
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

EXTENDED MODEL SPACE SPECIFICATION FOR MOBILE AGENT-BASED SYSTEMS TO
SUPPORT AUTOMATED DISCOVERY OF SIMULATION MODELS

Hai Le Xiaolin Hu

Department of Computer Science Department of Computer Science
Georgia State University Georgia State University

25 Park Pl NE 25 Park Pl NE
Atlanta, GA 30303, USA Atlanta, GA 30303, USA

ABSTRACT

Automated discovery of simulation models is a different simulation modeling approach from the traditional
approach, where simulation models are handcrafted by modelers. Our previous work developed an
automated simulation modeling approach for mobile agent-based systems that allows automated search of
candidate models based on a search space and desired simulation behaviors. This paper extends the model
space specification from previous work to support an expanded search space for automated discovery of
simulation models. The extended specification includes supporting user-defined properties to capture
internal states and other properties of mobile agents and adding a new Activation component for behaviors
so that priorities among multiple behaviors can be dynamically computed based on surrounding
environment. The extended specification is demonstrated by supporting discovery of simulation models
that are not in the previous search space.

1 INTRODUCTION

Developing simulation models for complex systems is a challenging task. Traditionally, modelers use their
knowledge or consult experts to create a set of initial models that capture the behavior and structure of a
system under study. Then, the initial models are gradually improved until an end result meets the simulation
requirements. This approach is beneficial when testing theories of how a system works. However, the
handcrafted models often have biases from their creators. Furthermore, it takes increasing time and effort
to develop high quality models as the system complexity increases. To alleviate this problem, in previous
work we developed a new simulation modeling approach that aims to support automated model discovery
for mobile agent-based systems (Keller and Hu 2019). The main feature of the approach is to define a model
space representing possible models, and a search method (Genetic Algorithm) to find candidate models
based on specified criteria. The approach has been shown to be able to discover a variety of interesting
models for mobile agent-based systems.

A key component of the developed modeling approach is the model space for searching candidate
models. To define an effective model search space, a formal model specification is important so that
automated model discovery is possible. Our previous work provided a basic model specification for mobile
agent-based systems where a world includes a 2D space and a set of agents. Each agent has several pre-
defined properties including position, (moving) direction, speed, and one or more behavior groups that
manipulate properties’ values. At each time step, agents execute their behaviors in behavior groups to sense
the surrounding environment and move accordingly in the 2D space.

While the previous model specification was shown to work well for a variety of models, it has two
major limitations. First, it works only with a set of predefined agent properties. These predefined properties
are position, direction, and speed, which are basic to mobile agent-based systems. These basic properties
are sufficient to model relatively simple scenarios. For more complex scenarios, agents need to have more

2233978-1-7281-9499-8/20/$31.00 ©2020 IEEE

Le and Hu

complex properties in order to capture their internal states or other properties. For example, an agent may
need an energy property to reflect how much remaining energy the agent has. The energy can increase or
decrease based on what the agent chooses to do: it decreases if the agent moves and increases if the agent
recharges itself. To allow adding new properties such as the energy property into the model space for
automated model discovery, the model specification needs to be extended to include a formal specification
for agent properties so that new properties can be added in a well-defined manner. Because the specific
properties to be added are open-ended, the agent property specification needs to be genetic in order to cover
a wide range of potential properties for different applications.

The second limitation is that the moving actions of all behaviors are averaged without a mechanism to
add priorities among the different behaviors. The approach of averaging moving actions from multiple
behaviors is not uncommon in the literature. For example, in the boids model (Reynolds 1987) an agent’s
steering direction in each step is averaged from the separation, alignment, and cohesion behaviors.
However, there are many other situations where prioritizing behaviors would work better when computing
an agent’s final movement. Consider the behavior of obstacle avoidance, which moves the agent away from
the obstacle, as an example. When the agent is relatively far away from the obstacle, it is less important to
incorporate the moving action of this behavior into the overall movement. As the agent moves closer to the
obstacle, this behavior becomes more important: the closer the agent is from the obstacle, the more
important the behavior is. In other words, the moving action of this behavior becomes more dominant as
the agent gets closer to the obstacle. To support this capability, there is a need to prioritize the behaviors
based on how “important” the behaviors are.

