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ABSTRACT

This study investigates how the variability of different stochastic elements affects the performance of
operations at a Mohs Micrographic Surgery (MMS) clinic. MMS is a popular procedure to treat non-
melanoma skin cancers. In MMS, the surgeon performs skin layer excisions on the patient one at a time, and
the removed layer is then examined. If cancerous cells remain during examination, another excision will
be conducted; otherwise the patient goes through wound repair before being discharged. Such repetitive
excisions of thin layers lead to low re-occurrence rates and impressive post-surgery cosmetic results, but it
requires uncertain amount of same-day surgeries which may lead to long patient waiting times and clinic
overtime. We develop a simulation model to study the operational performance of an MMS clinic with a
given appointment schedule used in practice. Our study reveals how the waiting time and clinic overtime
is affected by different stochastic factors.

1 INTRODUCTION

Skin cancers are the most common type of cancer (American Cancer Society 2020). More than 3.3 million
people are diagnosed with non-melanoma skin cancers (NMSC) in the United States each year (American
Cancer Society 2020). The NMSC’s basal cell carcinoma and squamous cell carcinoma skin cancers are
the first and second most common tumors treated with Mohs Micrographic Surgery (MMS). MMS is an
iterative procedure that removes the skin cancer by layer and examines the tissue for any malignancies
and is repeated until the area is cancer-free. Although the procedure is the most effective technique for
removing the cancers while saving the most amount of healthy tissue, the procedure is known for being
time consuming due to the same-day repetitive excisions (Garcia et al. 2005), and thus it often leads to
long patient waiting times and sometimes clinic overtime.

There are three sources of uncertainty associated with the MMS clinic processes. First, the show-up
probability can range from 70-90% at MMS clinics. No-shows are a common problem in many healthcare
settings (Daggy et al. 2010) and the likelihood of no-shows has been linked to patient age, marital status,
gender, ethnicity, insurance coverage, co-morbidity, previous no-show behavior, and mental health, among
others. In MMS, this problem is compounded because it is a surgical procedure that attracts patients from
a larger region, thus patients have challenges with travel and transportation. Second, service times are
also stochastic, which is also very common in many industries (Alvarado et al. 2018; Ejaz et al. 2019;
Rosenberger et al. 2002), and serves as a motivating factor for using simulation modeling. However, the
most unique part of MMS procedures is the stochastic re-entrance probability. Patient re-entrance refers
to the event in which patients repeat upstream processes; stochastic patient re-entrance implies that the
number of times patients will repeat the upstream processes is also unknown. In MMS, re-entrance can
occur at the end of the pathology stage if the cancer has not been eradicated, which causes the patient to
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have another skin layer removed and wait for another pathology result. Each re-entrance adds at least 45
minutes and up to 3 or more hours to a patient’s cycle time. The impact is greater if this event occurs
for patients scheduled earlier in the day because there is more competition for clinic resources than a
comparable re-entrance later in the day. Although historical data allows us to characterize the underlying
distribution for this stochastic re-entrance, no studies have truly investigated the impact of this stochastic
event in the MMS clinic.

Other studies have used discrete event simulation (DES) to model outpatient clinics (Rohleder et al.
2011; Al-Araidah et al. 2012). There are reviews of simulation modeling in healthcare settings (Günal and
Pidd 2010; Jacobson et al. 2006; Zhang 2018) and studies that use DES models to measure performance
and aid the decision-making processes of their respective setting (Alvarado and Ntaimo 2018; Ahmed
2011; Weerawat et al. 1970). In fact, patient appointment scheduling has been studied extensively in
the literature, using techniques such as dynamic programming (Erdogan and Denton 2013), stochastic
programming (Castaing et al. 2016), and stochastic processes (Muthuraman and Lawley 2008). However,
none of them are directly applicable to the setting of patient re-entrance, nor have they used DES to
understand how stochastic re-entrance impacts the clinic’s operations.

In this paper, we develop a discrete-event simulation of an MMS clinic with a fixed appointment
schedule. The model simulates the patient arrival process and the MMS procedure which includes layer
excision, pathology, wound repair, and discharge. We calculate two performance measures: patient waiting
time and clinic overtime. The goal of the project is to understand how the stochastic factors of show-up
probability, service time, and re-entrance probability affect the respective performance measures. That is
to say that we do not look at a single objective that combines the performance measures into a weighted
sum, rather we look at them individually.

