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ABSTRACT

The problem of developing robust daily schedules for the teams turning around aircraft at airports has
recently been approached through an efficient combination of project scheduling and vehicle routing
models, and solved jointly by constraint programming and mixed integer programming solvers, organized
in a matheuristic approach based on large neighborhood search. Therein, robustness is achieved through
optimally allocating time windows to tasks, as well as allocating slack times to the routes to be followed
by each team throughout their working shift. We enhance that approach by integrating discrete event
simulation within a simheuristic scheme, whereby results from simulation provide constructive feedback
to improve the overall robustness of the plan. This is achieved as a trade-off between the interests of each
separate turnaround service provider and that of the airport as a whole. Numerical experiments show the
applicability of the developed approach as a decision support mechanism at any airport.

1 MOTIVATION

Aircraft turnaround services consist of sequences of operations through which aircraft, while parked in
areas of an airport known as aprons, are set ready for the following take-off. Several operations may be
needed: passenger disembarking and boarding, baggage unloading and loading, refueling, cabin cleaning,
catering, toilet and potable water servicing, and aircraft push-back. Figure 1 shows an example of a typical
turnaround. A number of related important aspects of apron operations can be highlighted:

• Ideally, each turnaround should start as soon as the aircraft arrives at its parking stand, preferably
at the time for which it was scheduled to arrive there – or Start of In-Block Time (SIBT ) – and
should be completed by the time it was scheduled to be pushed-back into the taxiway on its way
to the runway – which we call its Start of Off-Block Time (SOBT ).

• Conjunctive directed arcs within each turnaround represent precedence relations between services,
e.g., refueling often cannot start before passengers have disembarked due to safety regulations.

• There exist specific time windows through which each activity should be performed. Each time
window shortens or stretches depending on what happens to other related operations. Setting
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Figure 1: An example of aircraft turnaround operations and precedence relationships between them.

appropriate time windows for all activities may provide for basic albeit essential opportunities to
enable viable operations.

Effective scheduling of resources (staff and equipment) in apron operations is crucial. With no loss of
generality, in the remainder we focus on teams of staff and assume that each team carries with them the
related equipment in between consecutive tasks they are assigned to. Such a scheduling normally happens
ahead of the day of operation and covers the whole working shifts of ground service teams. With many
factors out of the control of airport decision makers – weather, technical faults or delays of aircraft, late
passengers on boarding, etc. – plans that are in some form robust should be sought.

Apron operations are often handled by different service providers (SPs), each of which provides a
mix of services to a subset of airlines and related flights. An SP consists of teams of different service
types. Resource allocation decisions are interconnected and, therefore, the potential for flight delays due
to knock-on effects is rather high. Cross-turnaround delay propagation may happen if teams from SPs are
scheduled back-to-back between subsequent aircraft. Still busy with a turnaround, a team will also occupy
the stand for longer, affecting the next turnaround assigned to the same stand. Delay propagation across
airport aprons is inevitable.

In Gök et al. (2020), a robust scheduling approach to the above problem is presented. Therein, authors
assume that the airport operator (AO) first sets time windows for all tasks of all SPs, by targeting minimal
tardiness across all tasks and flights. Then, each SP routes all teams of all turnaround services they provide
in a way that slack times are optimally distributed among operations, so that foreseeable disruptions can
be absorbed, at least in most cases. Gök et al. (2020) checked the robustness of the plan using simulation
as a post-optimization process. Different than Gök et al. (2020), our contributions in the present work are
as follows:

• We add a feedback mechanism from simulation back to optimization, using simulation results to
guide the search by learning and adding new constraints to the optimization model. This integration
helps guiding the search towards more robust solutions, and extends the use of simulation beyond
an evaluation tool, e.g., simply to accept or reject intermediate solutions.

• We define robustness criteria for both the AO and SPs, which are then used to determine if additional
simheuristic iterations are needed.

