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ABSTRACT

Variable annuities are long-term insurance products that offer a large variety of investment-linked benefits,
which have gained much popularity in the last decade. Accurate valuation of large variable annuity portfolios
is an essential task for insurers. However, these products often have complicated payoffs that depend on
both of the policyholder’s mortality risk and the financial market risk. Consequently, their values are usually
estimated by computationally intensive Monte Carlo simulation. Simulating large numbers of sample paths
from complex dynamic asset models is often a computational bottleneck. In this study, we propose and
analyze three Quasi-Monte Carlo path generation methods, Cholesky decomposition, Brownian Bridge,
and Principal Component Analysis, for the valuation of large VA portfolios. Our numerical results indicate
that all three PGMs produce more accurate estimates than the standard Monte Carlo simulation at both the
contract and portfolio levels.

1 INTRODUCTION

Variable annuities (VAs) are investment-linked long term insurance products that represent an important
source of retirement income in many countries. In the United States, the sales estimates for variable annuity
contracts exceed $100 billion in 9 of 10 years in the past decade, peaking at $158 billion in 2011 (Secure
Retirement Institute 2020). In contrast to traditional fixed annuities, the premium of a variable annuity is
invested in a segregated fund and the contract benefits are linked to the fund performance; these benefits
can often be viewed as embedded financial options. Hardy (2003) argues that VAs can be modeled as
insurance products with exotic embedded options. These exotic options offer customized benefits for
different policyholders’ needs, which partially contribute to the popularity of VAs. Often the premiums of
all VAs in a portfolio are invested in segregated funds with the same underlying assets, so diversification
is minimal. Therefore, it is crucially important for insurers to monitor and manage the significant financial
risks involved in large VA portfolios. In other words, estimating the distribution of the future values of VA
portfolios and quantifying the associated financial risks is a pressing need for insurers.

Estimating the value of a VA portfolio often requires valuation of individual VA contracts. For a
VA contract with exotic embedded options, Monte Carlo (MC) can sometimes be the only viable way
to estimate its value. Yet running MC for hundreds of thousands of VA contracts can be a prohibitive
computational burden. There have been significant research efforts in recent years devoted to addressing
the heavy computational burden of MC for evaluation and risk management of large VA portfolios. One
main research venue, inspired by Gan (2013), is to save computations by running simulations for only a
selective set of representative contracts. Then their estimated values are used to calibrate a predictive model,
which is then used to predict the other contracts’ values. This three-components simulation framework
is later summarized by Feng et al. (2020): (1) A compressor that selects representative contracts, (2) a
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simulator that runs simulations for the representative contracts, and (3) a predictor that estimates the values
of other contracts and the value of the entire portfolio. Gan (2013) and Gan and Lin (2015) both clustering,
standard MC, and Gaussian process model as the three components, with nugget effects added in the latter
study. Gan and Lin (2017) also use clustering as the compressor, but a dynamic hedging simulator and
a two-level Gaussian process predictor are considered. Hejazi and Jackson (2016), Hejazi et al. (2017),
and Gan and Valdez (2018) use neural network, spatial interpolation, and regression models, respectively,
as the predictors. Xu et al. (2018) use a moment matching scheme as the compressor and a few machine
learning models such as neural networks, regression trees, and random forest as the predictors. Liu and
Tan (2020) apply Quasi-Monte Carlo method in the compressor and a Taylor approximation scheme in the
predictor. Feng et al. (2020) added a optimum budget allocation in the simulator to strategically allocate
a fixed simulation budget to different contracts. In the numerical studies in Liu and Tan (2020) and Feng
et al. (2020), some of these methods poorly estimates the VA contract values, but the estimation errors at
the contract level cancel out to some degree when aggregated to the portfolio level. Low contract-level
accuracy is a major drawback for using the three-components simulation framework, because the simulation
is only run for a small number of VA contracts in the portfolio.