To address the two limitations discussed above, this paper extends the model specification in previous
work to support automated discovery of simulation models for mobile agent-based systems. We add two
major extensions on top of previous work. First, we provide a formal and generic specification for agent
properties so that new properties can be specified in a uniform and well-defined way. This allows modelers
to add customized new properties to a model space when searching for candidate models for specific
applications. Second, we extend the behavior specification of agents so that each behavior has two
components: an Activation component and an Action component. The Activation component specifies the
level of activation of the behavior. This allows the priority of a behavior to be modeled because different
activation levels represent different priorities. The Action component specifies the action of the behavior,
i.e., how the behavior changes the value of a property. This component is similar to what we had in previous
work. Both the Activation component and Action component dynamically compute their outputs based on
agents’ conditions and surrounding environment. Differentiating these two components makes it possible
to define behaviors that are dynamically activated based on conditions of the environment and then act
accordingly to respond to the environment. This in turn supports discovery of more complex models and
increases the applicability of the modeling approach to more applications. In this paper, we present the
extended model specification and describe how the overall framework works, and show several examples
of automated model discovery based on the extended model specification

2 RELATED WORK

The challenge of agent-based modeling and simulation is discovering agent behaviors so that they all can
simulate desired scenarios. Traditional approach using domain knowledge has been used to build models
that are resemble desired scenarios. For example, in Reynolds’ famous boids model (Reynolds 1987)
resembles behaviors of flock of birds. In (Deeter et al. 2004), the researchers assign trigger, script, and task
roles for agents to resemble different components of an intrusion detection system. Another example is
(Wagner and Agrawal 2014) where a prototype is built to study crowd behaviors when there is the presence
of a fire disaster. A disadvantage of this approach is model development are limited by knowledge of
creators. Hence, handcrafted models have bias from them, and in many cases, the results do not reflect
every aspect of the systems. However, handcrafted models are usually understandable because they are
delivered from human knowledge.
 Instead of relying on domain knowledge, several data-driven approaches are used to discovery of
simulation model automatically. The works in (Lee et al. 2007) and (Gianluca et al. 2004) extract ground

2234

Le and Hu

truth data from video clips of human movements, then the researchers learn crowd behavior model from
observed trajectories. If given enough data, this technique can resemble how crowds behave in real life
scenarios. However, it does not provide explanation behind the discovered behaviors. Furthermore, they
are only work with particular application where historical data was collected. Other works uses data farming
technique (Horne and Meyer 2004) to generate a wide range of models from a set of possible parameters.
Many works in this approach include (Huang and Verbraeck 2009) and (Beck et al. 2015) concentrate on
adjusting parameters to make well-calibrated models that reproduce the real system, but not focus on the
improvement of model specification.
 In this work, we add two major components to our framework to support more complex and open-
ended applications. First, (Decraene et al. 2010) suggests that to make evolutionary computation possible,
parameters must have type (numerical, enumerable) and range (min, max). Base on this, we provide a
formal and generic specification for agent properties so that new properties can be specified in a uniform
and well-defined way. Second, (Kendall et al. 2000) and (Bhouri et al. 2012) describe the importance of
priority between agents on mobile agent-based system. In our work, instead of focusing on agent priority,
we add a mechanism to assign priority to each agents’ behavior. Hence, this make the framework assist
better when agents decide overall movement action from multiple behaviors.

3 OVERVIEW OF PREVIOUS WORK

Our previous work developed a framework towards data-driven simulation modeling for mobile agent-
based systems (Keller and Hu 2019). The framework includes two major components: a model space
specification and a search algorithm.
 The model space specification provides a formal specification for the general model structure from
which various models can be generated. It defines a “meta-model” for behaviors-based mobile agent
systems. A mobile agent-based system is composed of a world and a set of agents. A world is a 2-D space
that wraps vertically and horizontally. All agents have the same set of behavior groups. Each behavior group
contains a set of behaviors, and all behaviors in a behavior group manipulate the same pre-defined property
such as: position, heading direction, or speed. Properties play critical roles because each behavior acts on a
specific property by changing its value based on observations of the environment and nearby agents’
properties. Detailed specification of the model space can be found in (Keller and Hu 2019).

Based on the model space specification, in each iteration of the discrete time simulation, a behavior
goes through multiple steps to compute a moving action of the behavior. Figure 1 illustrates these steps
where each step is represented by a box. The arrows before and after the boxes represent the input and
output of these steps. In the first step, agents sense a set of nearby neighbors within their field of view
(FOV). The second step applies filters to get a specific set of agents. The next step extracts property from
the set of agents and combines them into one reference value. Then, the last step is to add an offset to the
reference value to compute a desired value for the property the behavior is acting on. This desired value is
referred to as the desired action for this behavior. If there are multiple behaviors that belong to the same
behavior group, the described actions are averaged to compute an overall action of the agent. Note that a
special property is the position property, which is treated differently based on which step a position value
is checked. Specifically, in the extract action property step, a position value is always converted to the
direction towards that position; the direction then becomes the reference value for the next step (the add
action offset step). In all other situations (including the steps in the Activation components described in
Section 4.2.1, a position value is treated as a value for calculating a distance to that position.

