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ABSTRACT

This tutorial provides an introduction to Monte Carlo tree search (MCTS), which is a general approach to
solving sequential decision-making problems under uncertainty using stochastic (Monte Carlo) simulation.
MCTS is most famous for its role in Google DeepMind’s AlphaZero, the recent successor to AlphaGo,
which defeated the (human) world Go champion Lee Sedol in 2016 and world #1 Go player Ke Jie in 2017.
Starting from scratch without using any domain-specific knowledge (other than the rules of the game),
AlphaZero was able to defeat not only its predecessors in Go but also the best AI computer programs in
chess (Stockfish) and shogi (Elmo), using just 24 hours of training based on MCTS and reinforcement
learning. We demonstrate the basic mechanics of MCTS via decision trees and the game of tic-tac-toe.

1 INTRODUCTION

The term Monte Carlo tree search (MCTS) was coined by Rémi Coulom (Coulom 2006), who first used the
randomized approach in his Go-playing program, Crazy Stone. Prior to that, almost all of the Go-playing
programs used deterministic search algorithms such as those employed for chess-playing algorithms. Google
DeepMind’s AlphaGo employed MCTS to train its two deep neural networks, culminating in AlphaGo’s
resounding victories over the reigning European Go champion Fan Hui in October 2015 (5-0), the reigning
world Go champion Lee Sedol in March 2016 (4-1; Seoul, South Korea), and world #1 Go player Ke Jie in
May 2017 (3-0; Wuzhen, China); the fascinating story can be viewed in a documentary movie (AlphaGo
2017) AlphaGo started training its neural networks using past games, i.e., via supervised learning, and
then went on to play against itself (self-play) using reinforcement learning to train its neural networks. In
contrast, both AlphaGo Zero and AlphaZero train their respective neural networks by self play only using
MCTS for both players (reinforcement learning), viz., “The neural network in AlphaGo Zero is trained
from games of self-play by a novel reinforcement learning algorithm. In each position, an MCTS search is
executed, guided by the neural network. The MCTS search outputs probabilities of playing each move.” In
the October 19, 2017 issue of Nature, (Silver et al. 2017) from DeepMind announced that AlphaGo Zero
had defeated AlphaGo (the version that had beaten the world champion Lee Sedol) 100 games to 0. Then,
in December of 2017, AlphaZero defeated the world’s leading chess playing program, Stockfish, decisively
(Silver et al. 2017). As mentioned earlier, AlphaZero accomplished this without any (supervised) training
using classical chess openings or end-game strategies, i.e., using only MCTS training.

This tutorial will begin with the more general setting is that of sequential decision making under
uncertainty, which can be modeled using Markov decision processes (Chang et al. 2007). In this setting,
the objective is to maximize an expected reward over a finite time horizon, given an initial starting state.
In a game setting, a simple version would be to maximize the probability of winning from the beginning
of the game. Ideally, an optimal strategy would take care of every possible situation, but for games like
Go, this is infeasible, due to the astronomically large state space, so rather than try exhaustive search, an
intelligent search is made using randomization and game simulation. Thus, the search goal is to identify
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moves to simulate that will give you a better estimate of high win probabilities. This leads to a tradeoff
between going deeper down the tree (to the very end of the game, for instance) or trying more moves,
which is an exploitation-exploration tradeoff that MCTS addresses.

The remainder of this tutorial will cover the following: description of MCTS, including its historical
roots and connection to the simulation-based adaptive multi-stage sampling algorithm of Chang et al. (2005);
overview of the use of MCTS in AlphaGo and AlphaZero; illustration using the two simple examples of
decision trees and the game of tic-tac-toe. Much of this material is borrowed (verbatim at times, along with
the figures) from the following four of the author’s previous expositions: a recent expository journal article
(Fu 2019), a 2017 INFORMS Tutorial chapter (Fu 2017), and two previous WSC proceedings article (Fu
2016, Fu 2018). see also the October 2016 OR/MS Today article (Chang et al. 2016).