In this study, we consider a simulation method that runs simulation for all VA contracts in a portfolio, but
save computations by simulating a small number of sample paths. Such method produces accurate estimates
at both the portfolio and the contract levels. Specifically, we consider the path generation methods (PGMs)
in Quasi-Monte Carlo (QMC) so that each contract value can be accurately estimated with a small number of
sample paths. As such, we can afford running simulations for all VAs in a large portfolio, resulting in highly
accurate contract and portfolio value estimates. QMC has been a strong contender to standard MC since its
introduction, for both its high convergence rate in some cases and its good practical performances in many
applications. In essence, QMC concerns about the design and analysis of deterministic sequences in the high
dimensional unit cube and their applications in numerical integration. Well-designed QMC sequences that
satisfy certain uniformity properties can densely fill the high dimensional unit cube, allowing the numerical
integration quickly converges to its true value. Interested readers are encouraged to refer to Niederreiter
(1992) for a thorough introduction to QMC. Unlike standard MC that converges inversely proportionally to
the number of independent replications, the convergence rate of the QMC depends on not only the number
of QMC points but also the dimensionality of the problem. Sloan and Woźniakowski (1998) and Sloan
and Woźniakowski (2001) show that there exist QMC algorithms where the curse of dimensionality can be
alleviated in some weighted function classes. Papageorgiou (2000) and Owen (2003) both demonstrate the
superiority of QMC in some isotropic integrals. In contrast to theoretical predictions, Bratley et al. (1992)
show that without considering the function of interest, QMC may offer no practical advantage over MC.

Path generation methods (PGMs) concern the transformation of QMC sequence to other random
variables. It has been studied that PGMs have significant impacts on the efficiency of QMC algorithms.
For example, Wang and Tan (2012) study different PGMs in financial applications and found that the
accuracies of the resulting QMC algorithms are vastly different, even for the same problem. Wang and Tan
(2013) extend these findings to discontinuous pricing functions and demonstrated highly accurate option
price estimates with minimal computations. In addition, Liu (2012) summarize a general derivative pricing
framework using PGMs. Inspired by the above studies, in this article we investigate three common PGMs
for the valuation of large VA portfolios.

The remaining paper is organized as follows. Section 2 provides a brief overview of variable annuity
valuation. Section 3 introduces the path generation methods. Section 4 discusses the numerical evidence
and Section 5 concludes the paper.

2 VARIABLE ANNUITY VALUATION

Under appropriate mathematical and financial assumptions, such as the existence and uniqueness of
risk-neutral measure and market completeness, MC can be used to estimate the value of various financial
instruments such as exotic options. Since the seminal work Boyle (1977), MC has become a popular method
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for option pricing (Boyle et al. 1997) and many other financial engineering applications (Glasserman 2004).
Also, soon after its introduction in Niederreiter (1992), QMC has also become a popular method for option
pricing (Joy et al. 1996); see L’Ecuyer (2004) for a survey study on QMC methods in finance. In this
section, we will articulate the problem statement of variable annuity valuation. In addition, we will show
how different path generation methods can be applied to solve this problem.

Consider a VA contract whose benefit is linked to an underlying fund whose value at time t is denoted by
St , for any 0≤ t ≤ T , where T is the maturity of the contract. The fund value is used to calculate the growth
of the policyholder’s sub-account value, which is denoted by Ft at time t. For simplicity of exposition, we
assume that there are no fees so F0 = S0; the sub-account value can deviate from fund value in the future
due to withdrawals. A vanilla guaranteed minimum maturity benefit (GMMB) allows the policyholder to
receive the sub-account value at maturity or a guaranteed amount G, whichever is larger. This means that,
at maturity T , besides the sub-account value FT , the insurer is liable to pay (G−FT )

+ = max{0,G−FT} to
the policyholder. This liability is exactly the payoff of a vanilla European put option. Intuitively, when the
underlying fund is not performing well, and sub-account value is insufficient to pay the guaranteed benefit
G, then the insurer has to pay the difference. A guaranteed minimum accumulation benefit (GMAB) is
similar to GMMBs but contains a few renewal or ratchet points during the contract life when the guaranteed
benefit can be renewed to lock in the accumulated benefit up to that point. The insurer liability for a
GMAB with one renewal point is similar to the payoff of a put-on-put option; the payoff quickly becomes
very complicated as the number of renewal points increases. Guaranteed minimum withdrawal benefit
(GMWB) is a type of VA contract that allows the policyholder to withdraw up to a fixed guaranteed amount
periodically. When the underlying fund follows a Markovian dynamic asset model, and the policyholder
withdraws the maximum amount in each period, Liu (2010) shows that the insurer’s liability can be modeled
as arithmetic Asian options. Typically a VA contract also provides guaranteed minimum death benefit
(GMDB) to pay the beneficiary, upon the policyholder’s death, the maximum of the sub-account value
and the guaranteed amount. These benefits, as well as their variations, can be combined in a single VA
contract, resulting in even more complicated payoff structures and exotic embedded options. Monte Carlo
simulation is often the only viable method to estimate the value of a VA contract.

