
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

ENHANCING SCALABILITY OF VIRTUAL METROLOGY: A DEEP LEARNING-BASED
APPROACH FOR DOMAIN ADAPTATION

Natalie Gentner
Andreas Kyek

Yao Yang

Infineon Technologies AG
Am Campeon 1-15

85579 Neubiberg, GERMANY

Mattia Carletti
Gian Antonio Susto

Department of Information Engineering
University of Padova
Via Gradenigo 6/B

35131 Padova, ITALY

ABSTRACT

One of the main challenges in developing Machine Learning-based solutions for Semiconductor Manu-
facturing is the high number of machines in the production and their differences, even when considering
chambers of the same machine; this poses a challenge in the scalability of Machine Learning-based so-
lutions in this context, since the development of chamber-specific models for all equipment in the fab is
unsustainable. In this work, we present a domain adaptation approach for Virtual Metrology (VM), one of
the most successful Machine Learning-based technology in this context. The approach provides a common
VM model for two identical-in-design chambers whose data follow different distributions. The approach is
based on Domain-Adversarial Neural Networks and it has the merit of exploiting raw trace data, avoiding
the loss of information that typically affects VM modules based on features. The effectiveness of the
approach is demonstrated on real-world Etching.

1 INTRODUCTION AND RELATED WORK

A key factor in semiconductor manufacturing is to create more controlled production environments and to
assure quality, speed and stability in production. If an overall standardization strategy is not applicable or only
possible to a limited degree, non-identical parts and processes should be aligned and equalized. We refer to this
concept as matching, a desirable quality under many perspectives: hardware and software configurations, end-
of line electrical characterization, tool sensors, process properties, metrology measurements and maintenance
actions. At process level, matching is hard to achieve for many reasons, for example product-specific factors
like technology and recipe as well as the process dynamics, product mix, process history and equipment
status need to be taken into account.

The lack of matching has a profound effect on the scalability and success of Machine Learning-based
solution in semiconductor manufacturing. Machine Learning (ML) technologies, like Virtual Metrology,
Predictive Maintenance and Fault Detection, have been applied in the past recent years in this context
to improve quality and reduce costs. At the present state, ML-based solutions are hardly scalable in
semiconductor environment partly due to the lack of matching: for example, even when considering
chambers of the same productive machine, a data-driven model developed for one chamber will not be
effective for another one. Taken this into account and considering the high number of machines in the
shop floor, it is apparent why ML-based solutions are still not consistently adopted even in advanced fabs.

In this work we address the topic of matching and scalability, by considering a particular ML-based
technology for process control that is Virtual Metrology (VM). VM aims at estimating metrology quantities
that are costly to be measured by means of data-driven algorithms and exploiting the availability of historical
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data where such measures are performed; VM is formalized as a regression task where sensor data collected
from an equipment during a process is treated as input, while the corresponding inline measurements on
the wafer are used as output. In Fig. 1 the basic idea and usage of a VM model is illustrated. Since

Figure 1: A typical scheme for a VM technology: VM estimations are typically monitored alongside real
metrology measures to widen the monitoring perspective.

VM enables quality improvement, time effectiveness and cost savings, three critical factors in production,
VM has attracted the attention of many as demonstrated by the rich related literature covering almost all
production processes. Some of the most interesting aspects in the past recent years (that are, in different
ways, related to this work) are reported in the following:

1. Regression Algorithms: a huge variety of regression approaches have been presented in the literature,
from linear methods (Susto and Beghi 2012) to more advanced ML approaches (Lee and Kim 2020).
While in early works, ’shallow’ ML approaches outperformed neural networks in VM, advancements
in Deep Learning (DL) and increased availability of data helped DL become extremely effective in
this task both in terms of performance (Maggipinto et al. 2018), (Tsutsui and Matsuzawa 2019),
(Wu et al. 2020) and of handling of complex data structures (Maggipinto et al. 2019);