2 SIMULATION MODEL

In this section, we develop a DES model that can closely capture the operations of MMS clinics.

2.1 Patient arrivals

The patient appointments for MMS are scheduled in advance. Therefore, walk-in or open access, which
are sometimes considered in outpatient scheduling literature (Cayirli and Gunes 2014; Robinson and Chen
2010; Chen and Robinson 2014), is not applicable here. The schedule used in this study is from a typical
MMS clinic, and the details of the schedule will be provided in Section 3.1 where the experimental design is
discussed. Note that while last minute walk-ins are not allowed in the MMS setting, last minute cancellations
do happen in practice, and thus are considered part of the patient no-show rates in our model. Patient
unpunctuality, on the other hand, is not commonly seen in MMS clinics, and is therefore not considered in
this study. The detailed modeling of probabilistic no-show is explained in subsection 2.3, which describes
the uncertainties considered.

2.2 Patient Flow and Clinic Resources

Next, we describe the flow of each patient (or the corresponding entity to be processed, such as the removed
tissue) together with the main resources involved in the whole process. Figure 1 depicts patient flow in the
clinic. In the model, the patient shows up to the surgery appointment and waits for the availability of the
surgeon. The surgeon then has a conversation with the patient regarding risk and consent, and then performs
the initial excision. This service is modeled as a timeout before releasing the surgeon. The excised tissues
will then be made into slides by an available histo-technician for examination, and this corresponds to the
pathology stage in the figure. After some time, the pathology result is available and re-entrance happens
when the result indicates an unclear margin (remaining cancer tissues); otherwise, the patient is ready for
wound repair by the surgeon or a resident. After wound repair, the patient is discharged and leaves the
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Figure 1: The patient flow in the MMS clinic.

system. We consider the single-surgeon setting because in practice each patient will only be treated by a
single surgeon throughout his/her MMS. Next, we make a few remarks regarding the model.

(1) Each ‘timeout’ represents some service conducted in the system. In general, the duration is modeled
by a random variable following some distribution. (2) Three types of resources are considered: surgeon,
histo-technician, and resident. Whenever there is an attempt to seize a resource, waiting in queue is incurred
if the resource is not available at the moment. (3) For wound repair, the system only attempts to seize the
surgeon if the resident is unavailable. This selection is represented by the box ‘select surgeon or resident’
in Figure 1. This is because the surgeon is the most critical resource since it is the only one that can
perform the skin layer excision. (4) The discharge stage is modeled as a ‘delay’ without consuming any
critical resource of the system since most of the discharging period is carried out by a nurse and there are
typically several nurses in the clinic. (5) The most unique feature of the problem is patient re-entrance,
which occurs when an unclear margin is found during the pathology stage. With some probability, an
excision does not result in complete removal of the cancer tissue and, in that case, pathology will detect
the unclear margin, requiring another excision on the same day. The chance of an incomplete removal
decreases with the number of excisions that have already been performed on the patient, and the modeling
of such effect will be explained in Section 2.3. Other non-critical and less constrained resources in MMS
(such as waiting rooms and procedure room) are not explicitly included.

2.3 Model Randomness

Several elements in the simulation model involve some form of randomness, and we now provide detailed
explanations for them.

Patient no-show. Each patient’s show or no-show is an independent event modeled by a Bernoulli
random variable with parameter p. Therefore, each patient scheduled will show-up to their appointment
punctually with probability p, and will turn out to be no-show with probability 1− p.

Service time distributions. Each type of service has its own service time distribution modeled by
a gamma distribution. The gamma distribution is a popular choice for modeling physician service time,
since it has shape and scale parameters that can be used to make it a good approximation of many complex
distributions (Chakraborty et al. 2010). Specifically there are five different types of service:

• The initial excision for each patient.
• Follow-up excision(s) for a re-entering patient due to the unclear margin of the last excision. This

type of excisions is sometimes called the secondary excision. Both the literature and the practitioners
confirm that the initial excision on average takes a longer service time than the secondary excisions.

• The pathology of the excised tissue.
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• The wound repair process.
• The discharge process.

Each of these processes has its own service time distribution modeled by a gamma distribution with different
shape and scale parameters. The mean value of the service times are taken from the literature, and various
values of coefficient variation (CV) are used to explore how the variability of these services affect the
operational performance. The mean and the CV together determine the values of the shape and scale
parameters of the corresponding gamma distributions used in the simulation.