To make the case concrete, we present the simulation model for the actuarial present value of a VA
contract with both GMDB and GMWB. This simulation model is inspired by (Gan 2013) and is employed
in our numerical studies in Section 4. Let t = 0 be the inception of a VA contract and T be the maturity of
the contract. Also, let t = 0,1,2, . . . ,T be the anniversary dates of the contract, when one of two possible
events may happen: (1) the policyholder withdraws money as a guaranteed withdrawal of the GMWB or
(2) the policyholder dies. We use subscripts t− and t+ to denote the value of a variable (e.g., Ft− and Ft+)
immediately before and after an anniversary date, respectively. We assume for simplicity that there are no
fees, no lapses (abrupt termination of the contract), the policyholder takes maximum annual withdrawals,
and all the events happen only at anniversary dates. Noted that these assumptions can be relaxed with some
revisions to the simulation model. Also, the simulation model can be modified to accommodate other event
frequencies such as monthly and weekly or irregular event times, but we use terms such as “anniversary”
and “years” for ease of exposition.

Given the initial fund value S0, the first step in the simulation model is to simulate its future values
SSS = {S1, . . . ,ST} based on some prescribed dynamic asset models, e.g., the Black-Scholes model. At time
t = 0, the policyholder pays premium F0, which is invested into the sub-account. The account value’s
growth between two anniversary dates is linked to the growth of the underlying fund, i.e.,

Ft− = F(t−1)−
St

St−1
, t = 1, . . . ,T. (1)

The GMWB allows the policyholder to withdraw a fraction, say α , of the initial premium every year,
with a guaranteed withdrawal amount equal to the initial premium. Let Wt be the withdrawal benefit,
Dt be the death benefit, GW

t be the remaining total amount that can be withdrawn, GE
t be the maximum
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amount that can be withdrawn annually and GD
t be the guaranteed minimum death benefit at time t. In our

simplified settings, the maximum amount that can be withdrawn annually is fixed GE
t = GE = αF0. The

initial guaranteed total withdrawal is GW
0 = F0 and this amount decreases every time a withdrawal is made;

the remaining total amount that can be withdrawn after the t-th withdrawal is denoted by GW
t+ . Assuming

that the policyholder takes the maximum withdrawal at each anniversary date, the withdrawal amount at
year t is then Et = min(GE ,GW

t−) for t = 1, . . . ,T . If the sub-account value at year t is insufficient for the
withdrawal, the insurer is liable for the difference, which is

Wt = max{0,E−Ft−}, t = 1, . . . ,T.

After this t-th withdrawal, the sub-account value becomes Ft+ = max(0,At− −Et). Also the remaining
total amount that can be withdrawn is GW

t+ = max(0,GW
t−−E); this amount does not change between two

consecutive withdrawals, i.e., GW
(t+1)− = GW

t+ .
The GMDB guarantees a minimum death benefit, denoted by GD

t , that is initially set equal to the
initial premium and subsequently adjusted pro rata to the sub-account value as withdrawals are made.
Mathematically, this means that GD

0 = F0 and GD
t+ = GD

t−
Ft+

Ft−
, t = 1, . . . ,T . Also, this death benefit remains

unchanged between two consecutive withdrawals, i.e., GD
(t+1)− = GD

t+ . If the policyholder dies at year t
and the sub-account value is insufficient, the insurer is liable to the difference, which is

Dt = max{0,GD
t−−Ft−}, t = 1, . . . ,T.