2. Trace data: typically VM solutions are developed on key performance indicators or features computed
over the equipment sensor signals (Lynn et al. 2009). While this approach is of straightforward
applicability, it is sub-optimal, since typically trace data, ie. the full evolution of sensor signals
are available: resorting to only statistics of such signals means that a lot of information from the
input data is not exploited by the VM module. Some efforts to overcome such limitations, based on
modeling directly from the raw sensor data, have been presented: in (Susto et al. 2015) a supervised
feature extraction method called SAFE is introduced that provides a regularization approach for
estimating scalar output from multiple time-series input; SAFE has the advantage of presenting a
closed-form solution and its effectiveness has been proven on a Etching use case. Another paper
that presents a strategy to handle directly raw input in VM without resorting to a feature extraction
phase is (Park and Kim 2016), where a Fused Lasso-based approach is proposed;

3. Multiple chamber/machine scenario: while classically ML-based solutions are developed at a
single process/chamber, the real fab scenario call for multi-chamber, multi-machines and multi-
stage approaches (Susto et al. 2013). In (Susto et al. 2015) a regularization-based multitask
approach is presented to implement VM considering different processes in sequence, while the
same scenario is considered in (Wu et al. 2020) exploiting DL architectures.
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The aforementioned elements are considered in the present work, where we propose a common VM
model for two identical-in-design chambers whose process data follow different distributions; we present a
DL-based approach working directly on raw sensor data. More specifically, we resort to a domain adaption
(Ben-David et al. 2010) approach in combination with an alignment approach similar to the one presented
in (Farshchian et al. 2019). For the general set up of our alignment system we resort to a DL architecture
called Domain Adversarial Neural Net (DANN) (Ganin et al. 2016) that, as explained in the following
sections, consists of 3 parts: (i) a feature extractor, (ii) a domain (chamber) discriminator that distinguish
which domain is under exam, and (iii) a predictor that provides the VM prediction. Interpretability and
enabeling of root cause analysis is one of the main points in production hence we replace the feature
extractor that extract latent chamber-unbiased features from the original DANN with an alignment model
that shifts one distribution to the other: (Farshchian et al. 2019) presents a DANN related DL architecture
for solving a domain adaption task. But instead creating domain independent latent features it uses an
autoencoder architecture to map one distribution to the other. This allows in an unsupervised manner to
use an already available model on both the original as well as the aligned data and a direct comparison of
aligned and original features.

While the work presented here is one of the first example of domain adaption in the context of
semiconductor manufacturing, the direct application of such theory in this context is quite underrepresented
and only few transfer learning and matching-related work have been presented before: (Kang 2017)
proposes a transfer learning method for VM if data shifts between different equipment occur; (Imoto et al.
2018) also uses a transfer learning approach for a convolutional neural network (CNN) architecture for
a classification task on wafer defect images: a pre-trained CNN architecture is adopted and retrained for
classifying Scanning Electron Microscope (SEM) images with different defect groups. A recent paper from
(Chouichi et al. 2020) presents a root cause oriented matching approach of a multiple-chamber equipment
by combining multiple multivariate statistical methods: first the source of mismatch related to a metrology
measurement is detected by ANOVA, then a best-performing chamber is selected and PLS-DA is used for
detecting mismatched chambers based on the selected input data.

The main contributions of this work are summarized as follows:

• A novel VM approach that can cope with multiple systems (chambers or machines) and time-series
input data is presented;

• To the best of our knowledge, the presented approach is the first to employ DANN in the context
of the regression task of VM and, more generically, in semiconductor manufacturing;

• The effectiveness of the proposed approach is illustrated by showing preliminary results related to
variables alignment for a two-chamber etching VM task.

The rest of the paper is organized as follows: Section 2 is dedicated to illustrate the proposed alignment
approach; Section 3 is devoted to illustrate the case studies based on synthetic as well as real data. Finally,
in Section 4 conclusions are drawn and future works are envisioned.

