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ABSTRACT 

The problem of planning drainage services in a certain timeframe by a typical municipal infrastructure 
maintenance organization lends itself well to existing solutions for resource constrained project 
scheduling optimization. However, the optimized schedule could be deemed insufficient from a 
practitioner’s perspective as the very crucial soft constraint on the competence of a particular crew 
handling different jobs is excluded. We define a crew-job matching index ranging from 0 to 1 to allow for 
a planner's assessment to be factored in job schedule simulation and optimization. The total crew-job 
matching index (TCJMI) is further defined, accounting for all the crew-job assignments and indicating the 
fitness of a formulated plan. TCJMI is maximized in the resource-constrained schedule optimization by 
applying Excel Solver add-in. As such, the planner’s preference and experience can be represented and 
factored in crew-job scheduling optimization, which is demonstrated through conducting “what-if” 
simulation scenario analyses. 

1 INTRODUCTION 

The drainage network is a critical component of the municipal infrastructure that collects sewer and 
wastewater from residential, industrial, and commercial sources and transfers it to centralized treatment 
facilities. As the drainage network's performance directly affects the quality of life and the environment, 
the entire system needs to be maintained at a desirable operational level. Conditions of underground 
utility systems are subject to deterioration due to aging, excessive demand, misuse, exposure, 
mismanagement, and neglect (Chughtai and Zayed 2008). The Federation of Canadian Municipalities 
(FCM) reported that approximately 55% of Canada's sewer infrastructure did not meet current standards 
(Najafi and Kandivali 2005). Therefore, the burden on Canadian municipalities to maintain the drainage 
networks' operations is continuously on the rise. In reality, implementing a proactive maintenance 
program remains a challenge due to technological limitations, finite crew resources, and limited budget 
allocation. In the meantime, as the rehabilitation work is generally performed only when a major failure 
occurs, it is equally essential for a municipal infrastructure operator to develop an effective risk 
management strategy (Haas et al. 1995; Wirahadikusumah et al. 1998). Jobs planned for any drainage 
service crews usually have tightly constrained deadlines, with each job being one of a kind and job 
locations decentralized over the wide city area (Zaman et al. 2017). Figure 1 displays the spatial 
distribution of all the jobs handled by a drainage network maintenance service company for over one year 
in Edmonton, Canada.   
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Job planning and crew use scheduling are subject to distinctive sets of hard and soft constraints. In 
this application context, hard constraints refer to the job duration, the crew's availability prior to executing 
a job, the imposed completion deadline on specific jobs, and other time-sensitive approvals of permits. 
Soft constraints can be a particular crew's competence in handling a specific type of job including (1) 
knowledge about the situation of a particular neighborhood, (2) experience with operating a particular 
type of equipment or procedure, and (3) the crew’s capability to foresee potential hidden issues and risks 
before they are manifested in the field.  As multiple crews can be the candidate for executing a particular 
job, the planner needs to avoid overworking some crews and underworking others by well balancing the 
workload among different crews. Meanwhile, the planner intends to grow the competence of a certain 
crew in working on a specific type of job and thus allocating such jobs to the crew with higher priority.  

In construction, skilled labor resources play a critical role, while their availability is limited and varies 
from time to time (Haplin et al. 2017). At the work planning stage, the decision on resource provisions 
(including the number of self-employed crews and the quantity of subcontractors if needed)  is largely 
made based on experiences of project managers and schedulers. The problem of allocating a limited 
quantity of crews to execute a given set of jobs with time constraints is generally classified as the problem 
of resource constrained project scheduling (Hegazy and Menesi 2012). Each job has a definitive scope, 
location, type, duration, and resource requirements; some jobs can be subject to completion deadlines. 
Existing resource scheduling optimization techniques can be applied to assign crews to each job in search 
of the shortest total project time while meeting all the hard constraints such as job deadlines and limited 
crews. Adding the very crucial soft constraint of crew competence at handling different jobs would extend 
the current resource-constrained scheduling problem. Nonetheless, the major research challenge is how to 
represent a planner’s preference and experience in crew-job scheduling optimization. In this research, we 
define a crew-job matching index (CJMI) ranging from 0 to 1, which allows for the experienced planner’s 
assessment of crew competence to be factored in job schedule simulation and optimization. Besides, the 
total crew-job matching index (TCJMI) is defined, accounting for all the crew-job assignments and 
indicating the fitness of the obtained plan. Further, TCJMI is maximized in the resource-constrained 
schedule optimization by applying Excel Solver. Herein, the optimization objective is to identify the best 
overall matching between crews and jobs according to crew-job competence assessment by an 
experienced planner.  