Figure 1: Steps of a behavior.

2235

Le and Hu

Figure 2 illustrates the behavior steps for a sample behavior that makes an agent steer left from its
nearest neighbor. In this example, the 2D space includes ten regular agents (hollow white circle) and one
obstacle (black solid circle), where agent A is the agent that owns this behavior. Through step 1, there are
five entities: four regular agents (1-4) and one obstacle within agent A’s FOV. In step 2, agent A applies
couple of filters to eliminate unsatisfied neighbors. The first filter chooses regular agent only (step 2.a).
Hence, the obstacle is removed. The second filter chooses the nearest neighbor (step 2.b), and as a result
agent 1 is selected. In step 3, agent 1’s position property is extracted and then converted to the direction
towards that position. This direction becomes the reference value for the moving action of this behavior.
Then step 4 adds an offset value to the reference direction to compute the desired action of this behavior.
In the last step, agent A executes the desired action and moves according to the new direction.

Figure 2: Illustration of the behavior steps.

Based on the model space, Genetic Algorithm (GA) is used to find models that satisfy the desired

behavior patterns specified by a modeler. GA encodes a potential solution to a specific problem on a simple
chromosome-like data structure and apply recombination on these structures so as to preserve critical
information (Whitley 1994). Based on the specification, a random model can have one or more behavior
groups. Each behaviors group contains one or more behaviors. Each behavior has several choices to choose
for range filters (distance, angle, speed, etc.), method filters (nearest, furthest, average, etc.), and extract
property functions (position, direction, speed). These options are considered as chromosomes for models,
and all possible combinations between them create the search space. First, random models are generated
within the search space, and all of them create an initial population. Next, simulation of each model is
performed by using a set of agents that make decisions based on model’s behavior group specifications. A
set of fitness functions is used to evaluate how close the outcomes of models are to the simulation goals.
After the evaluation, if the fitness scores of one or more models pass the threshold, GA finds the best models
and stops. If they do not pass, a new population is created with 25% best from old generation, 25% mutation
from 25% best of old generation, and 25% crossover from the all population. The last 25% is randomly
generated to increase the diversity of the populations (Keller and Hu 2019), and a new circle begins until
GA finds the best model(s) or reaches the computation limitations.

4 EXTENDED MODEL SPACE SPECIFICATION

4.1 Agent Property Specification

Our previous work assumes relatively simple scenarios where only several reserved properties are
considered for each agent. To support more complex scenarios, we would allow a modeler to add new
properties into the model space for automated model discovery. The goal of property specification is to
provide a well-defined structure for agent properties so that new user-defined properties can be added into
the model space and be searched by the search method in a unified way. To achieve this goal, a formal and
general structure for user-defined properties is needed. We define a user-defined property p has a general
structure as below:
p = <type, range, vinit> where
Type: numerical, or categorical
Range: if type is numerical, range =[vlow, vupper], where vlow is the lower bound of the numerical value, and
vupper is the upper bound of the numerical value.

2236

Le and Hu

 if type is categorical, range = the set of all possible categorical values.
vinit: initial value of the property:
 if type is numerical: vinit is a real number between vlow and vupper
 if type is categorical: vinit is an element of the Range set.
 To add a new property to the model space, a modeler needs to specify the type, range, and vinit for that
property so that it can be searched by the search method. Typically, the modeler has some knowledge about
the system and the property, and thus can define the type and range of a new property to be searched. For
example, if agents’ energy is important for a specific application, the modeler can define a new property
called energy, and specify its type to be numerical and define its range to be between 0 and 100. Similarly,
if agents can change color between green, yellow, and red for a specific application. The modeler can define
a property called color that has type = categorical and range = {green, yellow, red}. The modeler may also
specify the initial value vinit for the property if starting from that initial value is important for the application.
Otherwise, by default vinit is a random value within the Range.