Re-entrance. As has been explained in Section 2.2, with some probability, an excision does not
completely remove the cancer tissue, in which case the pathology will detect the unclear margin. Such an
event leads to a re-entrance. The probability of such an event is denoted pr = pr(n) given that the tissue just
examined is from the nth excision on the patient. Intuitively, the chance of having cancer tissue remaining
after the 3rd excision is smaller than its 1st excision counterpart, e.g. pr(3) ≤ pr(1). The re-entrance
probability in this study is modeled using equation (1), where β is a problem parameter that could be
estimated from data.

pr(n) = β
n (1)

Note that this is used to model the conditional probability of re-entrance with the condition that n excisions
have occurred. Denote the total number of excisions needed for a patient by the random variable N.
According to (1) the probability that a patient needs exactly n excisions to completely remove the cancer
tissue is given by:

P(N = n) =

{
1− pr(1) = 1−β if n = 1
(1− pr(n)) ·Πn−1

k=1 pr(k) = (1−β n) ·Πn−1
k=1β k if n > 1.

(2)

From the data, one can estimate E[N], the expected number of N, and the value of β can be numerically
determined using the re-entrance probability model (1)–(2).

3 SIMULATION EXPERIMENT DESIGN AND RESULTS

In the previous section, we provided the description of the discrete event simulation (DES) model developed
in this study. In this section, we provide the specific values of the input parameters as well as the experimental
environment.

3.1 Simulation Experimental Design

In this subsection, we define the values for the model input parameters.
The schedule. We consider the current practice adopted by an MMS clinic in Florida, USA. A clinic

session is a four-hour period in the morning, which is considered the regular hours for MMS. Any operation
exceeding the regular hours is considered overtime. Table 1 is the base schedule of patient arrivals for the
daily MMS clinic session:

Table 1: The main schedule of patient arrivals to the daily MMS clinic session.

Arrival Time 8am 8:10am 8:20am 8:30am ... 9:30am 9:40am 9:50am 10am
Patient ID 1 2 3 4 5 6 7 8

We mainly use this scheme to schedule patient arrivals. Each patient in the schedule will show-up
punctually to their appointment time with probability p. The show or no-show events are independent,
and we set p = 0.8 as the base value. Other values of p such as 0.7 and 0.9 will also be considered for
sensitivity analysis.

The resources. In this simulation setting, we have one surgeon, two histo-technicians and one resident
as our main resources in the MMS process. This is consistent with the practice explained in Section 2.2.
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The service time distributions. As has been mentioned in Section 2.3, each type of service has its own
service time distribution modeled by a gamma distribution, and we assume independence among service
times. Their mean values are specified in Table 2.

Table 2: The mean value of the service times (in minutes) used in this study.

Service Mean value used Mean value from literature
Initial Excision 17 16.9 (Loven Dermatology 2020; Bhardwaj 2014)

Follow-up Excision 8.5 1/2 of initial excision (clinic observation)
Pathology 29 28.7 (Rajadhyaksha et al. 2001; Cunha et al. 2011)

Wound Repair 21 About 21 (Rogers et al. 2010)
Discharge 10 9.7 (Ahmad et al. 2017)

A gamma distribution has two parameters–shape (a) and scale (b), and its density function (for a > 0,
b > 0) is

f (x|a,b) = 1
Γ(a) ·ba xa−1e−x/b, 0 < x < ∞.

The corresponding mean value µ is equal to a ·b, while the standard deviation σ is equal
√

a ·b (Casella
and Berger 2002). The coefficient of variation (CV) by definition is equal to σ/µ , therefore, a and b of
the gamma distribution can be determined once the mean and the CV are given. Specifically, we have

a = (
1

CV
)2, b = µ · (CV )2.

In this study, the CV for each of the service times listed in Table 2 takes values from {0, 0.5, 1},
representing no variability (i.e. deterministic), medium variability, and high variability of service time,
respectively. In addition, the CV of follow-up excision time is set to be equal to that of the initial excision.