Figure 1: Spatial distribution of all the jobs handled by a drainage maintenance company over one 
 year in the city of Edmonton, Canada. 

2506



Hasan, Lu, AbouRizk, and Neufeld 
 

This paper also illuminates why the identified problem does not lend itself well to existing solutions 
in a case study using the Simplified Scheduling Simulation system (S3) developed by Lu et al. (2008) 
based on the simplified discrete-event simulation approach (SDESA) (Lu 2003). S3 takes advantage of 
Particle Swarm Optimization (Eberhart and Kennedy 1995) for automating the search of a resource-
constrained schedule with the shortest total project duration. Further, using the same case, a new approach 
of incorporating the subjective crew competence assessment in crew-job planning and scheduling is 
proposed and prototyped in Excel.  The Excel optimization add-in (Solver) is utilized in search of the 
maximum value of TCJMI. The influence of the soft constraint upon the resulting crew use plans and job 
schedules is demonstrated in "what-if" simulation scenarios. 

2 LITERATURE REVIEW AND PROBLEM DEFINITION  

The purpose of developing a construction schedule is to direct resources to deliver the project in a 
coordinated and timely fashion subject to the limited time and funding available (Halpin et al. 2017). 
Theoretical foundations and systematic solutions have been developed for addressing implicit resource-
constrained precedence relationships in connection with the critical path method (CPM). Optimization 
techniques have also been applied to optimize resource allocation and keep the extension of the project 
duration to a minimum or find the lowest project cost (Hegazy 1999; Siu et al. 2017). Rashedi and 
Hegazy (2015) proposed optimization models using an advanced modeling tool (GAMS/CPLEX) to solve 
the capital project renewal problem and compares results with genetic algorithms; both solutions proved 
to be beneficial, yet the advanced mathematical model showed superior performance. Siu et al. (2017) 
defined a crew job allocation and schedule optimization problem in connection with snow removal 
operations; the resulting optimization framework encompassed (1) analysis of snow plowing and sanding 
(or salting) time with consideration of field and managerial constraints, (2) optimization of snow plowing 
and sanding time based on the modified Floyd-Warshall algorithm, and (3) optimizing shop-road 
assignments in terms of plowing and sanding operation efforts. Yi and Lu (2018) proposed a fleet 
optimization solution for earthwork projects using discrete event simulation, revealing the impact of 
employing different combinations of excavators and trucks upon completing earth-moving jobs. Biruk et 
al. (2019) proposed a mixed integer binary-based optimization solution for preparing a project schedule 
based on the subcontractor’s bid value and availability. Lam and Lu (2008) also described a simulation-
based approach to assist subcontractors in scheduling limited bar-bending crews to handle jobs over 
multiple concurring sites, resulting in optimized crew use efficiency along with a substantial reduction of 
the total duration. 

