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ABSTRACT 

Automated discovery of simulation models is a different simulation modeling approach from the traditional 
approach, where simulation models are handcrafted by modelers. Our previous work developed an 
automated simulation modeling approach for mobile agent-based systems that allows automated search of 
candidate models based on a search space and desired simulation behaviors. This paper extends the model 
space specification from previous work to support an expanded search space for automated discovery of 
simulation models. The extended specification includes supporting user-defined properties to capture 
internal states and other properties of mobile agents and adding a new Activation component for behaviors 
so that priorities among multiple behaviors can be dynamically computed based on surrounding 
environment. The extended specification is demonstrated by supporting discovery of simulation models 
that are not in the previous search space.  

1 INTRODUCTION 

Developing simulation models for complex systems is a challenging task. Traditionally, modelers use their 
knowledge or consult experts to create a set of initial models that capture the behavior and structure of a 
system under study. Then, the initial models are gradually improved until an end result meets the simulation 
requirements. This approach is beneficial when testing theories of how a system works. However, the 
handcrafted models often have biases from their creators. Furthermore, it takes increasing time and effort 
to develop high quality models as the system complexity increases. To alleviate this problem, in previous 
work we developed a new simulation modeling approach that aims to support automated model discovery 
for mobile agent-based systems (Keller and Hu 2019). The main feature of the approach is to define a model 
space representing possible models, and a search method (Genetic Algorithm) to find candidate models 
based on specified criteria. The approach has been shown to be able to discover a variety of interesting 
models for mobile agent-based systems.   

A key component of the developed modeling approach is the model space for searching candidate 
models. To define an effective model search space, a formal model specification is important so that 
automated model discovery is possible. Our previous work provided a basic model specification for mobile 
agent-based systems where a world includes a 2D space and a set of agents. Each agent has several pre-
defined properties including position, (moving) direction, speed, and one or more behavior groups that 
manipulate properties’ values. At each time step, agents execute their behaviors in behavior groups to sense 
the surrounding environment and move accordingly in the 2D space.  

While the previous model specification was shown to work well for a variety of models, it has two 
major limitations. First, it works only with a set of predefined agent properties. These predefined properties 
are position, direction, and speed, which are basic to mobile agent-based systems. These basic properties 
are sufficient to model relatively simple scenarios. For more complex scenarios, agents need to have more 
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complex properties in order to capture their internal states or other properties. For example, an agent may 
need an energy property to reflect how much remaining energy the agent has. The energy can increase or 
decrease based on what the agent chooses to do: it decreases if the agent moves and increases if the agent 
recharges itself. To allow adding new properties such as the energy property into the model space for 
automated model discovery, the model specification needs to be extended to include a formal specification 
for agent properties so that new properties can be added in a well-defined manner. Because the specific 
properties to be added are open-ended, the agent property specification needs to be genetic in order to cover 
a wide range of potential properties for different applications.   

The second limitation is that the moving actions of all behaviors are averaged without a mechanism to 
add priorities among the different behaviors. The approach of averaging moving actions from multiple 
behaviors is not uncommon in the literature. For example, in the boids model (Reynolds 1987) an agent’s 
steering direction in each step is averaged from the separation, alignment, and cohesion behaviors. 
However, there are many other situations where prioritizing behaviors would work better when computing 
an agent’s final movement. Consider the behavior of obstacle avoidance, which moves the agent away from 
the obstacle, as an example. When the agent is relatively far away from the obstacle, it is less important to 
incorporate the moving action of this behavior into the overall movement. As the agent moves closer to the 
obstacle, this behavior becomes more important: the closer the agent is from the obstacle, the more 
important the behavior is. In other words, the moving action of this behavior becomes more dominant as 
the agent gets closer to the obstacle. To support this capability, there is a need to prioritize the behaviors 
based on how “important” the behaviors are.     