2 MONTE CARLO TREE SEARCH: OVERVIEW AND EXAMPLES

2.1 Background

Rémi Coulom first coined the term “Monte Carlo tree search” (MCTS) in a conference paper presented in
2005/2006 (see also the Wikipedia “Monte Carlo tree search” entry), where he writes the following:

“Our approach is similar to the algorithm of Chang, Fu and Marcus [sic] ... In order to avoid
the dangers of completely pruning a move, it is possible to design schemes for the allocation
of simulations that reduce the probability of exploring a bad move, without ever letting
this probability go to zero. Ideas for this kind of algorithm can be found in ... n-armed
bandit problems, ... (which) are the basis for the Monte-Carlo tree search [emphasis added]
algorithm of Chang, Fu and Marcus [sic].” (Coulom 2006, p.74)

The algorithm that is referenced by Coulom is an adaptive multi-stage simulation-based algorithm for
MDPs that appeared in Operations Research (Chang et al. 2005), which was developed in 2002, presented
at a Cornell University colloquium in the School of Operations Research and Industrial Engineering on
April 30, and submitted to Operations Research shortly thereafter (in May). Coulom used MCTS in the
computer Go-playing program that he developed, called Crazy Stone, which was the first such program
to show promise in playing well on a severely reduced size board (usually 9 x 9 rather than the standard
19 x 19). Current versions of MCTS used in Go-playing algorithms are based on a version developed for
games called UCT (Upper Confidence Bound 1 applied to trees) (Kocsis and Szepesvári 2006), which also
references the simulation-based MDP algorithm in Chang et al. (2005) as follows:

“Recently, Chang et al. also considered the problem of selective sampling in finite horizon
undiscounted MDPs. However, since they considered domains where there is little hope
that the same states will be encountered multiple times, their algorithm samples the tree in a
depth-first, recursive manner: At each node they sample (recursively) a sufficient number of
samples to compute a good approximation of the value of the node. The subroutine returns
with an approximate evaluation of the value of the node, but the returned values are not
stored (so when a node is revisited, no information is present about which actions can be
expected to perform better). Similar to our proposal, they suggest to propagate the average
values upwards in the tree and sampling is controlled by upper-confidence bounds. They
prove results similar to ours, though, due to the independence of samples the analysis of their
algorithm is significantly easier. They also experimented with propagating the maximum of
the values of the children and a number of combinations. These combinations outperformed
propagating the maximum value. When states are not likely to be encountered multiple
times, our algorithm degrades to this algorithm. On the other hand, when a significant
portion of states (close to the initial state) can be expected to be encountered multiple times

1179



Fu

then we can expect our algorithm to perform significantly better.” (Kocsis and Szepesvári
2006, p.292)

Thus, the main difference is that in terms of algorithmic implementation, UCT takes advantage of the game
structure where board positions could be reached by multiple sequences of moves.

A high-level summary of MCTS is given in the abstract of a 2012 survey article, “A Survey of Monte
Carlo Tree Search Methods”:

“Monte Carlo Tree Search (MCTS) is a rec ently proposed search method that combines the
precision of tree search with the generality of random sampling. It has received considerable
interest due to its spectacular success in the difficult problem of computer Go, but has also
proved beneficial in a range of other domains.” (Browne et al. 2012, p.1)

The same article later provides the following overview description of MCTS:

“The basic MCTS process is conceptually very simple... A tree is built in an incremental
and asymmetric manner. For each iteration of the algorithm, a tree policy is used to find
the most urgent node of the current tree. The tree policy attempts to balance considerations
of exploration (look in areas that have not been well sampled yet) and exploitation (look in
areas which appear to be promising). A simulation is then run from the selected node and
the search tree updated according to the result. This involves the addition of a child node
corresponding to the action taken from the selected node, and an update of the statistics
of its ancestors. Moves are made during this simulation according to some default policy,
which in the simplest case is to make uniform random moves. A great benefit of MCTS
is that the values of intermediate states do not have to be evaluated, as for depth-limited
minimax search, which greatly reduces the amount of domain knowledge required. Only
the value of the terminal state at the end of each simulation is required.” (Browne et al.
2012, pp.1-2)

MCTS consists of four main “operators”, which here will be interpreted in both the decision tree and
game tree contexts:

• “Selection” corresponds to choosing a move at a node or an action in a decision tree, and the
choice is based on the upper confidence bound (UCB) (Auer et al. 2002) for each possible move
or action, which is a function of the current estimated value (e.g., probability of victory) plus a
“fudge” factor.

• “Expansion” corresponds to an outcome node in a decision tree, which is an opponent’s move in
a game, and it is modeled by a probability distribution that is a function of the state reached after
the chosen move or action (corresponding to the transition probability in an MDP model).

• “Simulation/Evaluation” corresponds to returning the estimated value at a given node, which could
correspond to the actual end of the horizon or game, or simply to a point where the current estimation
may be considered sufficiently accurate so as not to require further simulation.