The developed framework falls within the simheuristics family of approaches (Juan et al. 2015) and
is described in detail in Section 4.
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2 RELATED LITERATURE

In the first subsection of this condensed literature review, we give an overview of methods being used
for planning apron operations. Then, we conclude our review with a summary of the state of the art of
simheuristic approaches to robust apron operations planning.

2.1 Tactical Robust Planning in Apron Operations

Recently, modeling and solving approaches for airport airside operational problems have been reviewed
by Ng et al. (2018). Apron operations are just an example of one type of airside operation, others being
taxiing, take-off and landing, air traffic control, and flow management. This review clearly shows that
apron operations have not been targeted as often as other operational problems, such as the assignment of
boarding gates to flights. The authors also show how problems in this wide category have been modeled
after the following classes: Project Scheduling, Quadratic Assignment, Traveling Salesman, or Vehicle
Routing Problems (PSP, QAP, TSP, and VRP, respectively). This, in turn, suggests the likely levels of
complexity expected from airside operational problems and their combinatorial nature.

Gök et al. (2020) discuss a novel approach to the optimization of the tactical robust problem anticipated
in Section 1, which is based on its decomposition into subsequent steps, modeled respectively as forms
of PSP, TSP, and VRP. The approach itself will be summarized in Section 3, as it is a precursor to its
simheuristic version presented in this work and discussed in Section 4. Padron et al. (2016) present the
closest approach, which also breaks down the problem in a similar sequence of two main steps. First,
centrally, the AO sets time windows for all apron services to be executed across all flights over the day of
operation. Second, decentralized decisions are made by each SP, who by then have developed their staff
rosters for the day of operation and can, thus, focus on optimally routing their ground teams through the
related turnaround tasks. Other similarities between the two approaches include: (i) both papers consider
TSP and VRP versions with time windows; (ii) both include elements of Constraint Programming (CP) in
their approaches; (iii) both integrate Large Neighborhood Search (LNS) in their search scheme (Padron
et al. 2016 also consider Variable Neighborhood Search); and (iv) both are validated against the same case
study. Along the way, both Gök et al. (2020) and Padron and Guimarans (2018) – directly based on the
development from Padron et al. (2016) – integrate simulation at the bottom-end to evaluate ex-post the
robustness of the solutions generated from the heuristic search. Beyond methodological differences, our
approach differs from that of Padron et al. (2016) in the following aspects: (i) our approach facilitates a
more flexible scheduling of turnaround tasks, instead of using predefined configurations and task sequencing
for each type of aircraft and turnaround and (ii) we fix task time windows at the centralized phase, when the
task scheduling is solved, and do not allow for updating these windows at later stages. The former allows
for a more efficient usage of resources, since tasks can be flexibly scheduled in the turnaround according
to resource availability, while the latter allows for tackling the problem without the need for information
sharing between SPs.

Based on a similar problem setting, van Leeuwen and Witteveen (2009) adopt a substantially different
perspective, where SPs are considered as separate legal entities making fully independent decisions.
Additional related works (Neiman et al. 1994; Kuster and Jannach 2006; Mao et al. 2006; Mao et al.
2008; Norin et al. 2009; Norin et al. 2012; Ip et al. 2013; Andreatta et al. 2014) have less overlap with
the work presented in this paper.

2.2 The Role of Simheuristics in Apron Operations Planning

A simheuristic algorithm (Juan et al. 2015) is an approach to integrating simulation and optimization
techniques to efficiently tackle a combinatorial optimization problem characterized by stochastic components
in either its objective function, constraints, or both, and is particularly suitable if efficient metaheuristics
are already available for the problem at hand, as it is the case for apron operations. A thorough review of
alternative design schemes for simheuristics tackling a variety of problems is out of the scope of this paper.

1338



Gök, Tomasella, Guimarans, and Ozturk

In recent years, the Winter Simulation Conference has constantly seen streams dedicated to simheuristics,
and the frequency of journal articles has increased as well. The design of the simheuristic approach proposed
in this paper was inspired by Guimarans et al. (2015). We integrate simulation with LNS, in the context of
the multi-stage approach to our optimization of ground team routes in apron operations. Section 4 provides
the details of this integration within the proposed simheuristic approach.