To address the two limitations discussed above, this paper extends the model specification in previous 
work to support automated discovery of simulation models for mobile agent-based systems. We add two 
major extensions on top of previous work. First, we provide a formal and generic specification for agent 
properties so that new properties can be specified in a uniform and well-defined way. This allows modelers 
to add customized new properties to a model space when searching for candidate models for specific 
applications. Second, we extend the behavior specification of agents so that each behavior has two 
components: an Activation component and an Action component. The Activation component specifies the 
level of activation of the behavior. This allows the priority of a behavior to be modeled because different 
activation levels represent different priorities. The Action component specifies the action of the behavior, 
i.e., how the behavior changes the value of a property. This component is similar to what we had in previous 
work. Both the Activation component and Action component dynamically compute their outputs based on 
agents’ conditions and surrounding environment. Differentiating these two components makes it possible 
to define behaviors that are dynamically activated based on conditions of the environment and then act 
accordingly to respond to the environment. This in turn supports discovery of more complex models and 
increases the applicability of the modeling approach to more applications. In this paper, we present the 
extended model specification and describe how the overall framework works, and show several examples 
of automated model discovery based on the extended model specification 

2 RELATED WORK 

The challenge of agent-based modeling and simulation is discovering agent behaviors so that they all can 
simulate desired scenarios. Traditional approach using domain knowledge has been used to build models 
that are resemble desired scenarios. For example, in Reynolds’ famous boids model (Reynolds 1987) 
resembles behaviors of flock of birds. In (Deeter et al. 2004), the researchers assign trigger, script, and task 
roles for agents  to resemble different components of an intrusion detection system. Another example is 
(Wagner and Agrawal 2014) where a prototype is built to study crowd behaviors when there is the presence 
of a fire disaster. A disadvantage of this approach is model development are limited by knowledge of 
creators. Hence, handcrafted models have bias from them, and in many cases, the results do not reflect 
every aspect of the systems. However, handcrafted models are usually understandable because they are 
delivered from human knowledge.  
 Instead of relying on domain knowledge, several data-driven approaches are used to discovery of 
simulation model automatically. The works in (Lee et al. 2007) and (Gianluca et al. 2004) extract ground 
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truth data from video clips of human movements, then the researchers learn crowd behavior model from 
observed trajectories. If given enough data, this technique can resemble how crowds behave in real life 
scenarios. However, it does not provide explanation behind the discovered behaviors. Furthermore, they 
are only work with particular application where historical data was collected. Other works uses data farming 
technique (Horne and Meyer 2004) to generate a wide range of models from a set of possible parameters. 
Many works in this approach include (Huang and Verbraeck 2009) and (Beck et al. 2015) concentrate on 
adjusting parameters to make well-calibrated models that reproduce the real system, but not focus on the 
improvement of model specification. 
 In this work, we add two major components to our framework to support more complex and open-
ended applications. First, (Decraene et al. 2010) suggests that to make evolutionary computation possible, 
parameters must have type (numerical, enumerable) and range (min, max). Base on this, we provide a 
formal and generic specification for agent properties so that new properties can be specified in a uniform 
and well-defined way. Second, (Kendall et al. 2000) and (Bhouri et al. 2012) describe the importance of 
priority between agents on mobile agent-based system. In our work, instead of focusing on agent priority, 
we add a mechanism to assign priority to each agents’ behavior. Hence, this make the framework assist 
better when agents decide overall movement action from multiple behaviors. 

3 OVERVIEW OF PREVIOUS WORK 

Our previous work developed a framework towards data-driven simulation modeling for mobile agent-
based systems (Keller and Hu 2019). The framework includes two major components: a model space 
specification and a search algorithm. 
 The model space specification provides a formal specification for the general model structure from 
which various models can be generated. It defines a “meta-model” for behaviors-based mobile agent 
systems. A mobile agent-based system is composed of a world and a set of agents. A world is a 2-D space 
that wraps vertically and horizontally. All agents have the same set of behavior groups. Each behavior group 
contains a set of behaviors, and all behaviors in a behavior group manipulate the same pre-defined property 
such as: position, heading direction, or speed. Properties play critical roles because each behavior acts on a 
specific property by changing its value based on observations of the environment and nearby agents’ 
properties. Detailed specification of the model space can be found in (Keller and Hu 2019). 