Decision variables and rules for job planning and resource allocation are dynamic in nature and 
involve implicit factors that cannot be analytically represented and measured (Zhang and Tam 2003). In 
our case study, crew-job matching, and job scheduling based on the criteria of minimizing total time 
duration can lead to the assignment of a job to a crew which has limited prior experience with similar 
jobs. On the other hand, assigning a high priority to a more competent crew in job planning may lead to 
increased idling time for the other crews and prolonged total project duration. Nevertheless, research has 
yet to incorporate the subjective assessment of crew performance in job assignment and resource 
allocation. For instance, the construction planner intends to allocate a particular job to the crew deemed 
more competent at performing the job. The resultant work plan and job schedule would satisfy both soft 
and hard constraints, potentially delivering more relevant and effective decision support to the planner. 
Based on the current practice of drainage network repair and maintenance planning, the defined problem 
involves the scheduling of n jobs that need to be completed within a specific window of time t with 
limited m number of available crews. If crew resources are proven to be insufficient, engaging extra crews 
(external contractors) would be justified. Herein, one crew can be allocated to one job at a time; there is 
no technology-constrained precedence relationship among multiple jobs distributed across the city. Each 
job represents a unique instance of a particular type of work that requires a crew for a certain time 
duration (days), and any available crews are capable of handling any of the unassigned jobs. It is 
noteworthy that from the perspective of the experienced planner, crew performance varies in processing 
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different types of work, which means a particular crew is assessed at different competence levels given a 
different type of work. The optimized job schedule is intended to shorten total project duration and 
optimize the crew-job matching, aiming to achieve the highest overall crew competence and balanced 
utilization among all the available crews.  

Multiskilling is a popular workforce strategy that reduces indirect labor costs, improves productivity, 
and reduces turnover. A multiskilled workforce is one in which the workers possess a range of skills that 
allow them to participate in more than one work process (Gomar et al. 2002). It is noteworthy that despite 
certain similarities, the job crew assignment problem being addressed differs markedly from the 
multiskilled labor scheduling problem. Herein, a crew consists of a mix of specially trained employees 
and equipment; a crew is assigned to one job as a collective resource that will not be assigned to another 
one until the job is finished.  One crew can be assigned to different jobs performing at various levels of 
competency (as indicated by CJMI). Hence, it is not necessary to explicitly define the trade skills of 
individual crew members and factor in productivity variations due to employing multiskilled trades. 

3 ILLUSTRATING CASE 

The work planning scenario typical of a drainage services provider is defined in this illustrating case. In 
general, the distributed service request is logged in a central system. A list of jobs, each demanding the 
engagement of a crew for a short period of time (two to three days), is compiled and then handed over to 
the service operation manager, responsible for assigning available crews to each job scheduling all the 
jobs. In this case, there are a total of 13 jobs, as shown in Table 1. It is assumed that those jobs have been 
recorded over the last three days and need to be scheduled to deploy available crews starting from the 
next morning. There are a total of six crews available for handling all the jobs. 
 

Table 1: List of jobs that are ready for scheduling. 

Job ID  Task Duration 

Job 1 Replace Catch Basin Barrel 5 
Job 2 Reline Storm Service Line 4 
Job 3 Repair Storm Service Line 3 
Job 4 Reinstate Catch Basin Lead 2 
Job 5 Repair Culvert 3 
Job 6 Reline Storm Services 3 
Job 7 Replace Storm Service Line 4 
Job 8 Reinstate Catch Basin Lead 2 
Job 9 Repair Culvert 2 
Job 10 Place RIP RAP 5 
Job 11 Patch Catch Basin Hole 3 
Job 12 Partial Storm Line Repair 3 
Job 13 Patch Catch Basin Hole 4 

3.1 Scenario 1: Optimization for Least Total Duration 

This case falls in the classical resource-constrained optimization problem. In the base case scenario, we 
used “S3” to identify the optimum solution with the least total duration, and the results are shown in 
Figure 2. The total minimum time required to complete all thirteen jobs is nine days. The crew work 
schedule as per S3 simulation is also shown in Figure 3.  
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4 REPRESENTING SOFT CONSTRAINT IN CREW JOB SCHEDULING 

