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ABSTRACT

For planetary explorations, the space agencies have usually sent single robotic rovers to complete missions.
An alternative approach is to send multiple rovers, which can insure against failure of one or more rovers.
Planning for a multi-rover mission has its own challenges, and simulations can aid in identifying and
addressing such challenges. In this paper, we present an ontology-based approach to simulate a multi-rover
planetary exploration mission, with a focus on resilience, adaptation, heterogeneity, and reconfigurability.
We present an ontology that describes multiple rovers along with an inventory of their parts shipped with
a lander. Our approach shows that having the ontology-based simulations help in complex scenarios such
as to loan parts from inventory, and salvaging a damaged rover for good parts.

1 INTRODUCTION

Planetary exploration missions designed for landing expeditions typically consist of an orbiter, a lander
and a rover. These systems are remotely controlled from an Earth station. The current state-of-the-art in
remote robotic exploration is a single large rover deployed at a site of interest. A rover is usually built
as a large, feature-rich, robust, heavy, and extremely expensive cyber-physical system (Seeni et al. 2010).
These rovers move slowly owing to their large sizes, and to the unknown and uneven terrains, and try to
explore only relatively large and open areas.

Another factor that restricts speedy exploration is the lack of autonomy. Mars Space Laboratory, sent to
Mars in 2011, requires humans-in-the-loop to plan sequences of actions for each sol based on down-linked
data (Grotzinger et al. 2012; Gaines et al. 2016). These sequences need to be synchronized over long
interplanetary distances, and have a latency running in minutes (Gaines et al. 2016). Some may argue in
favor of granting some degree of autonomy to a rover (Fink et al. 2015), whereas others may argue against
it as the only rover in charge of an exploration is too precious to be left autonomous. Can this trade-off
be salvaged by sending multiple rovers? In addition, we ask questions such as:

1. Will all rovers be identical, or will some rovers have some heterogeneity and unique skills?
2. How can we handle damage to the rovers? Can we repair a rover by replacing parts from an

inventory with the lander? Can parts be borrowed from other nearby rovers?
3. If a rover receives irreparable damage, can we salvage the usable parts of that rover?
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Previously, (Vaquero et al. 2018; Estlin et al. 1999; Skelton and Pang 2008; Fink et al. 2015) discussed
the architectures of multi-rover systems for space exploration, their benefits, challenges and approaches.
While multi-rover systems solve a lot of these challenges, they bring in some of their own, especially for
coordination and knowledge sharing among the rovers (Isarabhakdee and Gao 2009; Tumer and Agogino
2005; Skelton and Pang 2009). Knowledge sharing using a common ontology enables agents to communicate
via a shared and disambiguated vocabulary, and perhaps even reason on top of this knowledge (Torres and
Wijnands 2011). We presume that each mission has different goals, and thus has its own coordination and
knowledge sharing needs. Therefore, we see a merit in building an agent-based simulation of a prospective
mission to discover those needs and accordingly to help build a system (Shafto et al. 2012).

Ability to reconfigure a robot is another desirable quality to be had as an insurance against failure of a
part, which may render an entire robot unusable. Earlier work (Patil et al. 2013) has explored this capability
in the physical robots, and mentions a need to work on software architecture. An essential component of
this architecture is the description of robot parts, assemblies, and the process of configuration. Description
logics such as Web Ontology Language (OWL) help to capture and reason about the description. While
ontology for autonomous robots have been explored (Olszewska et al. 2017) before, it still remains a
good problem to tackle in different application areas. In this paper, we focus on agent-based simulation of
heterogeneous multi-rover system designated for planetary exploration, with a focus on achieving ability
to re-configure via behavior-based ontology. Based on this ontology, we demonstrate rovers completing
assigned tasks even when a rover gets damaged, in following ways:

• A rover gets a damaged part replaced from the inventory.
• An irreparable rover is salvaged for its working parts.
• A rover loans a functioning part from another rover to complete its assigned task. However, in this

paper we do not loan parts from fully functioning rovers.