Based on the model space specification, in each iteration of the discrete time simulation, a behavior 
goes through multiple steps to compute a moving action of the behavior. Figure 1 illustrates these steps 
where each step is represented by a box. The arrows before and after the boxes represent the input and 
output of these steps. In the first step, agents sense a set of nearby neighbors within their field of view 
(FOV). The second step applies filters to get a specific set of agents.  The next step extracts property from 
the set of agents and combines them into one reference value. Then, the last step is to add an offset to the 
reference value to compute a desired value for the property the behavior is acting on. This desired value is 
referred to as the desired action for this behavior. If there are multiple behaviors that belong to the same 
behavior group, the described actions are averaged to compute an overall action of the agent. Note that a 
special property is the position property, which is treated differently based on which step a position value 
is checked. Specifically, in the extract action property step, a position value is always converted to the 
direction towards that position; the direction then becomes the reference value for the next step (the add 
action offset step). In all other situations (including the steps in the Activation components described in 
Section 4.2.1, a position value is treated as a value for calculating a distance to that position.    

 
 

Figure 1: Steps of a behavior. 
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Figure 2 illustrates the behavior steps for a sample behavior that makes an agent steer left from its 
nearest neighbor. In this example, the 2D space includes ten regular agents (hollow white circle) and one 
obstacle (black solid circle), where agent A is the agent that owns this behavior.  Through step 1, there are 
five entities: four regular agents (1-4) and one obstacle within agent A’s FOV. In step 2, agent A applies 
couple of filters to eliminate unsatisfied neighbors. The first filter chooses regular agent only (step 2.a). 
Hence, the obstacle is removed. The second filter chooses the nearest neighbor (step 2.b), and as a result 
agent 1 is selected. In step 3, agent 1’s position property is extracted and then converted to the direction 
towards that position. This direction becomes the reference value for the moving action of this behavior. 
Then step 4 adds an offset value to the reference direction to compute the desired action of this behavior. 
In the last step, agent A executes the desired action and moves according to the new direction. 

 
Figure 2: Illustration of the behavior steps. 

 
Based on the model space, Genetic Algorithm (GA) is used to find models that satisfy the desired 

behavior patterns specified by a modeler. GA encodes a potential solution to a specific problem on a simple 
chromosome-like data structure and apply recombination on these structures so as to preserve critical 
information (Whitley 1994). Based on the specification, a random model can have one or more behavior 
groups. Each behaviors group contains one or more behaviors. Each behavior has several choices to choose 
for range filters (distance, angle, speed, etc.), method filters (nearest, furthest, average, etc.), and extract 
property functions (position, direction, speed). These options are considered as chromosomes for models, 
and all possible combinations between them create the search space. First, random models are generated 
within the search space, and all of them create an initial population. Next, simulation of each model is 
performed by using a set of agents that make decisions based on model’s behavior group specifications. A 
set of fitness functions is used to evaluate how close the outcomes of models are to the simulation goals. 
After the evaluation, if the fitness scores of one or more models pass the threshold, GA finds the best models 
and stops. If they do not pass, a new population is created with 25% best from old generation, 25% mutation 
from 25% best of old generation, and 25% crossover from the all population. The last 25% is randomly 
generated to increase the diversity of the populations (Keller and Hu 2019), and a new circle begins until 
GA finds the best model(s) or reaches the computation limitations. 