Suppose the policyholder is at age x0 at time 0, the actuarial present value of the insurer’s liability for
the death and the withdrawal benefits for given future fund values SSS = (S1, . . . ,ST ) can be written as

V (SSS) =
T

∑
t=1

(t−1 px0) · (1−qx0+t−1) ·Wte−rt +
T

∑
t=1

t−1(px0) · (qx0+t−1) ·Dte−rt , (2)

where t px is the standard actuarial notation for the probability of aged x surviving for t years, qx denotes
the probability of aged x dying within 1 year, and r is the per-period risk-free interest rate. In our
numerical studies, these probabilities are based on the 1996 IAM mortality tables provided by the Society
of Actuaries (Johansen 1996). As we alluded to in the notation V (SSS), the present value (2) depends on
the simulated future fund values. An insurer is often interested in the expected value E[V (SSS)], i.e., the
value of the VA contract. This expectation is complicated and has no analytical formula, but one can easily
translate the descriptions between (1) and (2) into a simulation computer program and estimate E[V (SSS)] via
simulation. In a MC experiment, the user simulates independent sample paths SSS(1), . . . ,SSS(N) and estimates
the VA contract value by the sample average of the resulting present values V (SSS(1)) . . . ,V (SSS(N)).

3 PATH GENERATION METHODS (PGMs)

The expected VA contract value described in Section 2, i.e., E[V (SSS)], has no closed-form analytical formula,
thus it needs to be estimated numerically by, say, MC or QMC. The simulation efficiency depends on how
well one can simulate the random sample path SSS according to the prescribed dynamic asset model. Three
PGMs in QMC methods are presented in this section. For clarity of illustration, we focus our discussions
on a single-asset Black-Scholes model for the underlying fund value, but the PGMs in our discussions are
generally applicable to other asset models and to multiple-asset models.

Suppose the underlying fund value St follows the Black-Scholes model, then its risk-neutral instantaneous
asset dynamic at any time 0 < t < T is given by

dSt = rStdt +σStdWt , (3)
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where r is the per-period risk-free interest rate, σ is the per-period volatility, and Wt is a standard
Brownian motion. Given an initial value S0, one solution to the stochastic differential equation (3) is St =

S0 exp
((

r− σ2

2

)
t +σWt

)
. So the growth of the fund value between two times depends on the corresponding

increment of Wt , i.e., St j = Sti exp
((

r− σ2

2

)
(t j− ti)+σ(Wt j −Wti)

)
for any 0≤ ti < t j ≤ T . Since Wt is a

standard Brownian motion, it has independent normally distributed increments, i.e., Wt−Ws ∼N (0, t− s)
for any 0≤ s < t ≤ T . The covariance of the Brownian motion at any two given times t,s ∈ [0,T ] is given
by Cov[Wt ,Ws] = min(t,s). So, for fixed times 0 = t0 < t1 < .. . < tK = T , the sample path of the fund value
can be simulated as

Sti = exp(µi +σBti), where µi = lnS0 +(r−σ
2/2)ti. (4)

The random vector BBB = [Bt1 , . . . ,BtK ] follows a multivariate normal distribution with zero means and
covariance matrix ΣΣΣ whose (i, j)-th element is Σi j = min(ti, t j); we write BBB∼MV N(000,ΣΣΣ). In light of the
one-to-one relationship (4) between SSS and BBB, VA contract value V (SSS) in (2) can be redefined as Ṽ (BBB) for
some function Ṽ (·). In subsequent discussions, we will turn our attention to the efficient generation of BBB.

In a typical high dimensional QMC method, a point sequence in the unit hypercube [0,1]K is generated.
For each QMC point, the value in each dimension can be plugged into the inverse cumulative distribution
function (cdf) of a standard normal random variable. The resulting random vector, denoted by ZZZ, can be
viewed as a QMC sequence of standard multivariate normal random vector.

Let ZZZ ∼MV N(000, IIIK), where IIIK is the K×K identity matrix, be a standard multivariate normal random
vector. Consider a linearly transformed random vector BBB = AAAZZZ for a given K×K matrix AAA, it is well-known
in statistics that BBB ∼ MV N(000,AAAAAA>). If the matrix AAA satisfies AAAAAA> = ΣΣΣ, then BBB ∼ MV N(000,ΣΣΣ) and AAA is
known as the generating matrix of the Brownian motion Wt . Different PGMs correspond to different ways
to construct the generating matrix. Note that the efficiency of standard MC is not affected by the generating
matrix, as long as AAAAAA> = ΣΣΣ. However, well-designed PGMs can greatly improve the efficiency of QMC
methods, as shown in Wang and Tan (2012). We study three PGMs in this study: Cholesky decomposition
(Section 3.1), Brownian bridge (Section 3.2), and principal component analysis (Section 3.3). In addition,
when the decomposition matrix AAA defines the affine transformation of any marginal distributions. The
PGMs could be applied to more complicated models, e.g. general hyperbolic models.