• “Backup” corresponds to the backwards dynamic programming algorithm employed in decision
trees and MDPs.

2.2 Example: A Simple Decision Tree

We begin with a simple decision problem. Assume you have $10 in your pocket, and you are faced with
the following three choices: 1) buy a PowerRich lottery ticket (win $100M w.p. 0.01; nothing otherwise);
2) buy a MegaHaul lottery ticket (win $1M w.p. 0.05; nothing otherwise); 3) do not buy a lottery ticket.

In Figure 1, the problem is represented in the form of a decision tree, following the usual convention
where squares represent decision nodes and circles represent outcome nodes. In this one-period decision
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Figure 1: Decision tree for lottery choices.

tree, the initial “state” is shown at the only decision node, and the decisions are shown on the arcs going
from decision node to outcome node. The outcomes and their corresponding probabilities are given on the
arcs from the outcome nodes to termination (or to another decision node in a multi-period decision tree).
Again, in this one-period example, the payoff is the value of the final “state” reached.

If the goal is to have the most money, which is the optimal decision? Aside from the obvious expected
value maximization, other possible objectives include:

• Maximize the probability of having enough money for a meal.
• Maximize the probability of not being broke.
• Maximize the probability of becoming a millionaire.
• Maximize a quantile.

It is also well known that human behavior does not follow the principle of maximizing expected value.
Recalling that a probability is also an expectation (of the indicator function of the event of interest), the
first three bullets fall into the same category, as far as this principle goes. Utility functions are often used to
try and capture individual risk preferences, e.g., by converting money into some other units in a nonlinear
fashion. Other approaches to modeling risk include prospect theory (Kahneman and Tversky 1979), which
indicates that humans often distort their probabilities, differentiate between gains and losses, and anchor
their decisions. Recent work (Prashanth et al. 2016) has applied cumulative prospect theory to MDPs.

We return to the simple decision tree example. Whatever the objective and whether or not we incorporate
utility functions and distorted probabilities into the problem, it still remains easy to solve, because there
are only two real choices to evaluate (the third is trivial), and these have outcomes that are assumed known
with known probabilities. However, we now ask the question(s): What if ...

• the probabilities are unknown?
• the outcomes are unknown?
• the terminal nodes keep going? (additional sequence(s) of action – outcome, etc.)

When all of these hold, we arrive at the setting where simulation-based algorithms for MDPs come into
play; further, when “nature” is the opposing player, we get the game setting, for which MCTS is applied.
The probabilities and outcomes are assumed unknown but can be sampled from a black box simulator, as
shown in Figure 2. If there were just a single black box, we would just simulate the one outcome node until
the simulation budget is exhausted, because the other choice (do nothing) is known exactly. Conversely, we
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Figure 2: Decision tree for lottery choices with black boxes BB1 and BB2.

could pose the problem in terms of how many simulations it would take to guarantee some objective, e.g.,
with 99% confidence that we could determine whether or not the lottery has a higher expected value than
doing nothing ($10); again there is no allocation as to where to simulate but just when to stop simulating.
However, with two random options, there has to be a decision made as to which black box to simulate, or
for a fixed budget how to allocate the simulation budget between the two simulators. This falls into the
domain of ranking and selection, but where the samples arise in a slightly different way, because there are
generally dynamics involved, so one simulation may only be a partial simulation of the chosen black box.

2.3 Example: Tic-Tac-Toe

Tic-tac-toe (also known as “naughts and crosses” in the British world) is a well-known two-player game
on a 3 x 3 grid, in which the objective is to get 3 marks in a row, and players alternate between the
“X” player who goes first and the “O” player. If each player follows an optimal policy, then the game
should always end in a tie (cat’s game). In theory there are something like 255K possible configurations
that can be reached, of which only an order of magnitude less of these are unique after accounting for
symmetries (rotational, etc.), and only 765 of these are essentially different in terms of actual moves for
both sides (cf. Schaefer 2002). The optimal strategy for either side can be easily described in words in a
short paragraph, and a computer program to play optimally requires well under a hundred lines of code in
most programming languages.

Assuming the primary objective (for both players) is to win and the secondary objective is to avoid
losing, the following “greedy” policy is optimal (for both players):

If a win move is available, then take it; else if a block move is available, then take it.
(A win move is defined as a move that gives three in a row for the player who makes the move; a block
move is defined here as a move that is placed in a row where the opposing player already has two moves,
thus preventing three in a row.) This leaves still the numerous situations where neither a win move nor a
block move is available. In traditional game tree search, these would be enumerated (although as we noted
previously, it is easier to implement using further if–then logic). We instead illustrate the Monte Carlo tree
search approach, which samples the opposing moves rather than enumerating them.