4  EXTENDED MODEL SPACE SPECIFICATION 

4.1 Agent Property Specification 

Our previous work assumes relatively simple scenarios where only several reserved properties are 
considered for each agent. To support more complex scenarios, we would allow a modeler to add new 
properties into the model space for automated model discovery. The goal of property specification is to 
provide a well-defined structure for agent properties so that new user-defined properties can be added into 
the model space and be searched by the search method in a unified way. To achieve this goal, a formal and 
general structure for user-defined properties is needed. We define a user-defined property p has a general 
structure as below: 
p = <type, range, vinit> where 
Type: numerical, or categorical 
Range: if type is numerical, range =[vlow, vupper], where vlow is the lower bound of the numerical value, and 
vupper is the upper bound of the numerical value. 
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  if type is categorical, range = the set of all possible categorical values.  
vinit: initial value of the property: 
  if type is numerical: vinit is a real number between vlow and vupper  
  if type is categorical: vinit is an element of the Range set.   
 To add a new property to the model space, a modeler  needs to specify the type, range, and vinit for that 
property so that it can be searched by the search method.  Typically, the modeler has some knowledge about 
the system and the property, and thus can define the type and range of a new property to be searched. For 
example, if agents’ energy is important for a specific application, the modeler can define a new property 
called energy, and specify its type to be numerical and define its range to be between 0 and 100.  Similarly, 
if agents can change color between green, yellow, and red for a specific application. The modeler can define 
a property called color that has type = categorical and range = {green, yellow, red}. The modeler may also 
specify the initial value vinit for the property if starting from that initial value is important for the application. 
Otherwise, by default vinit is a random value within the Range.  

We note that specifying the type, property, and vinit of a property is different from defining how the 
property is used by specific behaviors. The modeler specifies the property, but then it is up to the search 
method during the model discovery process to decide if and how the property will be used by a specific 
behavior.  In general, when a modeler provides a property that is meaningful and has relevant range, it 
would make it easier for the search method to find behaviors using this property.  

4.2 Activation Component 

In previous work, the described actions from the multiple behaviors of a same behavior group is averaged 
to compute the final action. In many cases, this method does not work well because the desire action of 
each behavior would cancel each other after being averaged. For example, Figure 3.a shows a scenario 
where agents have an obstacle avoidance behavior but cannot successfully perform it.  Figure 3.b explains 
why this happens. In this example, agent A has two behaviors that manipulate its direction: B1 and B2. 
Agent A uses behavior B1 to avoid the obstacle by steering to the left, and B2 to follow its nearest agent. 
Because the final decision 𝑩 is averaged between B1 and B2, agent A moves toward to the obstacle directly.  

            (a)   (b) 
Figure 3: An example where average method does not work well. 

 
 To address this problem, we need a mechanism to specify the importance of each behavior at each 
iteration. Therefore, we extend the previous work so that each behavior has two components: an Activation 
component and an Action component. The Activation component specifies the level of activation of the 
behavior. This allows the priority of a behavior to be modeled because different activation levels represent 
different priorities. The Action component specifies the action of the behavior, i.e., how the behavior 
changes the value of a property. This component is the same as a behavior in previous work. In other words, 
previous work considered only the Action component, and our extension adds a new Activation component. 
 With the differentiation of the Activation component and the Action component, Figure 4 shows how 
the overall action of a behavior group is computed in previous work (4.a) and in current work (4.b). As can 
be seen, in previous work, each behavior Bi returns a reference value vi (i = 1, 2, 3, …, n), then the final 
result is averaged among all reference values.  
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In the current work, along with reference value vi, each behavior Bi also returns a weight value wi. The 
overall action is the summation of product between normalized weight   and reference value vi of each 

behavior. Because this weight distribution method sums up all  to 1 after normalization, the more 

weight a behavior has, the more portion it takes. Hence, this is an approach to support the priority 
mechanism. 

 
       (a): Average overall action.  (b): Weight overall action. 

Figure 4: Combining desired actions from multiple behaviors.  

4.2.1 Activation Component Specification 

The steps of the Action component are similar to the steps of the behavior in the previous work (illustrated 
in Figure 1).  Thus, in this paper we focus on the Activation component. In general, the Activation 
component checks the condition of itself or its environment and returns a weight represents the importance 
of the behavior. This involves sensing the environment based on FOV, applying filters, and extracting 
property (referred to as activation property) in the same way as in the Action component. Afterwards, it 
uses an activation function to compute a weight based on the activation property value. Figure 5 illustrates 
the steps of the Activation component, which returns an activation weight in the end. Note that a special 
case is to check an agent’s own property to computer the activation weight. In this case, a self-filter is used 
to return the agent itself before the extra property step.  

 
Figure 5: Steps of the activation component.   