3.1 Cholesky Decomposition

Cholesky decomposition is the most common PGM for simulating Brownian motions, in both MC and
QMC. Specifically, the generating matrix for the Cholesky PGM, denoted by AAACHO, is simply the Cholesky
decomposition of the covariance matrix ΣΣΣ, which is given by

AAACHO =


√

t1 0 · · · 0√
t1
√

t2− t1 · · · 0
...

...
. . .

...√
t1
√

t2− t1 · · ·
√

tK− tK−1

 .
Note that the Cholesky PGM BBB = AAAZZZ is exactly the random walk construction of Brownian motions:

Bti = Bti−1 +
√

ti− ti−1Zi, for i = 1, . . . ,K. (5)

The popularity of the Cholesky PGM mainly owes to its simplicity as the random walk construction
closely resembles the stochastic differential equation for Xt . Also, computationally, since the Cholesky
generating matrix AAACHO is lower-triangular, BBB = AAACHOZZZ requires only O(K) operations, instead of O(K2)
operations for matrix multiplication AAAZZZ in general.
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3.2 Brownian Bridge

The random walk construction (5) simulates Bti , i = 1, . . . ,K in order. However, one may simulate the
values Bti , i = 1, . . . ,K in any order, provided that the random vector BBB follows the desired joint distribution,
i.e., BBB∼MNV (000,ΣΣΣ). For example, one may first simulate the end value BT = BtK given the initial value
B0 = Bt0 , and then simulate the mid-point BT/2 from the correct conditional distribution of BT/2 given B0
and BT . This is the main idea of the so-called Brownian bridge (BB) construction.

The BB construction was first proposed by Moskowitz and Caflisch (1996), which simulates Brownian
motion sample paths by first simulating the final value of a path then repeatedly simulate the intermediate
values conditional on the values that have been simulated. Mathematically, given B0, BB first simulates
BtK =

√
tKZ1 =

√
T Z1. Next, given two adjacent values Bti and Btk , the intermediate value Bt j for any

t j ∈ (ti, tk) is simulated as

Bt j = (1−α)Bti +αBtk +
√

α(1−α)(tk− ti)Z, where α =
t j− ti
tk− ti

and Z ∼N (0,1).

For instance, suppose K is a power of 2 and t0, t1, . . . , tK are equally spaced in [0,T ], then Brownian motion
sample path simulated by Brownian bridge PGM is

BtK =
√

T Z1,

BtK/2 = 1
2(Bt0 +BtK )+

√
T
4 Z2 =

√
T

2 Z1 +
√

T
2 Z2,

BtK/4 = 1
2

(
Bt0 +BtK/2

)
+
√

T
8 Z3 =

√
T

4 Z1 +
√

T
4 Z2 +

√
T
8 Z3,

Bt3K/4 = 1
2

(
BtK/2 +BtK

)
+
√

T
8 Z4 =

3
√

T
4 Z1 +

√
T

4 Z2 +
√

T
8 Z4,

...

(6)

where Zi’s are independent standard standard normal random variables for i = 1, ...,K. Brownian bridge
construction is often done recursively as shown in (6), which also corresponds to a specific generating
matrix AAABB such that AAABB(AAABB)> = ΣΣΣ. For example, if K = T = 4, then according to (6) the Brownian
bridge generating matrix is

AAABB =


1/2 1/2

√
2/2 0

1 1 0 0
3/2 1/2 0

√
2/2

2 0 0 0

 .
Computationally, AAABB is not triangular in general, so the Brownian bridge construction can take longer

than the random walk construction, especially for sample paths with many intermediate steps. In terms
of accuracy, both AAACHOZZZ and AAABBZZZ have the same joint distribution, although the random vector ZZZ is
weighted differently. In standard MC, elements of ZZZ are independent standard normal random numbers
without any trivial statistical difference, so the different weightings by the generating matrices do not result
in significant difference in estimation accuracy. However, as shown in Caflisch et al. (1997), when QMC
methods are applied the Brownian bridge construction can produce more accurate results than the random
walk construction for financial securities with special payoff structures. This is because the Brownian bridge
starts with the end point of the Brownian path and then consequently refines the midpoint of intervals
which will reduce so-called effective dimension (Caflisch et al. 1997). So the generating matrix AAA plays
an important role in QMC methods. In the next section, we present a generating matrix that has provable
optimality properties.