We note that specifying the type, property, and vinit of a property is different from defining how the
property is used by specific behaviors. The modeler specifies the property, but then it is up to the search
method during the model discovery process to decide if and how the property will be used by a specific
behavior. In general, when a modeler provides a property that is meaningful and has relevant range, it
would make it easier for the search method to find behaviors using this property.

4.2 Activation Component

In previous work, the described actions from the multiple behaviors of a same behavior group is averaged
to compute the final action. In many cases, this method does not work well because the desire action of
each behavior would cancel each other after being averaged. For example, Figure 3.a shows a scenario
where agents have an obstacle avoidance behavior but cannot successfully perform it. Figure 3.b explains
why this happens. In this example, agent A has two behaviors that manipulate its direction: B1 and B2.
Agent A uses behavior B1 to avoid the obstacle by steering to the left, and B2 to follow its nearest agent.
Because the final decision 𝑩 is averaged between B1 and B2, agent A moves toward to the obstacle directly.

 (a) (b)
Figure 3: An example where average method does not work well.

 To address this problem, we need a mechanism to specify the importance of each behavior at each
iteration. Therefore, we extend the previous work so that each behavior has two components: an Activation
component and an Action component. The Activation component specifies the level of activation of the
behavior. This allows the priority of a behavior to be modeled because different activation levels represent
different priorities. The Action component specifies the action of the behavior, i.e., how the behavior
changes the value of a property. This component is the same as a behavior in previous work. In other words,
previous work considered only the Action component, and our extension adds a new Activation component.
 With the differentiation of the Activation component and the Action component, Figure 4 shows how
the overall action of a behavior group is computed in previous work (4.a) and in current work (4.b). As can
be seen, in previous work, each behavior Bi returns a reference value vi (i = 1, 2, 3, …, n), then the final
result is averaged among all reference values.

2237

Le and Hu

In the current work, along with reference value vi, each behavior Bi also returns a weight value wi. The
overall action is the summation of product between normalized weight and reference value vi of each

behavior. Because this weight distribution method sums up all to 1 after normalization, the more

weight a behavior has, the more portion it takes. Hence, this is an approach to support the priority
mechanism.

 (a): Average overall action. (b): Weight overall action.

Figure 4: Combining desired actions from multiple behaviors.

4.2.1 Activation Component Specification

The steps of the Action component are similar to the steps of the behavior in the previous work (illustrated
in Figure 1). Thus, in this paper we focus on the Activation component. In general, the Activation
component checks the condition of itself or its environment and returns a weight represents the importance
of the behavior. This involves sensing the environment based on FOV, applying filters, and extracting
property (referred to as activation property) in the same way as in the Action component. Afterwards, it
uses an activation function to compute a weight based on the activation property value. Figure 5 illustrates
the steps of the Activation component, which returns an activation weight in the end. Note that a special
case is to check an agent’s own property to computer the activation weight. In this case, a self-filter is used
to return the agent itself before the extra property step.

Figure 5: Steps of the activation component.

More formally, we define the Activation component to have three elements:
Activation = <Fa, pa, activation_function>
Fa is a set of filters where fa ∈ Fa

 fa is a filter where:
fa = <pf, cf>
 pf is the filtered property
 cf is the filter criteria:

 if pf is numerical type, cf = [cf_low, cf_upper], where vlow is the lower bound, and vupper is the upper
bound of the criteria.

 if pf categorical type, criteria = a subset of the set of all possible categorical values.
pa is the activation property.

2238

Le and Hu

activation_function = <type, ra> where:
 type: activation type: binary or linear (see explanation below).
 ra is the activation function range, where ra = [ra_low, ra_upper], follows the same regulation as cf.
 The activation function computes a weight based on the value of the activation property. This function
needs to have a well-defined structure so that it can use the same structure to cover different situations of
changing activation weight based on dynamic values of the activation property. In this work, we allow a
behavior to have one of the following two activation function types: binary function and linear function.
Binary function returns weight value of 1 or 0 based on if pa is inside or outside a specified range
[𝑟 _ ,𝑟 _]. By giving weight of 0, a behavior is considered not activated because its product is also
equal 0 and not contributed to the overall action. In some cases, modelers want the passing conditions are
not within the range. To capture all these situations, specification of the binary function is:
binary = <inside> where:
 inside: a Boolean value to decide the satisfied conditions are inside or outside the range of ra
 Table 1 shows the details of the binary function. When inside is True, the function returns weight of 1
if pa is within the range of ra, and 0 otherwise. When inside is False, the function returns 0 if pa is within
the range of ra, and 1 otherwise.

Table 1: Weight value using binary function.