 
More formally, we define the Activation component to have three elements: 
Activation = <Fa, pa, activation_function> 
Fa is a set of filters where fa ∈ Fa 

 fa is a filter where: 
fa = <pf, cf> 
 pf is the filtered property 
 cf is the filter criteria:  

 if pf is numerical type, cf = [cf_low, cf_upper], where vlow is the lower bound, and vupper is the upper 
bound of the criteria. 

 if pf categorical type, criteria = a subset of the set of all possible categorical values. 
pa is the activation property.  
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activation_function = <type, ra> where: 
 type: activation type: binary or linear (see explanation below). 
 ra is the activation function range, where ra = [ra_low, ra_upper],  follows the same regulation as cf. 
 The activation function computes a weight based on the value of the activation property. This function 
needs to have a well-defined structure so that it can use the same structure to cover different situations of 
changing activation weight based on dynamic values of the activation property.  In this work, we allow a 
behavior to have one of the following two activation function types: binary function and linear function.  
Binary function returns weight value of 1 or 0 based on if pa is inside or outside a specified range 
[𝑟 _ ,𝑟 _ ]. By giving weight of 0, a behavior is considered not activated because its product is also 
equal 0 and not contributed to the overall action. In some cases, modelers want the passing conditions are 
not within the range. To capture all these situations, specification of the binary function is: 
binary = <inside> where: 
 inside: a Boolean value to decide the satisfied conditions are inside or outside the range of ra 
 Table 1 shows the details of the binary function. When inside is True, the function returns weight of 1 
if pa is within the range of ra, and 0 otherwise. When inside is False, the function returns 0 if pa is within 
the range of ra, and 1 otherwise.  

 
Table 1: Weight value using binary function. 

 
Inside Weight value Function graph 

True 

 

𝑤𝑒𝑖𝑔ℎ𝑡 =  
1 𝑖𝑓 𝑝 ∈ [𝑟 _ ,𝑟 _ ] 

0 𝑖𝑓 𝑝 ∉ [𝑟 _ ,𝑟 _ ]
 

 

False 𝑤𝑒𝑖𝑔ℎ𝑡 =  
0 𝑖𝑓 𝑝 ∈ [𝑟 _ ,𝑟 _ ] 

1 𝑖𝑓 𝑝 ∉ [𝑟 _ ,𝑟 _ ]
 

 

 
 Different from the binary function that returns only two values: 0 or 1, the linear function returns 
different values based on the inputs of the activation property. The specification of linear function is: 
linear = <slope, increase> where:  
 slope: measures the rate of weight change for different property values. It is an integer and has range 
[0, supper]. supper is the upper bound of slope value. 

increase: a Boolean value to indicate the increment/decrement direction of the weight value.  
To make the search process more efficiency, modelers need to define upper bound of slope. Thus, the search 
space includes all possible values within range of [0, supper] (note: in our implementation we define a 
granularity to make the search space finite). Table 2 illustrates the linear function for various slope and 
increase variables. If increase is True, the weight increases when pa moves toward to the upper bound 
ra_upper of ra. If increase is False, the weight increases when pa moves toward to the lower bound ra_low of 
ra. When pa is no longer within range of ra, the weigh is equal to either 0 or (ra_upper × slope) depends on the  
pa and increase value. 

Table 2: Weight value using linear function. 
 

Increase Weight value Function graph 

True 𝑤𝑒𝑖𝑔ℎ =  

0 
𝒔𝒍𝒐𝒑𝒆 ×  𝒑𝒂 −  𝑟 _  

𝒔𝒍𝒐𝒑𝒆 ×  𝑟 _ − 𝑟 _

    

𝑖𝑓 𝒑𝒂 < 𝑟 _

𝑖𝑓 𝑟 _ ≤ 𝒑𝒂 ≤  𝑟 _

𝑖𝑓 𝒑𝒂 >  𝑟 _
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False 

 

𝑤𝑒𝑖𝑔ℎ𝑡 =  

𝒔𝒍𝒐𝒑𝒆 ×  𝑟 _ − 𝑟 _  

𝒔𝒍𝒐𝒑𝒆 × 𝑟 _ −  𝒑𝒂  

0 

  

𝑖𝑓 𝒑𝒂 < 𝑟 _

𝑖𝑓 𝑟 _ ≤ 𝒑𝒂 ≤  𝑟 _

𝑖𝑓 𝒑𝒂 >  𝑟 _

 

 

 

4.2.2 Illustrative Example 

Below is an illustrative example shows how the activation weight of a behavior is computed at different 
time steps. Figure 6 shows this example, where an obstacle is moving toward to agent A and the distances 
between them at time t = 0, 10 and 20 are 130, 75, and 10 respectively.  