3.3 Principal Component Analysis

For many well-known high dimensional QMC sequences, such as Sobol and Halton sequences, the first
few components usually have better uniformity properties than other components. Therefore, to develop
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an efficient QMC method for simulating BBB = AAAZZZ, it is desirable to construct a generating matrix AAA such
that the variance of BBB is mostly explained by the first component of ZZZ. To be specific, note that the random
vector BBB = AAAZZZ = Z1AAA·1 + · · ·+ZKAAA·K where AAA·k denotes the k-th column of AAA. Since all components of
ZZZ have unit variance, the total variance of BBB can be shown as ‖AAA·1‖2 + · · ·+‖AAA·K‖2. Moreover, the total
variance contributed by the first k components of ZZZ can be shown as ‖AAA·1‖2 + · · ·+‖AAA·k‖2. To concentrate
the total variance to as few components of ZZZ as possible, one should maximize the ratios

Rk =
‖AAA·1‖2 + · · ·+‖AAA·k‖2

‖AAA·1‖2 + · · ·+‖AAA·K‖2 , for all k = 1, . . . ,K. (7)

One way to achieve the above objective is via the eigen-decomposition or, equivalently, the principal
component analysis (PCA) of the covariance matrix ΣΣΣ. Since ΣΣΣ is positive definite, it has an eigen-
decomposition, say ΣΣΣ =VVV ΛΛΛVVV>, where ΛΛΛ is diagonal matrix containing the eigenvalues of Σ and VVV is an
orthogonal matrix containing the corresponding eigenvectors as its columns. Without loss of generality,
we assume that the eigenvalues are sorted in descending order, i.e., λ1 ≥ λ2 ≥ ·· · ≥ λK . Define the PCA
generating matrix as

AAAPCA =VVV
√

ΛΛΛ,

where
√

Λ is a diagonal matrix that contains
√

λ k, k = 1, . . . ,K in its diagonal. Then the eigen-decomposition
identity dictates that AAAPCA(AAAPCA)> = VVV ΛΛΛVVV> = ΣΣΣ so AAAPCA is indeed a generating matrix for the desired
Brownian motion.

We provide a holistic explanation for how AAAPCA achieves the aforementioned concentration of total
variance. By construction, AAAPCA = [

√
λ1VVV ·1, . . . ,

√
λKVVV ·K ] where VVV ·k is the k-th eigenvector. Since VVV is a

orthogonal matrix, VVV>·kVVV ·k = 1 and therefore ‖AAAPCA
·k ‖2 = λkVVV>·kVVV ·k = λk for all k = 1, . . . ,K. Let AAA be any

generating matrix for ΣΣΣ, then according Equation (7), for every k = 1, . . . ,K we have

‖AAAPCA
·1 ‖2 + · · ·+‖AAAPCA

·k ‖2

‖AAAPCA
·1 ‖2 + · · ·+‖AAAPCA

·K ‖2
=

λ1 + · · ·+λk

λ1 + · · ·+λK
≥ ‖A

AA·1‖2 + · · ·+‖AAA·k‖2

‖AAA·1‖2 + · · ·+‖AAA·K‖2 ,

where the inequality holds because ‖AAAPCA
·1 ‖2 + · · ·+‖AAAPCA

·K ‖2 = ‖AAA·1‖2 + · · ·+‖AAA·K‖2 = λ1 +λ2 + · · ·+λK
and λ1 ≥ λ2 ≥ ·· · ≥ λK . This justifies the desire maximum concentration of variance.

For the Brownian motion {Bt , t ≥ 0} in (4), Akesson (1998) showed that the generating matrix
AAAPCA =VVV

√
ΛΛΛ where

Vi j =
2√

2n+1
sin
(

2i−1
2n+1

jπ
)

and λi =

(
4nsin2

(
2i−1
2n+1

)
π

2

)−1

, for all i, j = 1, . . . ,K.

Computationally, Scheicher (2007) showed that AAAPCA can be computed efficiently using the fast sine
transform with O(K log(K)) basic operations.