If going first (as X), there are three unique first moves to consider – corner, side, and middle. If going
second (as O), the possible moves depend of course on what X has selected. If the middle was chosen,
then there are two unique moves available (corner or non-corner side); if a side (corner or non-corner)
was chosen, then there are five uniques moves (but a different set of five for the two choices) available.
However, even though the game has a relatively small number of outcomes compared to most other games
(even checkers), enumerating them all is still quite a mess for illustration purposes, so we simplify further
by viewing two different game situations that already have preliminary moves.
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Assume henceforth that we are the “O” player. We begin by illustrating with two games that have
already seen three moves, 2 by our opponent and 1 by us, so it is our turn to make a move. The two
different board configurations are shown in Figure 3. For the first game, by symmetry there are just two
unique moves for us to consider: corner or (non-corner) side. In this particular situation, following the
optimal policy above leads to an easy decision: corner move leads to a loss, and non-corner move leads to
a draw; there is a unique “sample path” in both cases and thus no need to simulate. The trivial game tree
and decision tree are given in Figures 4 and 5, respectively, with the game tree that allows non-optimal
moves shown in Figure 6.

×
◦
×

◦ × ×

Figure 3: Two tic-tac-toe board configurations to be considered.
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Figure 4: Game tree for 1st tic-tac-toe board configuration (assuming “greedy optimal” play), where note
that if opponent’s moves were completely randomized, “O” would have an excellent chance of winning!
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Figure 5: Decision tree for 1st tic-tac-toe board configuration of Figure 3.

Now consider the other more interesting game configuration, the righthand side of Figure 3, where
there are three unique moves available to us; without loss of generality, they can be the set of moves on
the top row. We need to evaluate the “value” of each of the three actions to determine which one to select.
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Figure 6: Decision tree for 1st tic-tac-toe board configuration with non-optimal greedy moves.

Figure 7: Monte Carlo game tree for 2nd tic-tac-toe board configuration of Figure 3.
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It turns out that going in the upper left corner leads to a draw, whereas the upper middle and upper right
corner lead to 5 possible unique moves for the opponent. The way the Monte Carlo tree branching would
work is depicted in Figure 7, where two computational decisions would need to be made:

• How many times should each possible move (action) be simulated?
• How far down should the simulation go (to the very end or stop short at some point)?

Note that these questions have been posed in a general framework, with tic-tac-toe merely illustrating how
they would arise in a simple example.

3 ADAPTIVE MULTISTAGE SAMPLING ALGORITHM

In this section, we relate MCTS to the adaptive multistage sampling (AMS) algorithm in Chang et al.
(2005). Consider a finite horizon MDP with finite state space S, finite action space A, non-negative bounded
reward function R such that R : S×A→R+, and transition function P that maps a state and action pair to
a probability distribution over state space S. We denote the feasible action set in state s ∈ S by A(s)⊂ A
and the probability of transitioning to state s′ ∈ S when taking action a in state s ∈ S by P(s,a)(s′). In
terms of a game tree, the initial state of the MDP or root node in a decision tree corresponds to some point
in a game where it is our turn to make a move. A simulation replication or sample path from this point is
then a sequence of alternating moves between us and our opponent, ultimately reaching a point where the
final result is “obvious” (win or lose) or “good enough” to compare with another potential initial move,
specifically if the value function is precise enough.

Some questions/answers in a nutshell:

• How does AMS work?
(1) UCB: selecting our (decision maker’s) actions to simulate throughout a sample path.
(2) simulation/sampling: generating next state transitions (nature’s “actions”).

• How does MCTS work?
(1) how to select our moves to follow in a game tree.
(2) how to simulate opponent’s moves.

• How does MCTS fit into AlphaGo?
(1) UCB: selecting our next moves in a simulated game tree path.
(2) simulation/sampling: generating opponent’s next moves.

The AMS algorithm of Chang et al. (2005) chooses to sample in state s an optimizing action in A(s)
according to the following:

max
a∈A(s)

(
Q̂(s,a)+

√
2ln n̄
Ns

a

)
, (1)

where Ns
a is the number of times action a has been sampled thus far (from state s), n̄ is the total number

of samples thus far, and

Q̂(s,a) = R(s,a)+
1

Ns
a

∑
s′∈Ss

a

V̂ (s′),

where Ss
a is the set of sampled next states thus far (|Ss

a|= Ns
a,i) with respect to the distribution P(s,a), and

V̂ is the value function estimate (as a function of the state). The argument in (1) is the upper confidence
bound (UCB).