           
         (a) t = 5                            (b) t = 10                          (c) t = 15     (d) weight assignments 
  
Figure 6: A scenario where obstacle is moving toward to an agent at three different time steps and their 

weight values. 
 

Behvaior B changes the agent’s direction if it is too close to an obstacle. The specification of behavior 
B is:  
Activation:  Action: 
Filter: 
f1 :  pf = type     
      cf  = obstacle 
pa = position  
ra = [20-120]  
(note: distance range between 20 and 120).  
Activation function: 
     type: linear, increase = False, slope = 2. 

Filter:  
f1 : pf = type     
  cf  = obstacle 
paction = position (converted to the direction 
towards that position and use it as the reference 
value).  
offset: 40 (add 40 degree to the reference 
direction) 

 
 Behavior B’s activation has one filter with filter property = type and criteria = obstacle. In other word, 
the filter chooses only obstacles and eliminates regular agents. Because pa chooses position as activation 
property, the linear activation function calculates the activation weight based on range ca = [20,120]  and 
the relative distance between position of agent A and position of the obstacle. Figure 6.d shows how the 
weight is calculated. Because increase value is False, weight is decreasing when distance is increasing. In 
this example, Figure 6.b shows the distance d2 = 75 and it within activation criteria range. As a result, 
weight of behavior B at t = 10 is  2 × (120-75) = 90. At t = 5 and t = 15, because the distance d1 (Figure 
6.a) and d3 (Figure 6.c) both exceed the range of activation criteria ca, weight of B at t = 5 equals to 0 (d1 = 
130 > ca_upper), and weight of B at t = 15 is 2 × (120 – 20) = 200 (d3 = 10 < ca_low). For the Action component 
of this behavior, it has one filter that is similar to the filter of activation. It then extracts the obstacle’s 
position to get the direction to the obstacle as the reference value. A 40 degree is added to this reference 
direction to make the agent turn away from the obstacle.  
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5 EXPERIMENTS 

5.1 Snake formation with Patience 

To demonstrate adding user-defined properties for automated model discovery, we consider an example 
that we studied in our previous work: snake shape (Table 4 - ID: 4) with personal space (Table 4 – ID: 5,6) 
(Keller and Hu 2019). In that example, agents form a snake shape and also maintain personal space, so they 
do not collide with each other. The discovered model works well if number of agents and world size are set 
correctly. However, in the situation where there are too many agents in a limited space world, there is not 
enough space for agents to execute the speeding up behavior. As a result, their speeds decrease to zero and 
stand still until the rest of the simulation (Figure 7.a).  To prevent that from happening, beside snake 
formation and maintain personal space, we also add speed goal. Function s𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎 , 𝑡) (1) adds penalty 
every time speed of agent ai is zero at a specific time step t by returning value of 1. Equation (2) sums all 
the penalty during the whole simulation. Hence, the lower the sum value is, the better the speed goal 
achieves.  

𝑠𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎 , 𝑡) = 𝑖𝑓 (𝑠𝑝𝑒𝑒𝑑(𝑎 , 𝑡) = 0) 𝑟𝑒𝑡𝑢𝑟𝑛 1, 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 0.           (1) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑 𝑖𝑠 𝑧𝑒𝑟𝑜 =  ∑ ∑ 𝑠𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎 , 𝑡)| |                  (2) 

  T is total number of simulation iterations. 
 |A| is a set of agents, (ai,t) is the ith agent at time step t. 