Inside Weight value Function graph

True

𝑤𝑒𝑖𝑔ℎ𝑡 =
1 𝑖𝑓 𝑝 ∈ [𝑟 _ ,𝑟 _]

0 𝑖𝑓 𝑝 ∉ [𝑟 _ ,𝑟 _]

False 𝑤𝑒𝑖𝑔ℎ𝑡 =
0 𝑖𝑓 𝑝 ∈ [𝑟 _ ,𝑟 _]

1 𝑖𝑓 𝑝 ∉ [𝑟 _ ,𝑟 _]

 Different from the binary function that returns only two values: 0 or 1, the linear function returns
different values based on the inputs of the activation property. The specification of linear function is:
linear = <slope, increase> where:
 slope: measures the rate of weight change for different property values. It is an integer and has range
[0, supper]. supper is the upper bound of slope value.

increase: a Boolean value to indicate the increment/decrement direction of the weight value.
To make the search process more efficiency, modelers need to define upper bound of slope. Thus, the search
space includes all possible values within range of [0, supper] (note: in our implementation we define a
granularity to make the search space finite). Table 2 illustrates the linear function for various slope and
increase variables. If increase is True, the weight increases when pa moves toward to the upper bound
ra_upper of ra. If increase is False, the weight increases when pa moves toward to the lower bound ra_low of
ra. When pa is no longer within range of ra, the weigh is equal to either 0 or (ra_upper × slope) depends on the
pa and increase value.

Table 2: Weight value using linear function.

Increase Weight value Function graph

True 𝑤𝑒𝑖𝑔ℎ =

0
𝒔𝒍𝒐𝒑𝒆 × 𝒑𝒂 − 𝑟 _

𝒔𝒍𝒐𝒑𝒆 × 𝑟 _ − 𝑟 _

𝑖𝑓 𝒑𝒂 < 𝑟 _

𝑖𝑓 𝑟 _ ≤ 𝒑𝒂 ≤ 𝑟 _

𝑖𝑓 𝒑𝒂 > 𝑟 _

2239

Le and Hu

False

𝑤𝑒𝑖𝑔ℎ𝑡 =

𝒔𝒍𝒐𝒑𝒆 × 𝑟 _ − 𝑟 _

𝒔𝒍𝒐𝒑𝒆 × 𝑟 _ − 𝒑𝒂

0

𝑖𝑓 𝒑𝒂 < 𝑟 _

𝑖𝑓 𝑟 _ ≤ 𝒑𝒂 ≤ 𝑟 _

𝑖𝑓 𝒑𝒂 > 𝑟 _

4.2.2 Illustrative Example

Below is an illustrative example shows how the activation weight of a behavior is computed at different
time steps. Figure 6 shows this example, where an obstacle is moving toward to agent A and the distances
between them at time t = 0, 10 and 20 are 130, 75, and 10 respectively.

 (a) t = 5 (b) t = 10 (c) t = 15 (d) weight assignments

Figure 6: A scenario where obstacle is moving toward to an agent at three different time steps and their

weight values.

Behvaior B changes the agent’s direction if it is too close to an obstacle. The specification of behavior
B is:
Activation: Action:
Filter:
f1 : pf = type
 cf = obstacle
pa = position
ra = [20-120]
(note: distance range between 20 and 120).
Activation function:
 type: linear, increase = False, slope = 2.

Filter:
f1 : pf = type
 cf = obstacle
paction = position (converted to the direction
towards that position and use it as the reference
value).
offset: 40 (add 40 degree to the reference
direction)

 Behavior B’s activation has one filter with filter property = type and criteria = obstacle. In other word,
the filter chooses only obstacles and eliminates regular agents. Because pa chooses position as activation
property, the linear activation function calculates the activation weight based on range ca = [20,120] and
the relative distance between position of agent A and position of the obstacle. Figure 6.d shows how the
weight is calculated. Because increase value is False, weight is decreasing when distance is increasing. In
this example, Figure 6.b shows the distance d2 = 75 and it within activation criteria range. As a result,
weight of behavior B at t = 10 is 2 × (120-75) = 90. At t = 5 and t = 15, because the distance d1 (Figure
6.a) and d3 (Figure 6.c) both exceed the range of activation criteria ca, weight of B at t = 5 equals to 0 (d1 =
130 > ca_upper), and weight of B at t = 15 is 2 × (120 – 20) = 200 (d3 = 10 < ca_low). For the Action component
of this behavior, it has one filter that is similar to the filter of activation. It then extracts the obstacle’s
position to get the direction to the obstacle as the reference value. A 40 degree is added to this reference
direction to make the agent turn away from the obstacle.