We now return to the tic-tac-toe example to illustrate these concepts. In MDP notation, we will model
the state as a 9-tuple corresponding to the 9 locations, starting from upper left to bottom right, where 0 will
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correspond to blank, 1 = X, and 2 = O; thus, (0,0,1,0,2,0,1,0,0) and (0,0,0,2,1,1,0,0,0) correspond to the
states of the two board configurations of Figure 3. Actions will simply be represented by the 9 locations,
with the feasible action space the obvious remainder set of the components of the space that are still 0,
i.e., {1,2,4,6,8,9} and {1,2,3,7,8,9} for the two board configurations of Figure 3. This is not necessarily
the best state representation (e.g., if we’re trying to detect certain structure or symmetries). If the learning
algorithm is working how we would like it to work ideally, it should converge to the degenerate distribution
that chooses with probability one the optimal action, which can be easily determined in this simple game.

4 GO AND MCTS

Go is the most popular two-player board game in East Asia, tracing its origins to China more than
2,500 years ago. According to Wikipedia, Go is also thought to be the oldest board game still played
today. Since the size of the board is 19×19, as compared to 8×8 for a chess board, the number of
board configurations for Go far exceeds that for chess, with estimates at around 10170 possibilities, putting
it a googol (no pun intended) times beyond that of chess and exceeding the number of atoms in the
universe (https://googleblog.blogspot.nl/2016/01/alphago-machine-learning-game-go.html). Intuitively, the
objective is to have “captured” the most territory by the end of the game, which occurs when both players
are unable to move or choose not to move, at which point the winner is declared as the player with the
highest score, calculated according to certain rules. Unlike chess, the player with the black (dark) pieces
moves first in Go, but same as chess, there is supposed to be a slight first-mover advantage (which is
actually compensated by a fixed number of points decided prior to the start of the game).

Perhaps the closest game in the Western world to Go is Othello, which like chess is played on an 8×8
board, and like Go has the player with the black pieces moving first. Similar to Go, there is also a “flanking”
objective, but with far simpler rules. The number of legal positions is estimated at less than 1028, nearly a
googol and a half times less than the estimated number of possible Go board positions. As a result of the
far smaller number of possibilities, traditional exhaustive game tree search (which could include heuristic
procedures such as genetic algorithms and other evolutionary approaches leading to a pruning of the tree)
can in principle handle the game of Othello, so that brute-force programs with enough computing power
will easily beat any human. More intelligent programs can get by with far less computing (so that they
can be implemented on a laptop or smartphone), but the point is that complete solvability is within the
realm of computational tractability given today’s available computing power, whereas such an approach is
doomed to failure for the game of Go, merely due to the 19×19 size of the board.

Similarly, IBM Deep Blue’s victory (by 3 1/2 to 2 1/2 points) over the chess world champion Garry
Kasparov in 1997 was more of an example of sheer computational power than true artificial intelligence,
as reflected by the program being referred to as “the primitive brute force-based Deep Blue” in the
current Wikipedia account of the match. Again, traditional game tree search was employed, which
becomes impractical for Go, as alluded to earlier. The realization that traversing the entire game tree was
computationally infeasible for Go meant that new approaches were required, leading to a fundamental
paradigm shift, the main components being Monte Carlo sampling (or simulation of sample paths) and value
function approximation, which are the basis of simulation-based approaches to solving Markov decision
processes (Chang et al. 2007), which are also addressed by neuro-dynamic programming (Bertsekas
and Tsitsiklis 1996); approximate (or adaptive) dynamic programming (Powell 2010); and reinforcement
learning (Sutton and Barto 1998). However, the setting for these approaches is that of a single decision
maker tackling problems involving a sequence of decision epochs with uncertain payoffs and/or transitions.
The game setting adapted these frameworks by modeling the uncertain transitions – which could be viewed
as the actions of “nature” – as the action of the opposing player. As a consequence, to put the game setting
into the MDP setting required modeling the state transition probabilities as a distribution over the actions
of the opponent. Thus, as we shall describe later, AlphaGo employs two deep neural networks: one for
value function approximation and the other for policy approximation, used to sample opponent moves.
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n 
sq

ua
re

d 
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random 
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o 
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

Figure 8: AlphaGo’s two deep neural networks (Adapted by permission from Macmillan Publishers Ltd.:
Nature, Figure 1b, Silver et al. 2016, copyright 2016).