A fair question is whether a different approach to stochastic optimization may be more advisable
than simheuristics for the proposed problem. In particular, one of the scenario-based approaches from the
literature (e.g., Stochastic Programming), as they allow significant freedom in modeling undesirable events
and recourse actions, could be applicable. However, in a recent paper (Markov et al. 2018), where the
authors propose a unified framework for routing problems with stochastic demands and uncertainty only
in the objective function, they argue that scenario-based approaches are computationally very heavy for
an already hard combinatorial problem like theirs. In the case of our apron operational problem, we even
see it harder, if not impossible, to think of sufficiently meaningful scenarios in the first place, given the
number of tasks involved, the continuous nature of many of the random variables, etc. However, the last
five years of development in simheuristics have provided plenty of guidance in developing schemes to
integrate certain metaheuristics with simulation. In these schemes, the uncertain elements of the problem
are located in the objective function, in the constraints of the problem, or in both. As an example, Grasas
et al. (2016) discuss SimILS, an integration of simulation with Iterated Local Search.

Finally, our paper targets two open research lines that were raised by Juan et al. (2018) in a recent
review of applications of simheuristics, namely:

1. A higher level of integration between simulation and optimization, including increasing use of the
feedback provided by the simulation to better guide the search for better solutions.

2. Use of more ‘sophisticated’ simulation approaches (e.g., discrete-event simulation or agent-based
simulation), to cater for the complexity of real-world applications.

Regarding the former, many simheuristic approaches indeed exploit information from simulation runs
mostly to apply an acceptance or rejection criterion that ultimately might flag up the solution just simulated
as a ‘promising’ or an ‘elite’ solution. As for the latter, Monte Carlo simulation schemes are prevalent. But,
the adoption of more-sophisticated stochastic dynamic simulation models might considerably add to the
computational burden, ultimately risking to jeopardize the timely performance and, possibly, the viability
of the overall simheuristic algorithm. In the remainder of this paper, we show how we successfully dealt
with both aspects.

3 PROBLEM DESCRIPTION AND MODELING APPROACH

In this section, we summarize the crucial elements of our apron resource optimization problem and recall
how we modeled each of the sub-problems in our decomposition-based approach. Gök et al. (2020) provide
details around notation, formulations, role of CP, and use of alternative solvers for all sub-problems.

Flight schedules are known to both the AO and the SPs approximately a season ahead. With this
information at hand, scheduling of all turnaround operations for all days of the planning horizon may
commence. From a centralized viewpoint, the AO would normally want to be in the best possible
conditions for achieving minimal delays, measured on turnaround completion (SOBT). This long-term
planning phase concludes with the AO setting time windows, where each turnaround service should take
place. Modeling-wise, the AO solves a PSP with infinite resource capacity first, optimizing for minimal
tardiness across all daily operations at the airport. Then, this solution is further improved, achieving
minimal resource requirements across all apron operations and SPs. This second sub-problem takes the
well-known form of a ‘resource-constrained PSP’ (RCPSP). As a by-product of this problem-solving step,
the AO is able to communicate to the SPs the overall likely levels of tardiness, for both the airport as a
whole and each of them separately, as well as the resource levels (number of teams per SP and service
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Figure 2: Proposed turnaround planning process (Gök et al. 2020).

type) required from them. This is precious information for the SPs to take forward to their own specific
rostering optimization decision-making processes, which are out of our work’s scope.

Approximately one week before the day of operation (top of Figure 2), the PSP/RCPSP sequence is
repeated with the most up-to-date flight schedule as input. As a result, estimates of both time windows
and resource requirements for each service and for each day are refined, and each SP can proceed with its
normal short-term planning adjustments including any changes needed to its rosters.