For these goals, the common ontology mentioned above, need to be further augmented to capture
descriptions of rover parts, their assemblies, capabilities associated to specific parts and their tasks, mission
details, and so on. According to (Tolk 2013), a simulation model needs to capture the semantics of the
systems and processes using ontology. DISim, an ontology for modeling and simulation of data integration
processes in the biomedical domain, focuses on modelling and simulating web integration tasks from
heterogeneous resources (Sernadela et al. 2015). Automated adaptation is another complex problem in
this space, and (Lattner et al. 2010) presented a knowledge-based approach to automated adaptation in a
simulation model. For ontology and domain modeling in general, (Clancey 1993) observes that knowledge
representation must not restrict the knowledge of mechanisms of the system. Complete knowledge modeling
should be a result of domain knowledge along with the behavior of an intelligent agent in its environment.
Following this, (An and Christley 2011) have shown how agent-based modeling framework can go beyond
structural knowledge and capture behaviors as well. In their work, they have mentioned that in order to
achieve dynamic knowledge representation, there is a need to extend the relational predicate logic system
to actionable predicate logic systems. (Guerrero et al. 2005) in their work have demonstrated the use of
OWL and SWRL to capture the management information and behavior in a single network management
information model. Further, when it comes to modeling processes, using the idea of Function-Behavior-
Structure Ontology can provide higher-level semantics in their representation (Gero and Kannengiesser
2007).

In the rest of this paper, we discuss the high-level design of the simulation, followed by the ontology
to describe rover parts, detailed rover assembly, inventory, mission plans, tasks, and matching parts to
tasks. Thereafter we describe simulation scenarios to demonstrate how the ontology design helps in re-
configuration of rovers during a mission execution. We share a few observations related to decisions in
modeling and technical design, and finally conclude with a note about future work.
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2 SYSTEM DESIGN

An agent-based simulation model requires description of various agents, their structural and behavioral
composition, and behavioral rules for invoking a specific behavior. It is a non-trivial exercise to model
agents with heterogeneous skills and capabilities, especially towards reconfigurability. In our simulation
model, we have heterogeneous agents such as rovers of different skills, the lander, and other robots for
management and reconfiguration. The structure of agents including their skills, parts, and assemblies being
a declarative description is captured in the ontology. The agent behaviors being imperative in nature are
part of the simulation engine code in the Python language. The ontology bridges the references of these
behaviors in the source code to the respective agents, to be later consumed during the simulation process.
Currently, the missions are also modeled in the ontology because we see them as simple sequences of tasks.

In the rest of this section, we will discuss design of simulation engine components including ontology.
The simulation process and scenarios are discussed in section 3.

2.1 Simulation Engine Design

The simulation engine is designed as a state transition machine as shown in Figure 1, where each state
consists of the triple —<agent, behavior,executable>. The executable represents a scenario
or a task, and the agent executes each executable using the behavior referred in the ontology and
defined in the Python source code.

Figure 1: Simulation engine state transition.

The simulation engine design comprises of four classes: Simulator, Reasoner, Behavior
and State. The Simulator class orchestrates simulation using State, Reasoner and Behavior
instances as shown in Figure 2.

The class Behavior is responsible for managing behaviors defined as functions in Python language,
and for linking these definitions to the behavior instances in ontology. The Behavior class in Python
mirrors the Behavior class in the ontology. A developer must ensure the mirroring by explicitly capturing
a behavior’s identifier in the ontology and the Python function as shown in Figure 3 and Figure 4. Then
the simulation engine knows which two Behavior instances are equivalent, and then using Python’s
annotations combined with Decorator design pattern (Gamma 1995), it keeps a mapping of an identifier to
the Python function. Decorator is a design pattern that allows adding new behaviors to objects dynamically
by placing them inside special wrapper objects. This approach helps in externalizing the behaviors via
annotated function definitions as concrete implementations of their respective ontological behavior. These
annotations add meta definitions to the function, thus allowing them to be redefined in the context of the
simulation engine. Currently, the decorator accepts the identifier of a behavior service in a URI format
(Masinter et al. 2005). The URI acts as key in a dictionary of behaviors that the Simulator looks for.
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Figure 2: Simulation engine control flow.