The re-entrance probability. After the nth excision, the patient needs another excision with probability
pr(n) according to equation (1). The value of β can be determined once the expected number of excisions,
E[N], is specified. Different values of E[N] are reported in literature. According to Rogers et al. (2010)
E[N] = 1.4, and E[N] = 2 is reported in Batra and Kelley (2002). Both numbers will be considered in our
study. E[N] = 1.4 yields β = 0.35379 while E[N] = 2 yields β = 0.64523 numerically.

In summary, eight patients are scheduled according to Table 1, each with probability p to show-up.
The value of p has three levels: {0.7, 0.8, 0.9}, and p = 0.8 is the base case. The mean value of service
time distribution for each service is provided in Table 2, and the CV of each service time takes one of
the three values: {0, 0.5, 0.1}. The mean and CV together determine the gamma distribution used. The
expected number of excisions is E[N] ∈ {1.4, 2}. Each instance is simulated for 1,000 replications using a
simulation program coded in R (R Core Team 2019) together with the package DES (Matloff 2017) which
is a discrete-event simulation library for R. For each replication, three values are recorded, namely the
number of patients showing up, the waiting time per patient, and the overtime exceeding the regular clinic
session (e.g. beyond four hours). Time is measured in minutes. The sample averages and standard errors,
are computed for all three outputs. Point estimations and confidence intervals are then computed.

3.2 Results and Discussion

Before we discuss the results, we provide the general description of how to interpret the graphical results.
Table 3 provides the meaning of the notation regarding CV used in the figures. The sample average of
waiting time per patient (wait-per-patient) and session overtime (overtime) are used as point estimators of
the corresponding mean value. In addition, the 95% confidence intervals are also presented using straight
lines extending to the end points of the intervals. When both the x and y coordinates are simulated quantities,
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the confidence intervals of both coordinates are presented as ‘crosses’ with the center being the sample
average of both quantities and the horizontal/vertical straight lines being the corresponding confidence
intervals.

Table 3: The notation of CV used in figures.

CV.E CV.P CV.R CV.D
Meaning Excisions Pathology Repair Discharge

Figure 2 is the results when CV.D = 0.5 and p = 0.8 while all other parameters are ranging over all
levels considered. First, we present the results regarding the impact of the CV of excisions, pathology and
wound repair while keeping CV of discharge at 0.5. In each subplot of Figure 2, results with different
CV.P values are encoded in different colors, and size of markers is used to represent the value of CV.E.
In addition, the points corresponding to different CV.E values are connected with lines to better visualize
the trend. Next we describe a few observations for each service time variable.
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Figure 2: p = 0.8 and CV.D = 0.5 with E[N] = 1.4 vs E[N] = 2.

Excision. a) In general, larger variability in excision service time (CV.E, coded by the size of markers
in the graph) leads to longer wait-per-patient and overtime; b) The monotonic trend in waiting time is
statistically significant. In fact, within each subplot for each level of CV.P, the corresponding 95% confidence
intervals of wait-per-patient generally do not overlap when CV.E changes from a smaller value to a larger
one. The only exception is seen in the last subplot. c) The monotonic trend in overtime, on the other
hand, is less significant, since there are several cases where the confidence intervals in the vertical direction
overlaps when CV.E changes from 0 to 0.5.

Pathology. The effect of the service time variability in pathology (CV.P, coded in color) also shows
a clear pattern. In general, a larger CV.P value leads to longer waiting times and overtime. Additionally,
it also plays a role in how CV.E affects overtime. When CV.P is of a lower level, confidence intervals of
overtime with different CV.E do not overlap. This is more prominent in blue lines (CV.P = 0). The intuition
is that when pathology service time is more predictable, the CV.E has a strong effect on overtime.
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Repair. The service time variability in wound repair (CV.R) will also affect waiting and overtime
monotonically.

E[N]. The value of E[N] also plays a role. When E[N] = 2 and CV.R = CV.P = 1, neither waiting
nor overtime exhibit a statistically significant difference when the excision service time changes from
deterministic to moderately stochastic (i.e. CV.E = 0.5). This is the only case out of 18 curves in Figure 2
regarding the monotonicity of waiting with respect to CV.E. An intuitive explanation is that the sum of
total service time of excisions becomes more stable when there are more excisions needed.

An interesting pattern shared by both pathology and excision is that, the marginal effect of CV on
system performance seems to be increasing. Taking pathology for example, the blue curves (CV.P = 0)
and the red ones (CV.P = 0.5) are closer to each other, while the green one (CV.P = 1) is far away from the
red one. This means, changing from a deterministic service time of pathology to a moderately stochastic
one does not impact the system performance too much, while going from the moderate to high level of
variability significantly worsens the system performance.