In March 2016 in Seoul, Korea, Google DeepMind’s computer program AlphaGo defeated the reigning
human world champion Go player Lee Sedol 4 games to 1, representing yet another advance in artificial
intelligence (AI) arguably more impressive than previous victories by computer programs in chess (IBM’s
Deep Blue) and Jeopardy (IBM’s Watson), due to the sheer size of the problem. A little over a year later,
in May 2017 in Wuzhen, China, at “The Future of Go Summit,” a gathering of the world’s leading Go
players, AlphaGo cemented its reputation as the planet’s best by defeating Chinese Go Grandmaster and
world number one (only 19 years old) Ke Jie (three games to none). An interesting postscript to the match
was Ke Jie’s remarks two months later (July 2017), as quoted on the DeepMind Web site blog (DeepMind
2018): “After my match against AlphaGo, I fundamentally reconsidered the game, and now I can see that
this reflection has helped me greatly. I hope all Go players can contemplate AlphaGo’s understanding of
the game and style of thinking, all of which is deeply meaningful. Although I lost, I discovered that the
possibilities of Go are immense and that the game has continued to progress.”

Before describing AlphaGo’s two deep neural networks that are trained using MCTS, a little background
on DeepMind, the London-based artificial intelligence (AI) company founded in 2010 by Demis Hassabis,
Shane Legg and Mustafa Suleyman. DeepMind built its reputation on the use of deep neural networks for
AI applications, most notably video games, and was acquired by Google in 2014 for $500M. David Silver,
the DeepMind Lead Researcher for AlphaGo and lead author on all three articles (Silver et al. 2016; Silver
et al. 2017ab) is quoted on the AlphaGo movie Web page (AlphaGo Movie 2017): “The Game of Go is
the holy grail of artificial intelligence. Everything we’ve ever tried in AI, it just falls over when you try
the game of Go.” However, the company emphasizes that it focuses on building learning algorithms that
can be generalized, just as AlphaGo Zero and AlphaZero developed from AlphaGo. In addition to deep
neural networks and reinforcement learning, it develops other systems neuroscience-inspired models.

AlphaGo’s two neural networks are depicted in Figure 8:
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Figure 9: Decision tree for 2nd tic-tac-toe board configuration of Figure 3.

• value network: estimate the “value” of a given board configuration (state), i.e., the probability of
winning from that position;

• policy network: estimate the probability distribution of moves (actions) from a given position (state).

The subscripts σ and ρ on the policy network correspond to two different networks used, using supervised
learning and reinforcement learning, respectively. The subscript θ on the value network represents the
parameters of the neural net. AlphaGo’s two neural networks employ 12 layers with millions of connections.
AlphaGo Zero has a single neural network for both the policy network and value network.

In terms of MDPs and Monte Carlo tree search, let the current board configuration (state) be denoted
by s∗. Then we wish to find the best move (optimal action) a∗, which leads to board configuration (state)
s, followed by (sampled/simulated) opponent move (action) a, which leads to board configuration (new
“post-decision” state) s′, i.e., a sequence of a pair of moves can be modeled as

s∗ a∗−→ s a−→ s′,

using the notation consistent with Figure 8.
As an example, consider again the tic-tac-toe example, righthand side game of Figure 3, for which

we derived the Monte Carlo game tree as Figure 7. The corresponding decision tree is shown in Figure 9,
where the probabilities are omitted, since these are unknown. In practice the “outcomes” would also be
estimated. In this particular example, action 3 dominates action 1 regardless of the probabilities, whereas
between actions 2 and 3, it is unclear which is better without the probabilities.

AlphaGo’s use of Monte Carlo tree search is described on the 1st page of their 2016 Nature article in
the following three excerpts (Silver et al. 2016, p.484):

”Monte Carlo tree search (MCTS) uses Monte Carlo rollouts to estimate the value of each
state in a search tree. As more simulations are executed, the search tree grows larger and
the relevant values become more accurate. The policy used to select actions during search
is also improved over time, by selecting children with higher values. Asymptotically, this
policy converges to optimal play, and the evaluations converge to the optimal value function.
The strongest current Go programs are based on MCTS...

“We pass in the board position as a 19 × 19 image and use convolutional layers to construct
a representation of the position. We use these neural networks to reduce the effective depth
and breadth of the search tree: evaluating positions using a value network, and sampling
actions using a policy network.