Once found in the dictionary, the Simulator then invokes the service to actually perform the expected
Behavior. A URI offers benefits such as encoding the protocol of invocation (such as HTTP, RPC, or
a native API call), owner or host of the service, and the service along with arguments. Currently, the
framework supports only the API call invocation.

The Reasoner class is responsible for managing, reasoning, and querying the ontology with the
help of owlready2 (Lamy 2017) and the pellet reasoner (Sirin et al. 2007). Owlready2 is a Python
package for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they
were objects in the python programming language. It provides an out-of-the-box support for the reasoner
which is very helpful while doing OWL reasoning and also provides support for running SPARQL queries.
SPARQL (a recursive acronym for SPARQL Protocol and RDF Query Language) is a language to query and
manipulate data store in the form of a directed, labeled graph known as Resource Description Framework
(World Wide Web Consortium 2013). SPARQL is inspired from the popular database query language SQL.

The Simulator initiates a simulation with the triple <simulator, simulate, simulation>.
The simulate behavior is an externally supplied behavior to set the course of the simulation. State of
the simulation is affected by a behavior, and each behavior returns a set of next states. The State class
converts the simulation into a directed acyclic graph (DAG) of states, which is traversed in a breadth-first
manner. Newer states obtained after execution of the current state are added to the pareto front. This
pareto front serves as the stack of next states, and gets modified through the course of the simulation. The
State class provides two special states, NIL state, and WAIT state. The NIL state marks the end of a
simulation path. The WAIT state puts the execution of <agent, behavior, executable> on hold
for a timeout duration.

The simulation engine is written on top of SimPy library (Muller, Vignaux, and Chui 2020), which
is used for resource management and clock synchronization.
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Figure 3: Relationships (with uri data-property value in tooltip).

Figure 4: Python implementation.

258



Jose, Singh, Patel, and Hayatnagarkar

2.2 Ontology Design

In this section, we discuss how the ontology caters to structural and behavioral descriptions of the simulation
of planetary exploration. For this arrangement, we have defined an ontology having two logical parts,
namely Simulation Ontology and Planetary Exploration Ontology. The ontology is implemented using
Descriptive Logic (DL) profile of Web Ontology Language 2 (OWL2) (World Wide Web Consortium 2012).

2.2.1 Simulation Ontology

The simulation ontology is the ontological construct of the simulations and consists of two entities:

• Simulation class defines the simulations to be run. It is the bridge between the domain ontology
and the simulation ontology. The instances of Simulation are stimulated by the Simulator
instance.

• Simulator is a singleton class (which means it has only one instance), and its instance becomes
the simulator agent with the simulate behavior.

2.2.2 Planetary Exploration Ontology

To describe the domain of planetary exploration, especially using multiple rovers, we define following
classes.

• DomainConstant represents the domain-specific constants and singleton classes. These components
describe the environment for planetary exploration, and help in defining simulation scenarios.
Following are the domain constants, schematically shown in Figure 5.

– Action defines actions that Bot instances perform during simulation. Examples are excavation
and exploration.

– Terrain represents different terrains along with their properties encountered during the planetary
exploration and excavation.

– TimeOfDay describes the daytime and nighttime luminosity.
– Skill represents various capabilities that a Bot requires to perform an Action, to traverse on

a Terrain, or to view during a TimeOfDay.
– Behavior describes an agent behavior as discussed earlier Section 2.1.

Figure 5: Taxonomy of DomainConstants.

• DomainThing subclasses are instantiated classes. The following are the subclasses of Domain-
Things as shown in Figure 6.
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– Containable is an abstraction for the holding areas namely, inventory and parkingLot,
which have the capability to hold Part, Assembly and Bot instances. These are managed
by Managers. The inventory contains workable atomic components - available in large
finite quantity, required for assembling any Bot from a predefined schema. The parkingLot
holds the assembled Bots awaiting tasks.