 
With this speed fitness function added, a better model is discovered and agents able to maintain 

acceptable speeds. The behavior to keep the speed is when speed of an agent is in range [0,0.1], it turns left 
60 degree. Hence, open more spaces for agents to speed up. However, agents cannot maintain a stable snake 
formation because most of the agents change their directions too quickly as Figure 7.b shows.          

To find models that can lead to stable snake formation, it is necessary to add a new property that can 
control how long agents need to wait before changing the direction. Thus, we add a user-defined property 
called patience to the search space. Patience is numerical type with initial value vinit = 100 and range = 
[0,100]. Table 3 shows the final discovered model specification, and the first three (ID: 1-3) are used by 
agents to wait patiently before changing their directions. 

 
Table 3. A set of behaviors to maintain more stable snake formation. 

Behavior Group: Patience 
ID Behavior specification Purpose 

1 
Activation: if self-speed is within [0, 0.1], return 1. 
Action: reduce the value of self-patience by 1. 

If speed of agent itself is slow, its 
patience decreases.  

2 
Activation: if self-speed is within [0.2, 2], return 1. 
Action: increase the value of self-patience by 2. 

If speed of agent itself is fast, its 
patience increases. 

Behavior Group: Angle 

3 
Activation: if self-patience is within [5,10], return 1. 
Action: direction increases by 50  

If patience of agent itself is low, 
it steers left 50 degree. 

4 
Activation: if having one or more regular agent within 
FOV, return 1.  
Action: change direction to nearest agent 

Follow the nearest agent.  

Behavior Group: Speed 

5 
Activation: if the distance to nearest agent is within [0,15], 
return 1  
Action: speed decrease by 0.3 

Slow down if too close to an 
agent. 

6 
Activation: if the distance to nearest agent is within 
[20,150], return 1  
Action: speed  increases by 0.5 

Speed up when there is enough 
space ahead. 
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Whenever speed of an agent decreases and within range [0 – 0.1], it begins to lose patience by 1 at each 

iteration. During that time, if agent is able to gain speed above 0.2, its patience increases by 2. If not, the 
agent will wait until its patience level is below 10, then turn its direction 50 degree to the left. In other word, 
instead of breaking the snake shape immediately, agents wait until their patience is low. As a result, these 
behaviors maintain snake formation (Figure 7.c) better than previous one. Without a user-defined property, 
it is challenging to express a behavior that makes agent wait patiently before making another decision.  

   
              (a)               (b)            (c)   

Figure 7: Three experiments of snake formation with personal space. 
 

 To compare quantitative results between previous and current experiment, three fitness functions are 
used include: snake shape, personal space, and speed fitness function. First, snake shape fitness function 
measures the differences between an agent’s direction and the direction toward to its nearest neighbor. 
Second, personal space fitness function adds penalty whenever agent violate other agents’ personal space 
(Keller and Hu 2019). Next, speed fitness function is calculated using  equation (1) and (2). Final fitness 
score of them are averaged between 100 simulations. Lastly, the scores are normalized to have common 
scale of 0 being the best, and 1 being the worst. Compare the results between experiment 1 (without 
patience property) and 2 (with patience property) of Table 4, we see that experiment 2 gives better score 
in snake shape and personal space behaviors because the snake shape maintains stably for a longer time. 
Hence, agents do not change direction as frequency as experiment 1 and have less chance to collide with 
each other. Speed in other hand, experiment 1 receives the better score because agents in experiment 2 will 
wait an amount of time before changing the direction when their speed is zero. Thus, more speed penalties 
are added to it. 

Table 4. Fitness scores of experiments with and without patience. 
 