2 METHODOLOGY

In this section we present a DANN-based alignment system, a DL approach that we consider ideal for
dealing with VM on process equipment consisting of multiple subtools running in parallel. Since a complete
treatise on DL is outside of the scope of this paper we refer the interested readers to (Goodfellow et al.
2016). As argued in Section 1, this architecture works directly on raw sensor signals (trace) respective
time-series data.

The main goal of the proposed DANN-based alignment system (depicted in Fig. 2) is to map the data
distribution of the second domain to the one of the first domain so the prediction model (Predictor) that
is trained on the first domain can also be used for the aligned data from the second domain. Therefore we
create the Predictor itself, an alignment model (Aligner) that is used for the mapping after the training is
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Figure 2: Graphical representation of the proposed VM DANN-based alignment system exploiting input
data from two different chambers (=domains). The arrows represent the different feedback during training.

finished and a domain discriminator model (Discriminator) that is only used during training in order to
assure a successful alignment of the two distributions.

In the following subsections we detail each of the functional blocks in the proposed DANN-based
alignment system, its architecture and we discuss implementation and training details.

2.1 VM Prediction Model

The baseline for our approach is a good performing VM model for one domain. To this aim we employ
Convolutional Neural Networks (CNNs), that are probably the most popular type of DL architectures due to
their success in Computer Vision applications. Furthermore CNN proves to be effective in the field of VM
((Lee and Kim 2020), (Maggipinto et al. 2019)). CNNs use filters that extract valuable information from
a region of a certain size to detect underlying shapes and topologies from the data it is applied on. Since
convolutional filters of any dimension can be applied, CNN are also usable for one-dimensional time series
input data: Figure 3 shows a graphical explanation of a one dimensional convolutional layer and a pooling
layer with time series data. Compared to other architectures like Long-Short Term Memory (LSTM) or

Figure 3: Representation of a one-dimensional convolutional layer followed by a pooling layer applied on
time series input features.

Temporal Convolutional Network (TCN) the 1D CNN is easier to implement and to use since no feedback
loop is implemented. (Bai et al. 2018) presents an overview and comparison including test studies on
different architectures suitable for sequential modeling. We build the Predictor with the following modules:
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• A convolutional layer suitable for one dimensional input meaning that the kernel only slides along
one dimension. The kernel size is representing the width of the kernel and stands for the number
of time-steps that are considered at once so it is kind of a window size. The filters are the number
of output filters and defines the number of output features you have from this layer;

• An activation function is used to introduce nonlinearity; examples are rectified linear unit (ReLU
and Leaky ReLU) or sigmoid (Goodfellow et al. 2016);

• A maxpooling layer reduces the size of the representation, in our case the number of time-steps:
we choose this pooling layer so that the more prominent features are kept with the interpretation
that peaks for example can have a relevant effect for the VM prediction;

• An upsampling layer is used as reverse operation to pooling in order to increase the representation
size. We use this later in the Aligner;

• A batch normalization layer standardizes the input of the layer for each mini-batch during training.
Mini-batches are used for example if not all of your data samples can be presented to the algorithm
at once due to memory issues. In general this stabilizes the training and therefore reduces the
number of training rounds the network needs.

For a visualization of one-dimensional convolutional and pooling layer see Figure 3. We use the
convolution layer, the ReLU activation, the pooling layer and the batch normalization layer as one block
that can be repeated to reduce the dimension further in order to draw the relevant shapes and dependencies
from the data. After those convolutional blocks we introduce in addition: (i) a flattening layer that transforms
the multidimensional data to one dimension. This enables the use of multiple fully connected dense layers
known from FNN; (ii) multiple fully connected dense layers known from the basic architecture of neural
nets. The output layer is one dimensional with only one value depending on our prediction task and sigmoid
activation function is used to create values between 0 and 1 since we normalize all data. In a final step
we define a suitable loss function like Mean Squared Error (MSE) or Huber loss: a loss function that is
quadratic for values smaller than a threshold and linear otherwise and is less sensitive to outliers.