– Agent is the super-class for the Bot, the Manager and the Orchestrator classes.
* Bot consists of a collection of specialized rover definitions. Bot instances are responsible

for undertaking planetary exploration tasks.
* Orchestrator gets assigned to a Mission. The Orchestrator has behavior execute

which enables it to extract the Task instances from the mission, and return a set of next
States composed of - an agent assigned to the task, a behavior required for the task, and
the task itself.

* FactoryManager has behavior createAssembly and createBot to create new in-
stances of Assembly and Bot respectively.

* InventoryManager manages the inventory based on the addition or removal of parts
or assemblies. It also has behaviors required to provide parts and assemblies to the
FactoryManager.

* ParkingLotManager is responsible for managing a parkingLot and has behaviors
required in order to add Bots to a parkingLot, manage Task allocation, perform
health diagnosis, repairs and part-salvaging on the Bot.

– Part and Assembly classes represent individual parts and their assemblies respectively. Bot
consists of multiple Assembly instances, and in turn each Assembly instance consists of
multiple Part instances.

– Executable is the super-class for Mission and Task classes. Each executable instance
represents an atomic operation that an agent can perform. Many instances of executable
can be linked together to form a control flow.

3 SIMULATIONS AND RESULTS

In this section we will discuss the overall simulation flow along with two different simulation scenarios
for planetary exploration, namely repairing damaged rovers, and salvaging parts and assemblies from
irreparable damaged rovers.

3.1 Simulation Flow

The simulation scenarios are designed as missions, and each mission has multiple tasks. The tasks are
assigned to an agent, and are defined by a behavior. The simulation works in two phases: First phase is to
build a rover, and to perform the excavation/exploration task, and the second phase is to handle a damaged
rover. Based on how the damaged rover is dealt, we describe here two simulation scenarios, which are
instantiated with the landerMissionControl as an instance of the Orchestrator, factoryManager,
inventoryManager and parkingLotManager as instances of the Manager, and parts required for
assembling a rover. Figure 7 and Figure 8 represent the control flow for building a rover, and performing an
exploration or excavation task, with Repair and Salvage boxes representing the repair and salvage activities
respectively.

1. The simulator agent starts the simulation by assigning the mission to thelanderMissionControl.
The agent achieves this by preparing the state triple – <landerMissionControl, execute,
missionCreateBDBotDay>, which triggers the execute behavior of the landerMission-
Control on the mission instance.
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Figure 6: Taxonomy of DomainThings.

2. The landerMissionControl executes the mission by extracting the next tasks from the
mission. The mission consists of two tasks, both assigned to the inventoryManager. The
landerMissionControl hands over the tasks to inventoryManager.

3. The inventoryManager obtains the parts required to build BeltDrive, DayCameraRig and
DrillerArm assemblies as requirements for the building a belt drive bot having the capabilities
to excavate rocky terrain during day time. These parts include motors, belt drives, cameras and
drills. Once the task of obtaining the parts is completed, the inventoryManager obtains the
next task, which is assigned to the factoryManager.

4. The inventoryManager provides the factory manager with the parts along with the task, which
directs the factoryManager to build the assemblies - BeltDrive, DayCameraRig, and the
DrillerArm. The factoryManager proceeds to build these assemblies and returns it to the
inventoryManager as directed by the next task.

5. inventoryManager adds the newly created assemblies to the inventory and makes them available
for rover construction. The next task directs the inventoryManager to provide the assemblies
required for Belt Drive bot to the factoryManager.

6. With assemblies required for the BeltDriveBot, the factoryManager proceeds to build the
BeltDriveBot.

7. The newly constructed bot is sent to the parkingLot, where it undergoes a health diagnosis.
As the rover is in pristine condition, the parkingLotManager marks it as available for task
allocation. This marks the end of the first mission.

In a hostile environment the rover runs the risk of damaging parts during the execution of a task. We
represent this by providing a part_life property to the rover parts. This brings us to the second part
of the simulation scenario which would be discussed below.
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Figure 7: Simulation flow - building bot.