Another interesting finding is that, the effect of the variability in discharge service time is different
from all other CV’s. A closer examination of the MMS process (Figure 1) reveals that the discharge service
does not affect patient waiting at all. In addition, discharge can be conducted simultaneously (by nurses)
without seizing the critical resources, and its mean service time is much smaller than that of (total) excision,
pathology or wound repair. These all together make the effect of CV.D on overtime negligible. As can
been seen from Figure 3, overtime demonstrates a marginally monotonic pattern with respect to CV.D only
when CV.E = CV.P = 0. We examined the cases of p = 0.7 and 0.9 to confirm that similar conclusion
regarding CV.D holds. Additional figures that confirm these conclusions are not included in the paper (due
to limited space) but are available upon request.
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Figure 3: CV.D values and overtime when p = 0.8 and E[N] = 1.4.

We have also examined the p = 0.7 and 0.9 counterpart of Figure 2, and qualitatively the observations
based on p = 0.8 still apply to the cases with different values of p. Again, due to space restrictions, the
figures for p = 0.7 and 0.9 are not included in the paper but are available upon request. Instead, the general
effect of p is presented in Figure 4, which shows that the waiting and overtime increase with p. This
is very intuitive since the overall workload increases with p. Therefore, for large p, the schedule is too
crowded. We examine alternative schedules in the next section to deal with this issue.
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Figure 4: Boxplot of mean wait-per-patient and overtime for different p.

3.2.1 Dropping One Patient from the Schedule when Show-up Probability is High

The schedule given in Table 1 has a fixed number of appointments. When p = 0.8, such schedule has,
on average, 6.4 patients showing up, and the number becomes 7.2 if p = 0.9. More patients showing up
inevitably causes more waiting and clinic overtime. Clinics with higher show-up rates of 0.9, may consider
scheduling seven patients so that the average number of patients showing up remains close to 6.4. An
obvious question is, which one to drop? In this subsection, we investigate such a scenario to see how
dropping different appointments impacts the waiting time and overtime. Trivially, the earliest appointment
in the session should be kept, and we derive a set of schedules denoted Xi for i = 2, ...,8 where patient i
is dropped from the schedule in Table 1.

Figure 5 provides the waiting time and overtime for different policies together with the base of p = 0.8
as the benchmark. CV.P and CV.D are fixed at medium variability of 0.5. As is always the case in
appointment scheduling studies, different preferences of patient waiting time and overtime will lead to
favoring different policies, a few observations from Figure 5 is worth mentioning:

• Dropping the 8th appointment (X8) yields largest reduction in the amount overtime, as is expected.
• Much less expected is that X7 performs almost as well as X8 does in terms of overtime, especially

when CV.E is at low or moderate level. Similar comments also hold for X6.
• X6 has the best performance in terms of patient waiting among X6, X7 and X8 when CV.E is small.

These observations suggest that, X6 may be a good candidate when considering a seven-appointment
clinic session in the environment of high patient show-up rate. X6 remains to be a favorable candidate when
E[N] is higher, as can be seen in Figure 6. It almost always outperforms the benchmark scenario–eight-patient
schedules with p = 0.8.

Figure 7 places the waiting and overtime in x and y coordinates, respectively for each of schedule Xi
when E[N] = 1.4 and p = 0.9. Both the point estimations and 95% confidence intervals are reported, and
the number i on the upper-right of the cross identifies the corresponding policy Xi, 2≤ i≤ 8. The general
trend is that, all policies are impacted by the CV.E (coded in color) significantly–the more volatile the
excision service time, the longer the waiting and overtime will be. This confirms the previous findings since
both initial excision and the follow-up one due to re-entrance will be impacted by CV.E. Another interesting
finding regarding excision service time is that, changing from deterministic (CV.E = 0) to moderately
stochastic (CV.E = 0.5) has less impact on waiting or overtime, compared to its counterpart of changing
CV.E from 0.5 to 1. This can also been seen from Figure 5 and Figure 6 where the red points and the blue
ones are close to each other compared to the green points.
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Figure 5: E[N] = 1.4, CV.P = CV.D = 0.5. Different schedules of 7 appointments with p = 0.9 vs the one
of 8 patients with p = 0.8 as benchmark.
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Figure 6: E[N] = 2, CV.P = CV.D = 0.5. Different schedules of 7 appointments with p = 0.9 vs the one
of 8 patients with p = 0.8 as benchmark.