4 NUMERICAL STUDIES

In this section, we apply QMC methods with different PGMs to estimate the values of large VA portfolios.
The results of our study provide some numerical evidences on the superior efficiency of the QMC methods
compared to the standard Monte Carlo simulation. In addition, the results also show that the accuracy of
the VA portfolio valuation differs for different PGMs. Besides the contract and portfolio value, we also
use the infinitesimal perturbation analysis (IPA) method (Glasserman 2004) to estimate the sensitivity of
these values to the changes to initial sub-account fund value, i.e., the Deltas (∆). The Deltas estimation is
used to provide additional supporting evidences for the effectiveness of the proposed QMC methods. The
settings of our numerical experiences are inspired by Gan (2013).
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In our experiments, we simulate synthetic VA portfolios with 100,000 VA contracts. Each contract is
specified by 6 attributes, as shown in the left column of Table 1. For each contract in the synthetic portfolio,
the value of each attribute is uniformly and randomly sampled from the values and ranges specified in the
right column of Table 1. Note that some contracts have only one guaranteed minimum benefit, i.e., GMDB.
These contracts can be viewed as contracts with both GMDB and GMWB but has a withdrawal limit of 0
annually. Also, the gender and age of the policyholder affect the survival and death probabilities t px and
qx in the contract value calculation, i.e., Equation (2).

Table 1: Variable annuity contract attributes description

Attributes Values and Ranges

Guarantee type GMDB only, GMDB & GMWB
Gender Male, Female
Age (x0) 20, 21, . . . , 60
Initial Premium (F0) [10000, 500000]
GMWB withdrawal rate (α) 0.04,0.05,. . . ,0.08
Maturity (T ) 10, 11, . . . , 25

We assume that the sub-accounts of all the VA contracts are linked to the same underlying fund, which
is modeled by the Black-Scholes model, i.e., geometric Brownian motion. In practice, the sub-accounts
are all linked to funds that consist of a small number of indices. We consider a single-fund example for
illustration purpose. Let T = 25 be the maximum maturity of all contracts in the portfolio. Also, assume
that the death and withdrawal events happen at anniversary dates. Adapting Equation (4), the fund value
at each anniversary date t = 1,2, . . . ,T is simulated as

St = exp(µt +σBt),

where µt = lnS0 +(r−σ2/2)t, BBB ∼MV N(000,ΣΣΣ), and Σi j = min(i, j). In our experiments, following the
work of Gan (2013) and Gan and Lin (2015), we use parameters S0 = 1, r = 3%, and σ = 20%.

As the expected VA value E[V (SSS)] has no closed-form analytical formula, we first conduct a benchmark
simulation experiment to provide accurate estimates of the synthetic portfolio and its constituent contracts.
Specifically, we run a Monte Carlo simulation experiment with 100,000 independent sample paths for the
underlying fund. The contract value and delta for each of the 100,000 VA contracts in the synthetic portfolio
are then calculated based on these 100,000 sample paths. Note that, in practice, such an accurate simulation
can take unbearably long when the VA contracts have complicated payoffs that are linked to multiple funds
and other risk factors such as stochastic interest rate and stochastic volatility. The benchmark portfolio
value in this large simulation is $740,817,289; the standard error is about 0.4561% of the portfolio value.
The benchmark portfolio delta is −2,095,370,730; the standard error is about 0.3293% of the portfolio
delta. The negative delta means that the portfolio value, which is the insurer’s liability, decreases with
the initial sub-account value. The small standard error shows that this estimate is indeed accurate and can
serves as a benchmark for assessing the accuracy of other methods. We will referred to these estimates as
the “true values” in subsequent discussions.

We compare and contrast 4 methods, the Monte Carlo simulation with different numbers of sample
paths and three QMC methods with different PGMs with comparable number of sample paths. Both the
portfolio- and the contract-level accuracies of these methods are considered. Specifically, we examine the
mean absolute percentage error (MAPE) and the mean relative error (MRE), given

MAPE =

105

∑
i=1
|µ̂i−µi|

105

∑
i=1

µi

and MRE =
1

105

105

∑
i=1

|µ̂i−µi|
µi

, (8)
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where µ̂i and µi are the estimated portfolio value (delta) and the true portfolio value (delta) of the i-th VA
contract, respectively.