At this stage, planning takes a more decentralized view (bottom of Figure 2), with each SP solving
independent problems. Their own ground teams, separately for each type of provided service, are optimally
routed throughout the related turnaround tasks and time windows. Unlike more typical optimal routing
problems, and given the short distances between airport gates, minimizing distances traveled per team is
not as important as optimally allocating slack time for teams in between consecutive tasks. The reason
is that we ultimately aim to enforce a certain degree of robustness to the plan in spite of a bunch of
uncertain aspects of the problem – with slack time enabling absorption of at least minor disruptions and
related delays. To achieve this, we first maximize (separately for each SP and each related service) the
minimum slack across all teams available for a shift. Then, we balance the workload across teams as much
as possible, aiming to distribute the workload as fairly as possible. Finally, we maximize the total slack
time. Certain turnaround services are provided by teams using vehicles and equipment of limited capacity
(e.g., refueling trucks or catering trucks), while others do not share this characteristic (e.g., push-back
and cleaning trucks). From a modeling standpoint, our routing problems in relation to the former type of
resource take a form of vehicle routing problem with time windows (VRPTW), while the latter become a
form of multi-traveling salesmen problem with time windows (mTSPTW) (Desrosiers et al. 1995).

4 SOLUTION APPROACH

We propose a simheuristic framework for solving the airport turnaround scheduling problem (Figure 3).
First, we seek to maximize the minimum and total allocation of slack to the routes of the different teams (Z1
and Z3 in Figure 3, respectively) and balance the workload across all teams as much as possible (Z2). These
objectives are achieved in the deterministic version of the underlying combinatorial problem. Then, our
implementation of LNS seeks to further improve the maximum total slack objective (Z3). After reaching
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Figure 3: Simheuristic framework.

a maximum number of iterations (maxIterLNS), we use a discrete-event simulation model of the airport
turnaround operations for evaluating the robustness of the deterministic solution in the stochastic setting.
If the robustness criterion is not met, this inference is fed back to the optimization step to be considered
in a new iteration of the whole procedure.

In the following subsections, we provide relevant details about the role of LNS in the solution of the
optimization problem (Section 4.1) and further details about our simheuristic algorithm (Section 4.2).

4.1 Integration of Large Neighborhood Search

All our sub-problems (left-hand side of Figure 3) were formulated using CP and implemented in Minizinc,
a solver-independent language to model both constraint satisfaction and optimization problems. We have
tried different solvers, including CP solvers (Gecode, Chuffed) and Mixed-Integer Programming (MIP)
solvers (Gurobi). Solving the majority of instances to optimality and in computationally reasonable times
proved particularly challenging, especially in maximizing for total slack (Z3 in Figure 3). Then, we chose
to apply a time limit to the execution of the CP solver for this last step in the optimization routine, and take
the best solution obtained up to that stage as a starting point for an LNS approach to improve further. LNS
is a metaheuristic framework introduced by Shaw (1998) and widely used in combination with CP with
promising results (Guimarans et al. 2015). We show the steps of our own version of LNS for our problem
in the middle part of Figure 3. Essentially, we take the solution from objective Z3 and apply a ‘destroy’
operator to it, removing a number of team-to-turnaround assignments. Then, we feed this ‘incomplete’
solution to the maximization of the total slack sub-problem, where the CP solver will ‘repair’ the solution
by making sure that all tasks of all types are allocated to a related team. Solutions are repaired effectively
due to dealing with a considerably smaller search space. On examining this new solution, it may turn out
that it is the new ‘best-so-far’. We repeat this destroy-repair-evaluate loop a number of times (maxIterLNS),
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before we conclude the LNS phase. At this stage, we have an allocation of the available ground teams to
turnaround tasks at our disposal, which we believe embeds a level of slack that should render it ‘robust’.
It should enable to absorb many of the foreseeable delays and disruptions that are likely to take place on
the day of operation once the plan is enacted. To what extent that happens is usually not known until at
least an a posteriori simulation of the enactment of the plan under a significant coverage of scenarios is
run. This has been conducted by Gök et al. (2020), where we also provided details of all optimization
sub-problems as well as of our LNS implementation.