Although S3 produces the optimum solution, it may not provide the proper crew allocation plan that is 
acceptable by the operations manager in the real world. In an ideal setting, all the available crews are 
identical, and each one can be assigned to perform at the same competence level in each category of 
work. However, in practice, considerable variations among crews exist in handling a certain job, which 
are not straightforward to be represented as constraints in resource scheduling simulation and 
optimization analysis. For instance, one crew has gained substantial experience in a certain type of work 
and thus earned "competence" reputation in the planner's mind. In contrast, the other crew may have 
demonstrated less comprehensive comprehension of the scope and the difficulty in conducting similar 
jobs in the past. One crew could have demonstrated a better familiarity with the neighborhood of a 
particular job and developed trust with the main stakeholders than others. Some crews work better on jobs 
under the tight deadline constraint, while others perform better on jobs with more flexibility and time 
floats. Some crews have taken the most updated safety training in operating specialized equipment, while 
the other crew has yet to do so.  
 When assigning a crew to each job, the operation planner subconsciously assigns a score in matching 
each crew with the given job and then selects the top scorer for the job. Moreover, the planner needs to 
avoid underworking or overworking crews (i.e., one crew has no or too light job assignment in the next 
week, where the other crew has to work overtime). Therefore, one objective of the operations planner is to 
devise a solution where all available crews are utilized in a balanced manner, and at the same time, crews 
are matched with jobs as per the planner’s perception to the maximum degree. The resulting job schedule 
solution needs to satisfy both hard scheduling constraints and soft planning constraints.  
 The following section introduces the definition of CJMI (crew-job matching index), which is 
proposed to effectively incorporate the soft constraint in crew use planning and project scheduling in the 
present case study.  

Figure 3: Crew allocation schedule for the example case “Scenario 1”. 

Figure 2: Job schedule for the example case “Scenario 1”. 
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4.1 Crew-Job Matching Index (CJMI) 

In reality, planners largely rely on their own experience and gut feelings, with the support of limited 
historical job records. In most cases, historical records can be unavailable, incomplete, irrelevant, or 
inconsistent, potentially causing more confusion. Hence, subjective judgment by domain experts with 
relevant knowledge and experience provides the practical means to formulate such a competency score 
for each crew (Paek et al. 1993). The fuzzy set, formalized by Zadeh (1965), is found to be most 
appropriate to apply in such a case where a rational approach toward decision-making should take into 
account human subjectivity, as opposed to only employing objective probability measures (Kahraman et 
al. 2006).  

A set of pseudo fuzzy scores denoting crew performance for each job type is given in Table 2 (crew 
job matching index table). These scores are termed, the “crew-job matching index (CJMI)” formulated 
based on subjective assessment of a particular crew's performance on a specific job. As discussed in the 
earlier section, each crew is capable and qualified to handle all the job types; but the planner has formed 
an opinion, judgment, preference for crew-job matching over years of experience reflecting on numerous 
factors that cannot be explicitly defined and analytically evaluated (such as crew's competence, 
reputation, motivation). CJMI is actually a fuzzy number with 1 meaning “Perfect match," 0 meaning 
“To-avoid-if-possible." These scores are supposed to be evaluated and entered by the human planner in 
the process of allocating a crew to each job. If the CJMI score is below 0.50, the planner generally prefers 
not to assign that crew to that job. In short, a fuzzy number (i.e., CJMI) is devised to represent the soft 
constraint critical to simulating the identified crew-job planning and scheduling problem in the practical 
application context of maintaining drainage services. 
 

Table 2: Crew job matching index for different jobs. 

Job ID Type of Work Crew 1 Crew 2 Crew 3 Crew 4 Crew 5 Crew 6 

Job 1 Replace Catch 
Basin Barrel 

0.9 0.6 0.7 0.9 0.6 0.7 

Job2, Job6 Reline Storm 
Service Line 

0.7 0.6 0.3 0.7 0.6 0.3 

Job 3 Repair Storm 
Service Line 

0.5 0.2 0.9 0.5 0.84 0.9 

Job 4, Job 8 Reinstate 
Catch Basin 
Lead 

0.5 0.2 0.8 0.5 0.2 0.78 

Job 5, Job 9 Repair Culvert 0.8 0.9 0.5 0.8 0.45 0.5 
Job 7 Replace Storm 

Service Line 
0.9 0.5 0.2 0.9 0.63 0.2 

Job 10 Place RIP RAP 0.56 0.77 0.63 0.56 0.87 0.63 
Job 11, Job 13 Partial Storm 

Line Repair 
0.55 0.81 0.63 0.55 0.94 0.49 

Job 12 Repair Culvert 0.53 0.84 0.63 0.72 0.74 0.82 
 

4.2 Crew Job Planning Framework  

It is emphasized that the planner’s objective is to allocate finite crew resources to minimize the total 
duration, while at the same time ensuring competent crews are matched to all the jobs. The measure of the 
overall crew competence considering all the assigned jobs can be defined as the “total crew job matching 
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index (TCJMI)”, which is weighted on job duration and factors in the total number of jobs, as given in 
equation (Eq. 1).  