“Our program AlphaGo efficiently combines the policy and value networks with MCTS.”
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Figure 8 shows the corresponding p(a|s) for the policy neural network that is used to simulate the
opponent’s moves and the value function v(s′) that estimates the value of a board configuration (state) using
the value neural network. The latter could be used in the following way: if a state is reached where the
value is known with sufficient precision, then stop there and start the backwards dynamic programming;
else, simulate further by following the UCB prescription for the next move to explore.

The objective is to effectively and efficiently (through appropriate parametrization) approximate the
value function approximation and represent the opposing player’s moves as a probability distribution, which
degenerates to a deterministic policy if the game is easily solved to completion assuming the opponent
plays “optimally.” However, at the core of these lies the Monte Carlo sampling of game trees or what our
community would call the simulation of sample paths. Although the game is completely deterministic,
unlike other games of chance such as those involving the dealing of playing cards (e.g., bridge and poker), the
sheer astronomical number of possibilities precludes the use of brute-force enumeration of all possibilities,
thus leading to the adoption of randomized approaches. This in itself is not new, even for games, but the
Go-playing programs have transformed this from simple coin flips for search (which branch to follow)
to the evaluation of a long sequence of alternating moves, with the opponent modeled by a probability
distribution over possible moves in the given reached configuration. In the framework of MDPs, Go can be
viewed as a finite-horizon problem where the objective is to maximize an expected reward (the territorial
advantage) or the probability of victory, where the randomness or uncertainty comes from two sources: the
state transitions, which depend on the opposing player’s move, and the single-stage reward, which could
be territorial (actual perceived gain) or strategic (an increase or decrease in the probability of winning), as
also reflected in the estimated value after the opponent’s move.

Coda: MCTS for Chess

For chess, AlphaZero uses MCTS to search 80K positions per second, which sounds like a lot. However,
Stockfish, considered in 2017 by many to be the best computer chess-playing program (way better than any
human that has ever lived) considers about 70M positions per second, i.e., nearly three orders of magnitude
more, and yet AlphaZero did not lose a single game to Stockfish in their December 2017 100-game match
(28 wins, 72 draws). “Instead of an alpha-beta search with domain-specific enhancements, AlphaZero uses
a general-purpose Monte-Carlo tree search (MCTS) algorithm.” (Silver et al. 2018, p.3)

5 CONCLUSIONS

Monte Carlo tree search (MCTS) provides the foundation for training the “deep” neural networks of
AlphaGo, as well as the single neural network engine for its successor AlphaZero. The roots of MCTS are
contained in the more general adaptive multi-stage sampling algorithms for MDPs published by Chang et al.
(2005) in Operations Research, where dynamic programming (backward induction) is used to estimate the
value function in an MDP. A game tree can be viewed as a decision tree (simplified MDP) with the opponent
in place of “nature” in the model. In AlphaZero, both the policy and value networks are contained in a
single neural net, which makes it suitable to play against itself when the net is trained for playing both sides
of the game. Thus, an important takeaway message to be conveyed is that OR played an unheralded role,
as the MCTS algorithm is based on the UCB algorithm for MDPs, with dynamic programming (backward
induction) used to calculate/estimate the value function in an MDP (game tree, viewed as a decision tree
with the opponent in place of “nature” in the model).

One caveat emptor when reading the literature on MCTS: Most of the papers in the bandit literature
assume that the support of the reward is [0,1] (or {0,1} in the case of Bernoulli rewards), which essentially
translates to knowing the support. Depending on the application, this may not be a reasonable assumption.
Estimating the variance is probably easier, if not more intuitive, than estimating the support, and this is
the approach in the work of Li et al. (2018) described further below.
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The ML/AI community mainly views MCTS as a tool that can be applied to a wide variety of domains,
so the focus is generally on the model that is used rather than the training method, i.e., the emphasis is
on choosing the neural network architecture or regression model. Far less attention has been paid on the
algorithmic aspects of MCTS. One direction that has started to be investigated is the use of ranking &
selection (R/S) techniques for the selection of which path to sample next rather than traditional multi-armed
bandit models, which tend to emphasize exploitation over exploration, e.g., leading to sampling the optimal
move/action exponentially more often than the others. Similar to R/S, in MCTS, there is also the difference
between choosing which moves to sample further versus which move to declare the “best” to play at a given
point in time. In fact, in his original paper introducing MCTS, Coulom himself mentions this alternative,
viz., “Optimal schemes for the allocation of simulations in discrete stochastic optimization could also be
applied to Monte-Carlo tree search” (Coulom 2006, p.74), where one of the cited papers is the OCBA
paper by Chen et al. (2000).