2240

Le and Hu

5 EXPERIMENTS

5.1 Snake formation with Patience

To demonstrate adding user-defined properties for automated model discovery, we consider an example
that we studied in our previous work: snake shape (Table 4 - ID: 4) with personal space (Table 4 – ID: 5,6)
(Keller and Hu 2019). In that example, agents form a snake shape and also maintain personal space, so they
do not collide with each other. The discovered model works well if number of agents and world size are set
correctly. However, in the situation where there are too many agents in a limited space world, there is not
enough space for agents to execute the speeding up behavior. As a result, their speeds decrease to zero and
stand still until the rest of the simulation (Figure 7.a). To prevent that from happening, beside snake
formation and maintain personal space, we also add speed goal. Function s𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎 , 𝑡) (1) adds penalty
every time speed of agent ai is zero at a specific time step t by returning value of 1. Equation (2) sums all
the penalty during the whole simulation. Hence, the lower the sum value is, the better the speed goal
achieves.

𝑠𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎 , 𝑡) = 𝑖𝑓 (𝑠𝑝𝑒𝑒𝑑(𝑎 , 𝑡) = 0) 𝑟𝑒𝑡𝑢𝑟𝑛 1, 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 0. (1)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑 𝑖𝑠 𝑧𝑒𝑟𝑜 = ∑ ∑ 𝑠𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎 , 𝑡)| | (2)

 T is total number of simulation iterations.
 |A| is a set of agents, (ai,t) is the ith agent at time step t.

With this speed fitness function added, a better model is discovered and agents able to maintain

acceptable speeds. The behavior to keep the speed is when speed of an agent is in range [0,0.1], it turns left
60 degree. Hence, open more spaces for agents to speed up. However, agents cannot maintain a stable snake
formation because most of the agents change their directions too quickly as Figure 7.b shows.

To find models that can lead to stable snake formation, it is necessary to add a new property that can
control how long agents need to wait before changing the direction. Thus, we add a user-defined property
called patience to the search space. Patience is numerical type with initial value vinit = 100 and range =
[0,100]. Table 3 shows the final discovered model specification, and the first three (ID: 1-3) are used by
agents to wait patiently before changing their directions.

Table 3. A set of behaviors to maintain more stable snake formation.

Behavior Group: Patience
ID Behavior specification Purpose

1
Activation: if self-speed is within [0, 0.1], return 1.
Action: reduce the value of self-patience by 1.

If speed of agent itself is slow, its
patience decreases.

2
Activation: if self-speed is within [0.2, 2], return 1.
Action: increase the value of self-patience by 2.

If speed of agent itself is fast, its
patience increases.

Behavior Group: Angle

3
Activation: if self-patience is within [5,10], return 1.
Action: direction increases by 50

If patience of agent itself is low,
it steers left 50 degree.

4
Activation: if having one or more regular agent within
FOV, return 1.
Action: change direction to nearest agent

Follow the nearest agent.

Behavior Group: Speed

5
Activation: if the distance to nearest agent is within [0,15],
return 1
Action: speed decrease by 0.3

Slow down if too close to an
agent.

6
Activation: if the distance to nearest agent is within
[20,150], return 1
Action: speed increases by 0.5

Speed up when there is enough
space ahead.

2241

Le and Hu

Whenever speed of an agent decreases and within range [0 – 0.1], it begins to lose patience by 1 at each

iteration. During that time, if agent is able to gain speed above 0.2, its patience increases by 2. If not, the
agent will wait until its patience level is below 10, then turn its direction 50 degree to the left. In other word,
instead of breaking the snake shape immediately, agents wait until their patience is low. As a result, these
behaviors maintain snake formation (Figure 7.c) better than previous one. Without a user-defined property,
it is challenging to express a behavior that makes agent wait patiently before making another decision.

 (a) (b) (c)

Figure 7: Three experiments of snake formation with personal space.