An interesting aspect of our problem is the need for adopting appropriate robustness metrics to be
computed by simulation into the optimization. This requirement is common for many planning and
scheduling problems (see, e.g., Jamili 2016 for a review and discussion of robustness metrics in job-shop
scheduling). The dual centralized-decentralized nature of our problem translates quite easily in radically
different notions of robustness, depending on the perspective (AO or SP). In the next subsection, we discuss
how we dealt with this dual nature in our simheuristic approach. Furthermore, the core novelty in this
paper and the very focus of the next subsection relate to the specific way in which we added simulation
to the decision framework (right-hand side of Figure 3). The idea is to use the inference from simulation
results to give feedback to the optimization sub-problems to improve operational robustness.

4.2 The Simheuristic Algorithm: Simulation ‘in the Loop’

In our problem, the arrival time of all aircraft, the processing time of all turnaround tasks, the time for teams
to travel between consecutive turnarounds, and the time to replenish any finite capacity resource (e.g., the
fuel truck), are all major examples of stochastic components that need to be considered for robustness of the
plans. In our approach, we accounted for all these aspects by developing our own Petri-Net-based discrete-
event simulator. Its major features are its generality, adaptability, easiness of integration, and computational
lightness. Following one iteration of the deterministic Optimization and LNS steps (Figure 3), the algorithm
automatically builds an enhanced Petri Net model of the system based on the obtained solution, which is
then simulated exploiting recursivity. This solution permits a fine-grained tailoring of the simulation outputs
for further analysis, as well as a reduction of the development time required to implement and maintain
such a complex model in commercially available simulation tools. Even though some of these tools have
automatic model generation capabilities (such as Anylogic), they are dependent on the use of professional
licenses. Our approach, on the other hand, is independent of any specific tool. Furthermore, our simulator
also enhances the approaches’ modularity and flexibility, since the simulation model can be automatically
built independently of the solving approach, and can accommodate new operational constraints and adapt
operational rules without requiring any adjustment before or during the algorithm’s execution.

Following one iteration of the simheuristic algorithm and the analysis of the robustness of operations
of both the airport as a whole and of each SP, changes in the ‘system configuration’ (in our case, resources
available to each SP and service type) are given back to the first sub-problem of the optimization stage (i.e.,,
the maximization of minimum slack). After that, the optimization and LNS stages proceed as explained
above, giving way to a new run of the simulation stage. Resource availability and all other settings for our
simulator are automatically provided at the end of the LNS stage, so that a simulation of this configuration can
be run for a suitable number of independent replications. This gives rise to new estimates for the robustness
metrics, and the whole process repeats with a cap to the maximum number of iterations. Our simulator is
then fully and automatically integrated within the now ‘triple-stage’ Optimization-LNS-Simulation loop.

At the conclusion of every iteration of the loop, we check two robustness metrics:

• Assuming the centralized view from the AO, we compute the percentage of departing flights for
which the push-back starts later than a certain threshold (td) after the SOBT. At the planning stage,
there is normally a maximum percentage d that the AO is willing to accept.

• Taking a more decentralized viewpoint, each SP is interested in meeting their Service Level
Agreements (SLAs) with the airlines they service and the AO. SLAs normally include many
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potentially alternative performance metrics, of which we selected one as an example. We assume
SPs to be interested in keeping delays in starting the related turnaround tasks below a maximum
acceptable threshold of tt minutes. For the sake of simplicity and with no loss of generality, in our
computational experiments we assume this threshold to be equal for all SPs at the airport.

At each iteration of the simheuristic algorithm, Ni independent replications of the simulation model
are run. The number of replications depends on the specific instance i, the related underlying variability,
etc., and is computed with conventional methods (Law 2014). Immediately following simulation, both
of the robustness metrics are checked. If both of the metrics are below the chosen threshold, the overall
procedure stops. If either of them does not meet the required level, then the service type and SP with the
highest total delay is selected and this information communicated back to the optimization stage, where
resource capacity for that particular service is increased by one unit, and the triple-stage loop may restart.
Note that the newly added team should in fact be ‘off’ on that day of operations. This normally comes at a
costs for the SP, but would hopefully be counterbalanced by the avoidance of costs from the related delays
that the SP may have to pay for otherwise. The whole procedure is repeated until either both required
levels are met, or a set cap of Nloop iterations of the loop are performed. In the next section, we show how
this feedback mechanism can be effectively used to enhance the ‘planned’ robustness of apron operations
on the whole.