For the QMC methods in our experiments, the QMC senescence is generated using randomized Sobol
points with a random linear scramble and random digital shift (See Sobol (1967) and Niederreiter (1992) for
details). The randomization of deterministic QMC sequence allows us to conduct independent experiments
to estimate the value (delta) of the same synthetic portfolio. The sample average and the standard error of
MAPEs and MREs for different QMC methods can then be estimated from these repeated experiment and be
compared to those for the Monte Carlo simulation. In subsequent discussions, we perform 100 independent
simulation experiments for every method. Also, the number of sample paths in all subsequent experiments
are powers of 2 to accommodate convenience implementation of the Brownian bridge construction of
Brownian path. Table 2 summarizes the results of our numerical experiments.

Table 2: MAPEs and MREs for the market values and dollar deltas of a synthetic portfolio with 100,000
VA contracts. MAPEs and MREs are performance measures for the portfolio- and contract-level accuracies.
Numbers in parentheses show the standard errors of the MAPEs and MREs, estimated from the 100 repeated
experiments.

Method Portfolio Value Portfolio Dollar Delta

MAPE MRE MAPE MRE

Number of sample paths= 1024 = 210

MC 3.61% (0.0255) 3.76% (0.0236) 3.27% (0.0164) 3.01%(0.0139)
QMC-CHO 0.97% (0.0050) 1.04% (0.0043) 2.27% (0.0062) 1.93% (0.0042)
QMC-BB 0.54% (0.0014) 0.52% (0.0009) 1.78% (0.0025) 1.37% (0.0016)
QMC-PCA 0.29% (0.0006) 0.32% (0.0006) 1.10% (0.0013) 0.87% (0.0010)
Number of sample paths= 256 = 28

QMC-CHO 2.09% (0.0119) 2.33% (0.0098) 4.51% (0.0156) 3.92% (0.0105)
QMC-BB 1.19% (0.0031) 1.19% (0.0027) 3.67% (0.0050) 2.91% (0.0037)
QMC-PCA 0.56% (0.0020) 0.61% (0.0019) 2.66% (0.0039) 2.04% (0.0025)
Number of sample paths= 64 = 26

QMC-CHO 5.13% (0.0291) 5.99% (0.0251) 10.10% (0.0400) 8.61% (0.0277)
QMC-BB 3.46% (0.0110) 3.45% (0.0106) 8.84% (0.0191) 6.92% (0.0104)
QMC-PCA 1.77% (0.0075) 2.05% (0.0087) 6.28% (0.0113) 4.99% (0.0061)

We first consider experiments with 1024 = 210 sample paths, which is approximately 10 times less
sample paths than the benchmark simulation. The MAPEs and MREs for this setting are summarized in
the first panel of Table 2. We see that all three QMC methods produce lower MAPEs and MREs than
the Monte Carlo method with the same number of sample paths, for both the portfolio value and the
portfolio dollar delta. This means that the QMC estimates are more accurate at both the portfolio- and the
contract-levels. We could also see that the accuracies are different among the three PGM methods: the
QMC-PCA produces the most accurate estimates by concentrating its explained variability in the first few
dimensions. In contrast, the Cholesky decomposition path generation method, which is the standard method
in Monte Carlo, gives no particular attention to concentrating variability and so produces the least accurate
estimates among the three QMC methods. The accuracy of the Brownian bridge method lies between the
other two. In summary, in this example and with 210 = 1024 sample paths, QMC method using the PCA
path generation method can be 3-33 times more accurate than the standard Monte Carlo method.

We perform further experiments to examine the accuracies of different QMC methods with less number
of sample paths. From the second panel of Table 2, we could see obviously that the three QMC methods
with 256 sample paths can produce about the same accuracy as the Monte Carlo method with 1024 sample
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paths. In fact, the QMC-PCA method with 256 sample paths is more accurate than Monte Carlo with 1024
sample paths, for both portfolio value and dollar delta estimates in both MAPE and MRE. In the third panel
of Table 2, we see that even with merely 64 sample paths, the QMC-PCA method can still produce more
accurate portfolio value estimates than the Monte Carlo method with 1024 sample paths. This suggests an
at least 16 times computational savings, which can manifest as the difference between days and hours of
runtime in practical applications.

5 CONCLUDING REMARKS

In this study we propose and test QMC method with three different path generation methods in the valuation
and risk management for large variable annuity (VA) portfolios. Our numerical experiments show that all
three QMC methods produce more accurate estimates of large VA portfolios and their sensitivity to risk
factors. The principal component analysis method showing the most promising numerical results, which
matches its proven theoretical properties.
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