Snake Shape + Personal Space + Maintain speed models 
Experiment 1: without Patience property Experiment 2: with Patience property 
Snake Shape: 0.77 
Personal Space: 0.513 
Speed Fitness: 0.12 

Snake Shape: 0.53 
Personal Space: 0.308 
Speed Fitness: 0.22 

 

5.2 Snake formation with obstacle avoidance  

A snake formation and obstacle avoidance model was discovered in previous work. However, it works well 
only if obstacles are static. In other word, obstacles’ position does not change during the simulation. When 
obstacles can move around, agents often collide with them directly (Figure 3.a). With the extended model 
space specification that includes the Activation component in behavior, a new model was discovered that 
allows agents to form snake shape while avoid moving obstacles. Table 5 presents the new  obstacle 
avoidance behavior. This new obstacle avoidance behavior has a  linear activation function. If distance 
between an agent and its nearest obstacle is larger than 120, the weight is 0 and the behavior make no impact 
to the final decision. The closer the distance, the higher the weight is. The maximum activation weight 12 
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× (120 – 80) = 480. Compare to snake shape behavior (similar to behavior of Table 3 – ID: 4) that returns 
weight of 0 or 1, obstacle avoidance behavior weight can heavily affect the final outcome.    

 
Table 5. Obstacle avoidance behavior with linear activation function 

 
 Figure 8.a illustrates agents are forming a snake line and there are two obstacle moves around. At this 
moment, the obstacle is far away, so the priority to avoid it is still low. Later on, for a group of agents, the 
priority to avoid the obstacle increases when there is one moves toward to them (Figure 8.b) Eventually, 
obstacle avoidance behavior becomes dominant, and agents ignore the snake formation behavior. Hence, 
agents are able to avoid the coming obstacle completely (Figure 8.c). 

     (a)     (b)            (c)               
Figure 8: Snake shape and obstacle avoidance with priority at different time step. 

 
 Snake shape and obstacle avoidance fitness function are used to compare quantitative results between 
experiment 1 (without priority) and 2 (with priority). Similar to maintain personal space fitness function, 
obstacle avoidance function increase penalty by 1 every time agents touch obstacles at each iteration. 
(Keller and Hu 2019). The results of Table 5 show that model of experiment 2 is better. It is predictable 
because for experiment 2, depend on surrounding environment, either snake shape or obstacle avoidance 
behavior are more important. Hence, final overall movements mostly influence by one of them, and 
emergence phenomena are shown clearer. 
 

Table 5. Fitness scores of experiments with and without priority. 
 

Snake shape + Obstacle avoidance models 
Experiment 1: Without priority Experiment 2: With priority 
Snake Shape: 0.22 
Obstacle avoidance: 0.687 

Snake Shape: 0.153 
Obstacle avoidance 0.041 

Behavior Group: Angle 
ID Behavior specification Purpose 
1 Activation: if there is an obstacle within FOV, return a 

weight follows below conditions: 
 

𝑤𝑒𝑖𝑔ℎ𝑡 =  

𝟏𝟐 ×  (𝟏𝟐𝟎 − 𝟖𝟎)            𝑖𝑓 𝒅𝒊𝒔𝒕 < 80 

𝟏𝟐 ×  (𝟏𝟐𝟎 −  𝒅𝒊𝒔𝒕)     𝑖𝑓 80 ≤ 𝒅𝒊𝒔𝒕 ≤  120
𝟎                                     𝑖𝑓 𝒅𝒊𝒔𝒕 >  120

 

 
dist: relative distance from agent to its nearest obstacle. 
Action: direction increases by 20 

Agent steers left 20 degree when 
there is a nearby obstacle. The 
weight has range [0,480]. The closer 
the distance between the agent and 
the obstacle, the higher the weight is. 
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6. CONCLUSION  

 This work extends the model space specification for automated model discovery by adding user-define 
property and Activation component to make the framework support more complex applications. 
Experiments with and without patience property clearly show the necessary of user-define property. With 
a formal specification provided, modelers can to add new suitable properties to the search space. Hence, 
archive the better solution for their modeling tasks. Activation component decides which agents’ behaviors 
has highest priority depends on nearby neighbor and environment. Thus, the framework assists better for 
complex models where agents need to compute overall movement action from multiple behaviors. Future 
works include: first, improve the efficiency of the searching process by reducing search time and 
discovering better models. Second, compare the end results with other approaches such as: handcraft model 
or models that are generated by different search algorithms. Third, apply the framework on more complex 
model tasks; such as circle formation with obstacle avoidance to validate the robustness of the system.  
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