2.2 Alignment Model inspired by Autoencoder

An autoencoder consists of two parts: an encoder and a decoder. The encoder maps the input to a lower
dimensional latent space without loosing any of the good information that is available in the data. The
decoder has the purpose to decompress those latent features back to its original input space. The training
happens in an unsupervised manner since the autoencoder should learn to reconstruct its original input. A
broad range of layer structures can be used in the autoencoder. We adopt the architecture of an autoencoder
model for the Aligner and use a 1D CNN based architecture since input as well as output data is time series
data for the VM case. The encoder and decoder part each consists similar to the prediction model of:

• Convolutional blocks but with no additional activation function (linear activation);
• Upsampling layers in the decoder part and pooling layer in the encoder part;

In order to have a good initialization we separately pre-train the Aligner similar to an autoencoder with
the data from the second domain. This is possible if domain one and two have the same underlying data
structure. During the training process of the DANN-based alignment system we replace the output data
with the data from the first domain so that it learns to map the distribution from the second domain to the
one of the first domain instead reproducing its own input. We define a mean quared error loss function.

2.3 Alignment System, Training and Regularization

So far the DANN-based alignment system consists of two main parts, the Predictor that is able to predict
process results for the first domain and the Aligner set up as an autoencoder that is able to reproduce the
features of the second domain. In order to start the main training process we create the Discriminator and

1902



Gentner, Carletti, Kyek, Susto and Yang

then put together all three parts to a multi-stream model for the main training process. The Discriminator is
built in the same manner as the Predictor except no batch normalization layer is applied as recommended
by (Gulrajani et al. 2017). The final layer has a one value output with a linear activation function so the
discriminator learns to make the distance between its output for domain one and domain two as large as
possible. The discriminator set up as well as the training routine follow (Gulrajani et al. 2017) to assure
stable training. The final DANN-based alignment system is build in the following way:

• Domain discriminator: We connect the Aligner with the Discriminator via a multi-stream archi-
tecture. We train it with two inputs from domain one and aligned input from domain two and one
output from the discriminator model. The weights of the Aligner are fixed when the Discriminator
is updated;

• Domain aligner: We connect the alignment model via multi-stream with the prediction model and
at the same time the discriminator. We use data from domain one and two as two inputs and
the discriminator loss as first and the prediction loss as second output. During the update of the
domain aligner the weights of the Predictor and Discriminator are fixed so that only the Aligner
gets updated.

The training happens in an iterative manner where first the Domain discriminator and then the Domain
aligner gets updated. The Domain Discriminator is trained by minimizing the Wasserstein distance while
the Aligner is trained by minimizing the negative Discriminator loss (maximizing the Discriminator loss)
plus the MSE loss used for the Predictor. For details on the training approach, the Wasserstein distance,
the gradient penalty regularization and how to prevent misbehavior and vanishing gradients during training
see (Gulrajani et al. 2017). The update ratio - the number of times the Discriminator compared to the
Aligner is updated - is set so that none of the models overwhelms the other and is recommended 20:1.
Since this kind of optimization is neither linear nor convex this continues until the training reach a saddle
point where the discriminator performance is close to random guess and the Predictor accuracy of the
second domain by using its aligned features is as close as possible to the one of the first domain. For
training we use the Adam optimizer (see (Goodfellow et al. 2016)).

