT EMP POT EMP POT EMP POT EMP

1 21.88 27.23 1.93 2.33 610.71 593.88 1.71 1.68 32.45 49.05 30.64 44.30
2 25.99 25.95 2.20 2.43 440.27 423.61 1.42 1.43 27.71 47.01 24.89 42.37
3 26.11 32.77 2.72 3.40 362.63 347.51 1.54 1.56 10.69 35.17 10.24 31.53
4 19.34 23.09 1.70 2.06 575.86 559.36 1.54 1.53 17.84 39.78 16.34 35.44
5 20.17 28.22 1.82 2.29 493.72 491.91 1.53 1.53 17.90 19.19 15.90 17.63
6 19.74 25.34 1.80 2.05 412.42 410.59 1.63 1.63 12.07 15.54 11.43 14.71
7 8.83 14.96 0.83 1.43 235.43 223.35 0.98 1.00 17.26 38.95 15.41 34.33
8 4.99 12.76 0.47 1.12 19.08 29.18 0.12 0.13 28.31 45.54 25.30 40.39
9 18.48 26.65 1.73 2.23 450.81 450.33 1.55 1.55 3.45 3.58 3.14 3.27
10 21.23 25.11 1.81 1.93 442.17 441.85 1.46 1.46 4.87 5.08 4.44 4.65
11 21.59 29.46 1.80 2.28 551.64 534.68 1.54 1.52 9.38 34.76 8.84 31.03
12 20.60 24.94 2.03 2.38 528.12 511.90 1.46 1.46 9.65 34.97 8.87 31.05
13 2.04 2.38 0.20 0.24 15.83 16.52 0.13 0.13 6.29 10.59 5.29 9.03
14 2.47 3.09 0.22 0.27 7.21 22.22 0.05 0.05 10.08 13.89 8.91 12.24
15 3.21 13.01 0.30 1.13 20.72 26.82 0.12 0.14 12.51 36.52 11.29 32.31
16 2.33 13.15 0.21 1.15 5.24 17.19 0.04 0.08 13.41 35.47 11.72 31.19

Average Improvement 5.57 0.43 -4.44 0.00 14.45 12.68

As it can be expected, in general a higher number of design points results in a better surrogate model
across the different noise distributions. It can also be seen from the results that more design points are
better than very low variance at a few points. For example, budget identifiers 7 and 8 have 5 times as
many design points as budget identifiers 3 and 4 but have fewer replications at each design point, however
the surrogate models achieved using budget identifiers 7 and 8 outperform those achieved using budget
identifiers 3 and 4.

Most importantly, we can observe that for most trials and both measures, use of the POT estimator
improves the accuracy of the stochastic kriging model for both normal and Pareto noise experiments. This
improvement is statistically significant for all trials with Pareto noise, and most trials with normal noise.
As expected, the difference is especially large for trials with N=100 (trials 1-4, 7, 8, 11, 12, 15, 16),
for which the empirical estimator is not very accurate. This implies that the POT based SK model can
more effectively manage the tradeoff between the three budget elements (k,N,m). For example, it may be
possible to consider more design points (resulting in a more accurate SK model), while still maintaining
adequate accuracy of the CVaR estimate. More thorough experiments are needed to carefully examine
this tradeoff in practical applications. For the triangular noise, the difference between the two methods is
smaller and not statistically significant in most trials (note that the relatively large MAPE measure in this
case can be explained by relatively low values for the predicted CVaR, since the error term is bounded).
This is not surprising, since for a triangular (finite) tailed distribution, with sufficiently many samples and
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small α , the CVaR value quickly converges to the maximum of the domain, meaning that both empirical
and POT estimates are very accurate.
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Figure 2: CVaR response surface, true and predicted by the POT SK model for the three noise types.
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Table 4: P-value results for the Wilcox Signed Rank Test over the absolute error of the empirical and POT
CVaR SK models (bolded value indicate significance at 95% confidence)

Wilcox Signed Rank Test: P-Value Absolute Error

Budget Normal Triangular Pareto
1 0.1591 0.0008 < 0.0001
2 0.9465 0.2015 < 0.0001
3 0.7819 0.0045 < 0.0001
4 0.0003 0.3383 < 0.0001
5 0.0002 0.7168 0.0108
6 < 0.0001 0.0284 < 0.0001
7 < 0.0001 0.0267 < 0.0001
8 < 0.0001 0.0050 < 0.0001
9 0.7323 0.4402 0.0315

10 < 0.0001 0.4906 0.0002
11 0.0017 0.2190 < 0.0001
12 0.1794 0.4161 0.0001
13 0.6315 0.2660 < 0.0001
14 < 0.0001 0.6711 < 0.0001
15 < 0.0001 0.0142 < 0.0001
16 0.0284 < 0.0001 < 0.0001

6 CONCLUDING REMARKS

In this paper we proposed combining a stochastic kriging metamodeling approach to globally characterizing
tail behavior of stochastic systems with a more accurate local estimator based on extreme value theory.
Kriging metamodels depend on a wise choice of how to spend a computational budget, and hence a more
accurate estimator at each design point has potential to translate into better global accuracy of the metamodel.
Our experiments generally confirm this phenomenon. Specifically, we observed that for stochastic functions
that exhibit a spatially dependent fat tailed noise the use of POT estimation for CVaR at high α levels
outperforms the common empirical approach. We have shown (experimentally) that for a triangular (finite)
tailed distribution of noise the POT does not exhibit any gained accuracy. The observed improvement
varies with the computational budget and type of noise. Clearly, more work is needed to confirm these
observations and learn more about the value of EVT for kriging metamodels in stochastic simulation.
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