 To compare quantitative results between previous and current experiment, three fitness functions are
used include: snake shape, personal space, and speed fitness function. First, snake shape fitness function
measures the differences between an agent’s direction and the direction toward to its nearest neighbor.
Second, personal space fitness function adds penalty whenever agent violate other agents’ personal space
(Keller and Hu 2019). Next, speed fitness function is calculated using equation (1) and (2). Final fitness
score of them are averaged between 100 simulations. Lastly, the scores are normalized to have common
scale of 0 being the best, and 1 being the worst. Compare the results between experiment 1 (without
patience property) and 2 (with patience property) of Table 4, we see that experiment 2 gives better score
in snake shape and personal space behaviors because the snake shape maintains stably for a longer time.
Hence, agents do not change direction as frequency as experiment 1 and have less chance to collide with
each other. Speed in other hand, experiment 1 receives the better score because agents in experiment 2 will
wait an amount of time before changing the direction when their speed is zero. Thus, more speed penalties
are added to it.

Table 4. Fitness scores of experiments with and without patience.

Snake Shape + Personal Space + Maintain speed models
Experiment 1: without Patience property Experiment 2: with Patience property
Snake Shape: 0.77
Personal Space: 0.513
Speed Fitness: 0.12

Snake Shape: 0.53
Personal Space: 0.308
Speed Fitness: 0.22

5.2 Snake formation with obstacle avoidance

A snake formation and obstacle avoidance model was discovered in previous work. However, it works well
only if obstacles are static. In other word, obstacles’ position does not change during the simulation. When
obstacles can move around, agents often collide with them directly (Figure 3.a). With the extended model
space specification that includes the Activation component in behavior, a new model was discovered that
allows agents to form snake shape while avoid moving obstacles. Table 5 presents the new obstacle
avoidance behavior. This new obstacle avoidance behavior has a linear activation function. If distance
between an agent and its nearest obstacle is larger than 120, the weight is 0 and the behavior make no impact
to the final decision. The closer the distance, the higher the weight is. The maximum activation weight 12

2242

Le and Hu

× (120 – 80) = 480. Compare to snake shape behavior (similar to behavior of Table 3 – ID: 4) that returns
weight of 0 or 1, obstacle avoidance behavior weight can heavily affect the final outcome.

Table 5. Obstacle avoidance behavior with linear activation function

 Figure 8.a illustrates agents are forming a snake line and there are two obstacle moves around. At this
moment, the obstacle is far away, so the priority to avoid it is still low. Later on, for a group of agents, the
priority to avoid the obstacle increases when there is one moves toward to them (Figure 8.b) Eventually,
obstacle avoidance behavior becomes dominant, and agents ignore the snake formation behavior. Hence,
agents are able to avoid the coming obstacle completely (Figure 8.c).

 (a) (b) (c)
Figure 8: Snake shape and obstacle avoidance with priority at different time step.

 Snake shape and obstacle avoidance fitness function are used to compare quantitative results between
experiment 1 (without priority) and 2 (with priority). Similar to maintain personal space fitness function,
obstacle avoidance function increase penalty by 1 every time agents touch obstacles at each iteration.
(Keller and Hu 2019). The results of Table 5 show that model of experiment 2 is better. It is predictable
because for experiment 2, depend on surrounding environment, either snake shape or obstacle avoidance
behavior are more important. Hence, final overall movements mostly influence by one of them, and
emergence phenomena are shown clearer.

Table 5. Fitness scores of experiments with and without priority.

Snake shape + Obstacle avoidance models
Experiment 1: Without priority Experiment 2: With priority
Snake Shape: 0.22
Obstacle avoidance: 0.687

Snake Shape: 0.153
Obstacle avoidance 0.041

Behavior Group: Angle
ID Behavior specification Purpose
1 Activation: if there is an obstacle within FOV, return a

weight follows below conditions:

𝑤𝑒𝑖𝑔ℎ𝑡 =

𝟏𝟐 × (𝟏𝟐𝟎 − 𝟖𝟎) 𝑖𝑓 𝒅𝒊𝒔𝒕 < 80

𝟏𝟐 × (𝟏𝟐𝟎 − 𝒅𝒊𝒔𝒕) 𝑖𝑓 80 ≤ 𝒅𝒊𝒔𝒕 ≤ 120
𝟎 𝑖𝑓 𝒅𝒊𝒔𝒕 > 120

dist: relative distance from agent to its nearest obstacle.
Action: direction increases by 20

Agent steers left 20 degree when
there is a nearby obstacle. The
weight has range [0,480]. The closer
the distance between the agent and
the obstacle, the higher the weight is.