3 CASE STUDY

Here we train the introduced DANN-based alignment architecture on synthetic test data. We analyze normal
distributed input features where the two domains are characterized by a shift in the mean values. The input
is mapped with a square function to the output space independently of the shift. We increase stepwise the
complexity of the synthetic input feature from time-independent features where we use a FNN architecture
to time series features where a 1D CNN architecture is exploited. In the second part of chapter 3 we apply
the approach to real semiconductor manufacturing data from an Etching process. The Etching process is
selected based on availability of production as well as metrology data and popularity concerning other
VM research and literature. Besides etching other processes like CVD for example are often considered.
Nevertheless the presented approach is use case and task independent and can be transferred to other use
cases. Features that are relevant for the VM predictions and show a clear data shift are aligned exploiting
a 1D CNN architecture suitable for raw sensor respectively time series input data.

3.1 Synthetic Data

3.1.1 Experiment 1 - Synthetic data without time dependency

We start with a one dimensional input feature space consisting of two Gaussian distributed subsets X1 and
X2. The output space Y is generated via a quadratic mapping. For parameter details see Table 1. We
generate 1000 samples from X1 and X2. Then we compute the corresponding Y . No noise is added and all
features are normalized. Predictor, Aligner, Discriminator are set up as multi-stream FNN:
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Table 1: Parameter details of the generated synthetic data for Experiment 1.

Domain Distribution Mean Std Output
X1 Gaussian 0.6 0.2 y = x2

X2 Gaussian 0.2 0.2 y = (x−0.4)2

• Predictor: 1 dense layers with dimension 4 and a linear activation and an output layer with 1 unit
and a sigmoid activation function;

• Aligner: 1 dense layers with unit size 4 plus ReLU activation function and an output layer with
dimension 1 and linear activation;

• Discriminator: 2 dense layers with ReLU respective linear activation function.

We train the Predictor with data from X1 and the corresponding Y using Huber loss. Using the trained
model for samples from X2 we see that the prediction accuracy is suffering from the shift of the mean value
in the input data and therefore shows a ten times higher error. For a comparison of predicted versus true
values of the test data for X1, X2 and X2 after the alignment see Figure 4. We pre-train the Aligner with X2

[a] [b] [c]

Figure 4: Graphical representation of true vs. predicted Y for synthetic test data for X1 (black), X2 (red)
and X2 after alignment (blue) for [a] stationary data [b] constant time series and [c] time series with jump.

and MSE loss to have a good initialization for the Domain aligner needed to shift the distribution of X2 to
the one from X1. We create the Domain discriminator and Domain aligner and follow the recommendations
about hyperparameter settings from (Gulrajani et al. 2017): so the training ratio is 20:1, gradient penalty
weight is 10. Figure 5 shows the progress of the data shift during successful training.

[a] [b] [c]

Figure 5: Stepwise shift (blue) during training procedure of the normal distributed training data from X2
(red) to X1 (black) after [a] 0 [b] 100 [c] 200 iterations.

3.1.2 Experiment 2 - Synthetic data with time dependency

We increase the data complexity by creating time series features with normal distributed mean values. We
mimic typical sensor data of an Etching equipment. The median length of a time series from Etching is
118 hence we use this as reference length for our synthetic data. We introduce two different shapes of
time series data: the first is a constant value for all 118 data points, the second time series shape has a
jump in the middle and the values before and after the jump are shifted by +/−0.1. Before and after the
jump, the time series is again constant. The mean values of time series samples are again distributed as
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in Experiment 1 (described in 1). The output Y is generated via the quadratic mapping using the mean
value. Predictor, Aligner, Discriminator are set up as multi-stream 1D CNN:

• Predictor: 1 convolutional block with with filter and kernel size 7, causal padding, stride 1 and
linear activation function, a max-pooling layer with size 4 and 2 dense layers after flattening with
output size 4 and 1 linear activation for the first dense and sigmoid for the last layer;

• Aligner: 1 conv. block each for decoder and encoder with 1 filter, kernel size 3, causal padding,
stride 1 and linear activation function; maxpooling respective upsampling is done with factor 2;

• Discriminator: see Predictor but with LeakyReLU in the convolutional block and linear activation
function in the output layer.