TCJMI= 
∑ CJMIi,j×tj

∑ tj
                                                                  (1) 

 
Here, CJMIi,j is the crew-job matching index for crew i, which is assigned to job j, and tj is the 

duration of the job j. As per Eq. 1, given all the jobs for Scenario 1 and using the CJMI values taken from 
Table 2 for each crew, the TCJMI value is calculated to be 0.618. Although the planner is satisfied with 
total project duration resulting from Scenario 1 by applying S3 (9 days), the TCJMI has deemed a 
marginal pass and is expected to be raised to a higher level (say, above 0.75).  

The entire crew-job matching planning framework is summarized with a flow chart, as illustrated in 
Figure 4. First, the planner needs to set the TCJMI limit to 1.0. Then, the CJMI values are assessed for 
available crews and jobs. The objective function is to achieve the maximum TCJMI score (Eq. 2) subject 
to crews being assigned to each job (Eq. 3), any job finish deadlines (Eq. 4) or the deadline to finish all 
the jobs in the job bucket (Eq. 5). Excel Solver is used to find the optimum solution in terms of crew job 
matching. Next, S3 is run to find the shortest total duration and generate crew job schedule, ensuring that 
the number of crews required at any particular time t is always less or equal than the total number of 
available crews (Eq. 6). In the end, the planner needs to check the total duration and the TCJMI of the 
obtained plan. If the planner is satisfied, the crew job plan will be ready for execution; otherwise, the 
available crew numbers and job profile definition need to be revised, and CJMI updated accordingly prior 
to running the analysis on a new scenario.  

 
Solver objective function: 

Max (TCJMI)                                                                                       (2) 
Subject to,  

N(Ct) ≤  N(C)                                                                               (3) 

JFN≤  JD                                                                                   (4) 

PFN≤  PD                                                                                  (5) 

N(CA) ≤  N(CR)                                                                                      (6) 

 Where,  
 Total number of crews required at any time t = N(Ct);  

Total number of crews available = N(C);  
Job finish time = JFN; Job deadline = JD; Project finish time = PFN; Project deadline = PD;  
The number of crews assigned to each Job = N(CA); Number of crews required by job = N(CR). 

5 CASE STUDY WITH ALTERNATE SCENARIOS 

5.1 Scenario 2: Rescheduling Base Case to Enhance TCJMI 

Scenario 1 shows the optimum schedule solution, where crew-job competency constraints (i.e., CJMI) are 
ignored entirely while running S3 simulation and optimization. If the planner wants to increase the TCJMI 
for the obtained plan and, at the same time, wants to keep all the crews engaged, (each crew is assigned 
with one job at least), an alternative scenario is postulated. A new crew job schedule (Scenario 2) is 
formulated by running Excel Solver optimization again. Figure 5 shows the updated job completion plan; 
the corresponding crew allocation plan is given in Figure 6. It is noteworthy the TCJMI for this scenario 
is determined as per Eq. 1 as 0.77 against 0.618 in Scenario 1, despite total time duration increasing from 
9 days in Scenario 1 to 12 days. 
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Figure 5: Job schedule for the example case “Scenario 2.” 

Figure 6: Crew allocation schedule for the example case “Scenario 2.” 

Figure 4: Crew job matching and scheduling framework. 
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5.2 Scenario 3: Rescheduling with One Less Crew 

The planner can further alter the plan considering that one crew (Crew No. 6) would take a vacation in the 
near future or be reserved for an upcoming emergency job. Therefore, Crew No. 6 will be unavailable in 
planning the current job set. The planner can alter the plan again with the same intention to maximize 
crew job matching while minimizing total project duration. Instead of six crews, only five crews are 
available in updating the optimization model. The resulting schedule for this scenario and the crew 
allocation schedule is shown in Figure 7 and Figure 8, respectively.  