The distinction between simulation allocation and the final choice of best alternative in R/S is treated
rigorously in a stochastic control framework in Peng et al. (2018), and again is noted by Coulom (Coulom
2006, p.75), viz.,

“Although they provide interesting sources of inspiration, the theoretical frameworks of n-
armed bandit problems and discrete stochastic optimization do not fit Monte-Carlo tree search
perfectly. We provide two reasons: First, and most importantly, n-armed bandit algorithms
and stochastic optimization assume stationary distributions of evaluations, which is not the
case when searching recursively. Second, in n-armed bandit problems, the objective is to
allocate simulations in order to minimize the number of selections of non-optimal moves
during simulations. This is not the objective of Monte-Carlo search, since it does not matter
when bad moves are searched, as long a good move is finally selected.
“The field of discrete stochastic optimization is more interesting in this respect, since its
objective is to optimize the final decision, either by maximizing the probability of selecting
the best move, or by maximizing the expected value of the final choice. This maximizing
principle should be the objective at the root of the tree, but not in internal nodes, where the
true objective in Monte-Carlo search is to estimate the value of the node as accurately as
possible. For instance, let us take Chen’s formula, with the choice between two moves, and
let the simulations of these two moves have the same variance, then the optimal allocation
consists in exploring both moves equally more deeply, regardless of their estimated values.
This does indeed optimize the probability of selecting the best move, but is not at all what
we wish to do inside a search tree: the best move should be searched more than the other
move, since it will influence the backed-up value more.”

“Chen’s formula” referenced in the 2nd paragraph is the optimal computing budget allocation (OCBA)
formula of Chun-Hung Chen and his collaborators (Chen et al. 2000). In the MDP setting, a recent
work on incorporating OCBA in place of UCB into MCTS is Li et al. (2018), which considers the more
general non-game framework of MDPs. In many applications beyond games, they incorporate several
characteristics that MCTS generally ignores: (i) support of (period) reward(s) is unknown (and possibly
unbounded), requiring estimation; (ii) inherent stochasticity in the rewards and in the actual transitions. Li
et al. (2018) also note that the objective at the first stage may differ from that of subsequent stages, since
at the first stage the ultimate goal is to determine the “best” action, whereas in subsequent stages the goal
is to estimate a value function. Also, with parallel computing, it may actually make more sense to use
batch mode rather than fully sequential allocation algorithms.

The game of tic-tac-toe is a nice illustrative example for MCTS, due to its simplicity, and it is used
in the first chapter of Sutton and Barto (1998) to introduce the reader to many of the more general issues
in reinforcement learning. To allow experimenting with MCTS firsthand for the tic-tac-toe example, a
Java-based demo program is available online at the author’s Web page:
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https://terpconnect.umd.edu/∼mfu/demo (programming by Uro Lyi, a University of Maryland undergraduate
math/CS major). Two other games that would be good candidates for applying MCTS and comparing it in
a more meaningful way with other approaches are Othello (mentioned earlier in the introduction) and “Five
in a Row” (aka Gomoku or Gobang, I recently found out; see Wikipedia), because these could probably still
be programmed and implemented without the equivalent of supercomputers (or tensor processing units) for
the (value and policy) function approximations, which in AlphaGo and AlphaZero require the deep neural
nets. Backgammon is another game, differing from the previously mentioned ones in that randomness is
an inherent part, that would also be a good test setting for MCTS, and the program TD-gammon (Tesauro
1995) was an early success story for the approach of what is now known more generally as reinforcement
learning, neuro-dynamic programming, or approximate dynamic programming. Other games that are
inherently random such as bridge and poker would be formidable challenges for AlphaZero to extends
its reach, and it would be very interesting to see it go up against the AI systems DeepStack (Moravčı́k
et al. 2017) or Libratus (Brown and Sandholm 2018), which recently decisively bested four of the world’s
best poker players, becoming the “first AI to beat professional poker players at heads-up, no-limit Texas
Hold’em.” Apparently, the strategies that were developed followed more traditional AI approaches and did
not use MCTS, but one possibility might be to convert the random game into a partially observable MDP
(POMDP) and see if MCTS could be applied to the augmented state. Finally, as of this writing, computer
bridge programs have not yet achieved the same level of success.
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