5 EXPERIMENTS

Our proposed simheuristic methodology was tested on four generated instances, which were built based on
an original data set from service providers on one of the major airports in Spain, with different mixes of
aircraft and frequencies of arrivals and departures for one day of operations. All tasks are assumed to belong
to a single shift. There are seven SPs in total, each one responsible for different types of tasks: baggage
loading and unloading, cleaning, catering, fueling, clean water service, toilet service, and push-back. If
there is more than one shift a day, the solution approach is decomposed to multiple shifts and solved
separately until the simulation phase. Simulation is run for the whole day of operations.

We ran our approach on a personal laptop (1.6 GHz Intel Core i5) running mac-OS High Sierra. The
overall integration was achieved in Python 3.7, calling MiniZinc Python (MiniZinc version 2.3.2) to run
the optimization and our own java-based simulator for the discrete-event simulation runs. The number of
independent simulation replications is calculated with a 95 % confidence level, and an absolute error of
seven minutes for low variability and 15 minutes for high variability.

At the optimization step, the RCPSP is proven to be optimal for minimizing tardiness, as well as for
minimizing total resources and teams per SP for all instances. For the mTSPTW/VRPTW, we proved
optimality for the minimum slack time for the given tardiness and resource levels. The optimization of the
total slack is terminated with a given time limit, and the resulting solution is accepted as an initial solution
for the LNS. The average optimality gap was 0.68 % across all instances, with a maximum observed gap
of 2.72 %. Hence, the performance of our optimization approach is promising, especially considering the
high number of tasks involved, ranging from 228 for the smallest instance to 966 for the largest one.

Table 1 shows the computation times (CPU) per instance and per level of variance. Even though
computation times are high, especially for the largest instance, it is not our main concern, since there will
be enough time to run this algorithm one week before the day of operations when the changes in the flight
schedules are finalized. This time frame also provides sufficient time for SPs to arrange additional teams if
necessary. We also observe that simulation constitutes a computationally expensive portion of the overall
simheuristic algorithm (Sim. CPU).

For some instances, we require a high number of iterations to reduce delays, especially for scenarios
with high variability. In our experiments, we stop after 20 iterations (Nloop) if the simheuristic approach
is not able to reach robustness both for the AO and SP metrics. However, our results indicate that ten
iterations are sufficient to reach solutions close enough to robustness for at least one of the stakeholders
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Table 1: Results from our approach for the four generated instances and different levels of variability.

Instance # Tasks Time Horizon Variability # Sim. # Iterations CPU (s) Sim. CPU
(min) replications (%)

ta24 t120 228 120 low 31 3 184.77 42.53
high 201 20 5981.61 48.22

ta48 t240 465 240 low 29 5 2180.08 37.43
high 118 20 17487.71 69.36

ta72 t360 692 360 low 55 1 1740.11 50.55
high 35 20 29121.24 40.83

ta96 t480 966 480 low 48 8 23507.93 63.62
high 66 20 67157.31 75.78

as to facilitate the decision-making process (Figure 4). Hence, the computation times could be improved
drastically by cutting the number of simheuristic iterations to half. We deliberately decided to keep a
maximum of 20 iterations for this study for clarity of interpretation of the results.

As described in Section 4.2, we determine the robustness of a solution based on threshold values
defined for performance indicators for the AO (d, dependent on td) and the SPs (tt). Following real-world
practices, we set td to 5 minutes of delay and 10 % for d. For the SPs, we set tt as 10 minutes of total
delay. As discussed, for simplicity and without loss of generality, we assume the same tt is applicable to
all SPs in our experiments. If SLAs are not met, then SPs might face penalties payable to the airlines,
and the AO’s reputation might suffer due to having a high percentage of delays, which in turn can have
an impact as increased costs.
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Figure 4: Evolution of the maximum delay across SPs per instance and for two levels of variability.