We train the Predictor with data from X1 and the corresponding Y . Using the Predictor on X2 shows low
accuracy due to the shift of the mean value in the input data. For a comparison of predicted versus true
values of the test data before and after the DANN-based alignment see Figure 4. The Aligner is pre-trained
with data from X1. Domain discriminator and Domain aligner are put together and trained following the
recommendations about hyperparameter settings from (Gulrajani et al. 2017) with training ratio 20:1 and
gradient penalty weight 10. Figure 6 shows the progress of the data shift during training for constant as
well as constant with jump time series data.

[a]

[b]

Figure 6: Alignment (blue) during training of synthetic time series data with constant value (left side) and
constant with jump (right side) from X2 (red) to X1 (black) after [a] 0 and [b] 200 iterations. Top graph:
mean values of all samples; bottom graph: time series samples.

3.2 Real Semiconductor Manufacturing Data

To validate the proposed methodology in a real environment, physical sensor measurements of a chamber
etching equipment as well as the corresponding metrology measurements on the product after the process
are collected and analyzed. Multiple VM measurements are available besides critical dimension (CD) and
layer thickness (LT) (for a visualization of these measurements see Figure 7). We choose the latter quantity
as target of our VM model since LT shows high correlations to the etching process itself whereas other
measurements can be highly influenced by upstream processes, input features that are not available in our
case and the performance and the measurement accuracy of the metrology tool itself.
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Figure 7: Metrology measurements done after an Etching process: The layer thickness (right) measures
the dept of a layer after the process, the critical dimension (left) describes the width or height of a gate.

3.2.1 Experiment 3 - Real semiconductor manufacturing data with time dependency

We select one parameter value due to very different target specifications of different metrology parameters.
This leads to a reduced input data set with focus on a specific product group and the corresponding recipe.
We select data of two chambers for a time period of one year where no other domain shift within one
chamber for example on the time axis is detected. First we identify the chamber mismatch of two chambers
running in parallel on the same Etching tool. A one-to-one comparison of the features of the two chambers
show some clear shifts of some sensors measurements while others do not differ at all. Those shifted
physical sizes can be interpreted as compensator of an underlying chamber mismatch - identical-in-design
but not in execution - and therefore defines the chamber mismatch related to a process we want to present a
solution for in this paper. We define chamber 1 as reference chamber since it provides the highest number
of samples for the selected layer thickness parameter in the selected time period. Similar to Experiment
1 and 2 the output data of both chambers is following the same distribution since no statistical significant
difference can be detected (see boxplot graphs in Figure 8).

Figure 8: Boxplot graphs of normalized Metrology measurements from both chambers.

Some preprocessing steps are applied on the raw sensor data: we remove outliers as well as constant
features for example gas flows that are not used in this recipe. Remaining NaN values are replaced with 0
since features are normalized between 0 and 1. Etching is a multi-step process where not all steps are time
restricted but answer on available end point detection sensors: this leads to time series data with unequal
duration. Since we see that samples are clustered regarding their time series length, we select the most
frequent length respective the median length as reference. Runs with 1-3 additional data points are cut off
at the end and runs with 1-3 less points are extended by adding zeros at the end (alternative repeat last
value instead of 0). Longer or shorter time series are marked as outlier and removed. We do not align each
single measurement as well as single steps. Since we use a 1d CNN architecture with filter size 7 those
kind of misalignment are negligible. All input features are normalized over both domains.