2243

Le and Hu

6. CONCLUSION

 This work extends the model space specification for automated model discovery by adding user-define
property and Activation component to make the framework support more complex applications.
Experiments with and without patience property clearly show the necessary of user-define property. With
a formal specification provided, modelers can to add new suitable properties to the search space. Hence,
archive the better solution for their modeling tasks. Activation component decides which agents’ behaviors
has highest priority depends on nearby neighbor and environment. Thus, the framework assists better for
complex models where agents need to compute overall movement action from multiple behaviors. Future
works include: first, improve the efficiency of the searching process by reducing search time and
discovering better models. Second, compare the end results with other approaches such as: handcraft model
or models that are generated by different search algorithms. Third, apply the framework on more complex
model tasks; such as circle formation with obstacle avoidance to validate the robustness of the system.

REFERENCES

Beck, E. C., M. Birkett, B. Armbruster, B. Mustanski. 2015. “A Data-Driven Simulation of HIV Spread Among Young Men Who
Have Sex With Men: Role of Age and Race Mixing and STIs”. JAIDS Journal of Acquired Immune Deficiency Syndromes
70(2):186-194.

Bhouri, N., B. Flavien, and P. Suzanne. 2012. “An Agent-based Computational Approach for Urban Traffic Regulation”. In
Progress in Artificial Intelligence, edited by M. Díaz and S. Ventura, 139-147. New york, New York: Springer Nature.

Decraene, J., M. Low, F. Zend, S. Zhou, and W. Cai. 2010. “Automated Modeling and Analysis of Agent-based Simulations Using
the CASE Framework”. In 11th International Conference on Control Automation Robotics & Vision, December 7th-10th,
Singapore, Singapore, 346-351.

Deeter, K., K. Singh, S. Wilson, L. Filipozzi, S. Vuong. 2004. “APHIDS: A Mobile Agent-Based Programmable Hybrid Intrusion
Detection System”. In Mobility Aware Technologies and Applications, edited by A. Karmounch, L.Korba, E. Madeira, 244-
253. Berlin, Heidelberg: Springer.

Antonini, G., M. Bierlaire, and M. Weber. 2004. “Discrete Choice Models of Pedestrian Behavior”. ROSO Reposrt 040916,
Operations Reseach Group ROSO, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.

Horne, G. E., and T. Meyer. 2004. “Data Farming: Discovering Surprise”. In Proceedings of the 2004 Winter Simulation
Conference, edited by R. R. Ingalls, M. D. Rossetti, J. S. Smith, B. A. Peters, 813-818. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Huang, Y., and A. Verbraeck. 2004. “A dynamic data-driven approach for rail transport system simulation”. In Proceedings of the
2009 Winter Simulation Conference, edited by M. Rossetti, R. R. Hill, B. Johansson, 2553-2562. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Keller, N., and H. Xiaolin, 2019. “Towards Data-Driven Simulation Modeling for Mobile Agent-Based Systems”. ACM
Transactions on Modeling and Computer Simulation 29(1):1-26.

Kendall, E. A., P. V. M. Krishna, and C. B. Suresh. 2000. “An Application Framework for Intelligent and Mobile Agents”. ACM
Computing Surveys 32(1es):20-es

Lee, K. H., M. G. Choi, Q. Hong, and J. Lee. 2007. “Group Behavior from Video: A Data-Driven Approach to Crowd Simulation”.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, August 3rd-4th, Diego,
California, 109-118.

Reynolds, C. W., 1987. “Flocks, Herds and Schools: A Distributed Behavioral Model”. ACM SIGGRAPH Computer Graphics
21(4):25-34

Wagner, N., and V. Agrawal. 2014. “An Agent-based Simulation System for Concert Venue Crowd Evacuation Modeling in the
Presence of A Fire Disaster”. Expert Systems with Applications: An International Journal 41(6):2807-2815.

Whitley, D. 1994. “A Genetic Algorithm Tutorial”. Statistics and Computing 4:65-85.

AUTHOR BIOGRAPHIES

HAI LE is a PhD student in the Computer science at Georgia State University at Atlanta. He received his master’s degree from the
University of Central Arkansas. His current research focuses on Agent-Based simulation and modeling, particularly on model
specifications. His email address is: hle49@student.gsu.edu.

XIAOLIN HU is a Professor of the Computer Science Department at Georgia State University, Atlanta, GA. He received his Ph.D.
from the University of Arizona, Tucson, in 2004. His research interests include modeling and simulation theory and application,
complex systems science, agent and multi-agent systems, and advanced computing in parallel and cloud environments. His work
covers both fundamental research and applications of computer modeling and simulation. He was a National Science Foundation
(NSF) CAREER Award recipient. His email address is: xhu@gsu.edu.

2244