Figure 4 shows the evolution of the maximum delay across all resources for scenarios with low (top)
and high (bottom) variability. The solid line indicates the threshold value (tt) under which robustness is
achieved. i.e., where all SPs are able to schedule their resources with a maximum delay never exceeding
tt. In each iteration, a new team is added for the operation showing the highest delays. For low variability
cases, this is achieved quite early in the execution of our simheuristic approach. Except for ta72 t360, a
fast convergence for this metric is also achieved for scenarios with high variability.
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In some cases, we observe a little increase in the delay values after an iteration. This is due to dependencies
among tasks, which could lead to the improvement of one SP actually worsening the performance of another
one, and hence to an increase of the maximum delay in the system. This relation between different SPs
is illustrated in Figure 5. In Case 1, we observe that both teams arrive ahead of time and their respective
tasks start according to the schedule. In Case 2, although Team B arrives later than the scheduled time, it
still needs to wait before starting Task b due to the late arrival of Team A and the corresponding delay of
Task a, assuming there is a precedence relationship between both tasks. It is worth noting that the delay
in Task a will be linked to the late arrival of Team A, but the actual delay of Task b is not caused by Team
B. In this case, the algorithm will focus on improving the performance for Team A (Case 3), revealing
the real issue caused by the late arrival of Team B. This will increase the total delay associated to Team
B and, therefore, its performance might decline due to the improvement of Team A’s schedule.

Team A waits for Task a
Team B waits for Task b

7:00 7:45

7:00 8:45
8:00

7:00 8:45
8:00

7:00 8:45
8:00

Scheduled Task bTask a

Task bTask aCase 1

Case 2

Case 3

Actual Task bTask a

Task a

Team A arrives Team B arrives
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Team A delays Task a
Team B waits for Task b

Team B delays Task b

Team A arrives Team B arrives

Task b

Figure 5: Example of propagation of delays between two teams performing dependent tasks.

Figure 6 shows the evolution of the percentage of flights delayed over five minutes (d) for scenarios with
low (top) and high (bottom) variability. In both cases, we set the robustness thresholds at 10 %. We observe
that this is achieved after one iteration for all instances in scenarios with low variability. The remaining
iterations are required to achieve robustness from the SPs’ perspective (c.f. Figure 4 top). However, we
observe that the desired robustness level is never achieved after 20 iterations for high variability scenarios,
despite reaching robustness from the SPs’ perspective (c.f. Figure 4 bottom). This is due to the high
variability of the task duration, which might cause departure delays even when all teams are ready on
time. Nonetheless, if we consider the total aircraft delay instead of d, we observe a clear decrease across
iterations for scenarios with high variability, with the delay remaining between four and six minutes for
most aircraft. These delays are unavoidable, unless the duration of tasks or the scheduled turnaround times
are extended to absorb such variability. This is a strategic level adjustment which needs to be agreed
with the airline in the first place. Hence, it is not in the scope of our study. However, some techniques
proposed by Davenport et al. (2001) could be implemented in the future in order to avoid delays due to
high processing time variability.

6 CONCLUSION

In this study, we propose a simheuristic approach for tackling the scheduling of airport turnaround services
and teams. Different from the majority of simheuristic approaches, we more seamlessly integrate discrete-
event simulation with the metaheuristic execution. Our use of simulation is two-fold: (i) to evaluate the
robustness of solutions from the perspectives of different stakeholders (AO and SPs), and (ii) to provide
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Figure 6: Evolution of the percentage of delayed aircraft for two levels of variability.

additional guidance to the optimization process by increasing the number of resources based on the automated
analysis of simulation results. Our experiments prove that this approach provides a suitable decision-making
support platform for multiple stakeholders. As a future line of research, this approach could be extended
to include additional performance and robustness metrics to accommodate stakeholders’ needs, as well as
the mechanisms to provide diverse trade-off solutions to facilitate the decision-making process. Finally,
the simheuristic framework could be enhanced by the generation of additional constraints derived from the
analysis of simulation results.
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