We use data from three physical sensor measurements after preprocessing in the alignment process.
The 3 features are checked by process experts hence are important and influential for the process result
and show a clear shift between the two selected chambers. (see original sensor measurements of chamber
1 and 2 in Figure 9). The input data from both chambers is split up in two subsets, subset 1 includes the
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3 selected features and in case of chamber 2 is used as input for the Aligner. Subset 2 contains the rest of
the available features. The Discriminator gets the aligned subset 1 from chamber 2 as well as the subset
1 from chamber 1 as input. Subset 2 from chamber 2 is redirected directly to the output of the Aligner
where the aligned subset 1 and subset 2 from chamber 2 are merged again in order to be used as input for
for the Predictor. The 3 parts of the DANN-based alignment system are set as follow:

• Predictor: 1 conv. block with 32 output filter and kernel size 7, a ReLU activation function, a
maxpool layer of 4 and a batch norm layer; a flattening layer is applied, 1 dense layer with output
size 16, a batch norm layer. The output layer is a dense layer with a sigmoid activation function;

• Aligner: 2 convolutional blocks each for decoder and encoder; the first encoder block has a
convolutional layer with filter and kernel size 7, a causal padding, slide size 1, a linear activation
function and a maxpooling layer of size 4. The second convolutional block has the same properties
as the first one but a maxpooling size of 3. For the decoder we start with a convolutional block
with kernel and filter size 7, a causal padding and slide 1. The upsampling layer has a factor of
8. The second convolutional block of the decoder has 3 output filters, a kernel size of 14, valid
padding and slide 1 and an upsampling layer with factor 2 to match the original input size. Pooling
respective upsampling sizes are selected according to the length of 118 of the time series samples.

• Discriminator: 1 concolutional block with filter size 2, kernel size 7, LeakyReLU activation function
and a maxpooling of factor 4, a flattening layer, a dense layer with output size 4 and a LeakyReLU
activation function. The output layer has one dimension and a linear activation.

For training the Predictor with data from chamber 1 we use a Huber loss function and the Adam optimizer
with reduced learning rate of a factor 102. The Aligner is pre-trained with data from chamber 2. After
setting up the Domain discriminator and the Domain aligner we follow again the recommendations from
(Gulrajani et al. 2017). Figure 9 shows euclidien barycenter averages over test samples for 3 features from
chamber 2 before and after the alignment. The results are comparable to the ones we see in literature (see
(Farshchian et al. 2019) and (Ganin et al. 2016)) and indicate an successful alignment of all three features.

Figure 9: Graphical representation of raw sensor input data before and after the training procedure. The
plots show the euclidean barycenter average of all samples in the test data.

4 CONCLUSIONS AND FURTHER RESEARCH

The paper presents a matching approach that enables supervised modeling with input data coming from
multiple domains, like different chambers or machines; the approach exploits DL architectures, namely
DANNs, and it is able to deal directly with time-series input data. The DANN-based alignment system
is not only able to deal with the data complexity well known from semiconductor manufacturing but also
presents a scalable VM approach in a non-standardized production environment.
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The approach is tested on synthetic as well as a real semiconductor manufacturing data set; in all
experiments we show that we are able to map one domain to the other which can enable the usage of
already existing prediction models to multiple domains. For the real word use case we are able to align
physical sensor measurements in their original input space and therefore open the opportunity for a direct
feature comparison including physical properties and equipment behavior.

Future research focus on an extended training for stability tests, evaluation and comparison to other
approaches: in particular, we are working in translating the preliminary results reported here in the context
of VM metrics, by proving a comparison in terms of prediction accuracy of the proposed approach versus
standard literature VM approaches. In addition a benchmarking against procedures considering only most
important process steps, steps as context input feature or separate models for each step are considered
in order to adapt to etching specific time series evolution and properties. The theoretical description of
the model, the optimization problem as well as the training approach are added and used for detailed
explanation and further discussion. Moreover, since the proposed method provides interpretable results in
terms of variable alignment, we aim at evaluating the impact of our approach in terms of limit violations
and control charts, root cause analysis related to mismatch, misbehavior and health status.

One direction of development would be in the consideration of higher data complexity by for example
extending the number of features as well as considering different product groups, recipes and measurements.
Besides VM, we plan also to increase the variety of applications for example to classification tasks, like
fault classification. Another direction is to apply the proposed method to semi-supervised problems where
labels are partly not available, include long-term time dependencies.
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