Note that in contrast with Scenario 2, with one less crew, the calculated TCJMI value for the job 
bucket remains at 0.77, while the total time duration (12 days) remains unchanged. This indicates Crew 
No. 6 is actually not needed to handle the 13 jobs being planned. 

5.3 Scenario 4: Rescheduling When One Job is Contracted Out 

It is assumed one job is canceled (e.g., a job falls in a different jurisdiction’s boundaries). Thus, six crews 
are available to be allocated for handling the remainder of 12 jobs. What would happen to the work plan 
and job schedule in such a new scenario? By keeping all the crews engaged while at the same time 
maximizing the crew job matching performance, the optimum job schedule (Figure 9) is formulated by 
using Excel Solver. The resulting crew schedule is shown in Figure 10. Note that the calculated total 
duration, in this case, reduces to 8 days with a TCJMI value of 0.756.   

A summary table for contrasting the four “what if” scenarios is presented in Table 3. The 
planner/operation manager is advised to implement Scenario 3, given 13 jobs and employing five crews; 
alternatively, with one less job, implementing Scenario 4 deploying six crews on 12 jobs is 
recommended. 

 
Table 3: Summary of results for different crew job allocation scenario analysis. 

Scenario Total Job 

Number 

Crew Number Duration (Days) TCJMI 

Scenario 1 13 6 9 0.618 
Scenario 2 13 6 12 0.770 
Scenario 3 13 5 12 0.770 
Scenario 4 12 6 8 0.756 

Figure 8: Crew allocation schedule for the example case “Scenario 3.” 

Figure 7: Job schedule for the example case “Scenario 3.” 

2513



Hasan, Lu, AbouRizk, and Neufeld 
 

6 CONCLUSION  

As the performance of a drainage network directly affects the quality of life and the environment, the 
entire system needs to be maintained at the required operational level. This research addresses crew-job 
matching planning and crew use scheduling in the application context of providing short-term drainage 
maintenance services by a typical municipal infrastructure maintenance organization. In an ideal setting, 
all the available crews are identical, and each one can be assigned to perform at the same level in each 
category of work. However, in practice, considerable variations among crews exist in handling a certain 
job, which are not straightforward to be represented as constraints in resource scheduling simulation and 
optimization analysis. Although the optimization engine of the Simplified Scheduling Simulation (S3) 
produces an optimum solution, it does not provide the proper crew allocation plan that is acceptable by 
the operations manager in that the simulation does not factor in the variation in perceived competence 
levels for a specific crew in handling different jobs. When assigning a crew to each job, the operation 
planner subconsciously assigns a score in matching each crew with the given job and then selects the top 
scorer for the job. The crew-job matching index has been specifically proposed to incorporate the soft 
constraint as defined in the crew use planning and project scheduling. As demonstrated through 
conducting “what-if” simulation scenario analyses on a case study, the proposed method sufficiently 
simulates the decision process of the experienced operation planner and produces optimum job schedule 
solutions that satisfy both hard and soft constraints in this real-world crew job planning and scheduling 
problem.  
 In the present research, the “crew-job matching index (CJMI)” denotes a set of pseudo fuzzy scores 
implying crew performance for each job type, which is based on subjective assessment of a particular 
crew's performance on a particular job by an experienced practitioner. In the near future, a less subjective, 
consistent assessment of CJMI by using effective AI, experts' know-how, and historical data will be 
pursued. Classifying jobs and estimating job duration will also be enhanced using operations data and AI 
modeling to feed the Excel optimization program. On the other hand, the research methodology and the 
Excel prototype program will also be improved in terms of accounting for crew workload balance and 
updating “to complete” job duration with actual feedback on crew job completion in rolling the plan to 
the next period. 

Figure 9: Job schedule for the example case “Scenario 4.” 

Figure 10: Crew allocation schedule for the example case “Scenario 4.” 
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