3.1.1 Repairing Damaged Rovers

In the second part of the simulation as represented in Figure 8, the newly constructed rover is allocated an
exploration task, which is handed over by the parkingLotManager. The rover dissociates itself from
the parkingLot in order to perform the task, during which the parts experience wear and tear. The rover
returns back to the parkingLot after completing the task, where the parkingLotManager performs
some health diagnosis on it. The healthDiagnosis behavior of the parkingLotManager identifies
that one of the parts of the rover has been damaged and requires repairs. The parkingLotManager
proceeds with the repair on the rover by first identifying the damaged parts and assemblies, and then
obtaining a new set of parts and assemblies in lieu of the damaged ones with the help of the inventory
manager. The newly obtained parts and assemblies replace the damaged parts and assemblies in the rover.
The repaired rover returns back to the parkingLot where it awaits new tasks. This marks the end of
the first simulation scenario.

3.1.2 Salvaging Parts and Assemblies from Damaged Rovers

Similar to the previous section, the rover is allocated an excavation task. Rover parts and assemblies
undergo wear and tear during the execution of the task. Once the task is completed the rover returns
to the parkingLot where the parkingLotManager performs a health diagnosis on the rover. The
healthDiagnosis behavior of the parkingLotManager labels the rover damaged beyond repair.
The parkingLotManager then proceeds to salvage the good parts and assemblies from the damaged
rover, and returns these salvaged parts and assemblies to the inventory.

3.2 Reproducing the Results

These results can be reproduced by cloning the following Git repository and using the tag WSC_2020_V1.0
https://github.com/t3pleni9/KnowledgeSimulator
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Figure 8: Simulation flow - repair and salvage.

4 OBSERVATIONS

During the design and development of the ontology model and the overall simulator system, we made a
few observations. We observed that the multi-agent simulation required a non-monotonic logic reasoning,
as addition of newer ontology nodes during the course of the simulation modified a previously held notion.
Semantic Web Rule Language (SWRL) supports monotonic inferences only, and this constraint hindered
the simulation and drove the ontology into an inconsistent state. We circumvented the need for SWRL
rules, by capturing the transition rules as behaviors defined as external APIs.

We observed that SPARQL queries were easier to operate upon as compared to DL queries, as the
string representation of the SPARQL query could easily be stored as a data property of an ontological
instance and presented to owlready2 library for execution. This design choice made the simulation more
robust and dynamic in nature.

During the course of the simulation, the simulation engine updates the in-memory ontology, which the
modeler can choose to persist in a filesystem. We observed that the persisted ontology has the following
benefits: 1. It serves as a checkpoint of the last good state of a simulation and to resume from this point, 2.
It serves as a starting point for multiple simulations branching out, and 3. It allows a large simulation to be
broken into multiple smaller simulations such that each simulation feeds its output to be the input for the
next one. However, this is not unique to ontology-based approach, and can be achieved via serialization
of an in-memory state to be persisted using any other mechanism such as a database.

During the process of simulation model development, we had introduced design inconsistencies in the
ontology of simulation models (for example, a mission’s description), and some of which later appeared
as run-time inconsistencies. We found that reasoner-based inference was of substantial help in tracing the
sources of these inconsistencies and fixing them quickly. For large simulation models, we believe this
traceability is very critical.

5 CONCLUSION AND FUTURE WORK

A multi-rover system for planetary exploration was described using an ontology, which also served as
the description for the simulation. Since the ontology was supported with underlying class behaviors, the
simulation behavior could be prototyped with the help of a higher-level programming language. From
our experimentation we were able to define an ontology, which acted as the simulation itself. Further it
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was demonstrated that a new simulation scenario could be defined within the ontology definition. This
experimentation also demonstrated how ontology could play a crucial role in collaboration and knowledge
sharing in a multi-agent system.

A minimal simulation engine was also designed as part of the experimentation. The input to the
simulation engine was the ontology, which held the domain definition, along with the simulation scenario
definition. The engine simulated the ontology through state transition. The final simulation engine produced
as a result is highly modular.

The current multi-agent-based simulation is written from the assumption that the agents and rovers
with specialized capabilities are already initialized and present in the simulation environment. As part of
continued improvement, we plan to create a simulation environment which would also be able to create
new rovers on demand with task scheduling capabilities.
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