Figure 7 also shows that when the wound repair service time changes from deterministic to moderately
random, the system performance remains largely unchanged. When CV.R becomes 1, it does increase
overtime moderately, but waiting time remains largely unchanged. Waiting and overtime will moderately
increase as CV.P increases. When examining individual policies, there is no policy that always outperforms
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Figure 7: E[N] = 1.4, p = 0.9, CV.D = 0.5, waiting and overtime of schedules with 7 appointments.

others, since different preferences of waiting over overtime may lead to different winners. However, some
polices are dominated by others in some cases. For example, when CV.R = 1 and CV.P = 0 (the lower
left subplot of Figure 7) X7 dominates X5 when CV.E = 0. And for all cases where CV.P < 1, CV.E = 0,
X7 seem to have comparable or better waiting time than X5 while its overtime is uniformly better than
X5 (most cases with statistically significant difference in overtime). Overall, X6 consistently demonstrates
good performance in both waiting and overtime. Similar observations are found when E[N] = 2, and the
corresponding figure is omitted due to limited space (and is available upon request). In all cases, dropping
a patient from the second wave is preferred to dropping a patient from the first wave. In many cases, either
the X6 or X7 schedule is dominating. These results indicate that you want to have more patients arrive
early to get the MMS processes started and avoid idle resources, so patient should not be dropped from
the first wave (do not select X2-X4). Among the second wave, you want to keep the 1st person (so do not
select X5), but X6-X8 are all reasonable choices.
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4 CONCLUDING REMARKS

Like many outpatient clinics, MMS has many stochastic processes and limiting resources. One unique
aspect of MMS is the stochastic patient re-entrant process that can impact the expected number of layers
removed per patient. In this paper, we used discrete-event simulation to investigate the impact of uncertainty
on the patient waiting time and overtime at a MMS clinic. The increased variability for service times
generally lead to longer patient waiting time and clinic overtime; this is especially true for the excision and
pathology time in MMS clinics. The effect of the variability for service time of discharge, on the other hand,
is negligible. In addition, we considered the case of high show-up probability (e.g. 90%) and investigated
schedules with fewer patients. Specifically, this paper focused on dropping one patient among the original
eight slots and found that patients should not be dropped from the earlier waves, nor from the beginning
of the last wave. In this case, dropping one of the last three patients from the scheduling template yielded
the best results for minimizing clinic overtime and patient waiting time. However, results are limited to the
assumed scheduling template. A systematic study on optimizing the MMS appointment scheduling that
properly incorporates same-day stochastic re-entrants is needed and is left for future research.
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in Thick Skin Excisions to Potentially Guide Mohs Micrographic Surgery without Frozen Histopathology”. Journal of
Investigative Dermatology 117(5):1137–1143.

Robinson, L. W., and R. R. Chen. 2010. “A Comparison of Traditional and Open-Access Policies for Appointment Scheduling”.
Manufacturing & Service Operations Management 12(2):330–346.

Rogers, H. D., E. B. Desciak, R. P. Marcus, S. Wang, J. MacKay-Wiggan, and Y. D. Eliezri. 2010. “Prospective Study of Wound
Infections in Mohs Micrographic Surgery Using Clean Surgical Technique in the Absence of Prophylactic Antibiotics”.
Journal of the American Academy of Dermatology 63(5):842–851.

Rohleder, T. R., P. Lewkonia, D. P. Bischak, P. Duffy, and R. Hendijani. 2011. “Using Simulation Modeling to Improve Patient
Flow at an Outpatient Orthopedic Clinic”. Health Care Management Science 14(2):135–145.

Rosenberger, J. M., A. J. Schaefer, D. Goldsman, E. L. Johnson, A. J. Kleywegt, and G. L. Nemhauser. 2002. “A Stochastic
Model of Airline Operations”. Transportation Science 36(4):357–377.

Weerawat, W., J. Pichitlamken, and P. Subsombat. 1970. “A Generic Discrete-Event Simulation Model for Outpatient Clinics
in a Large Public Hospital”. Journal of Healthcare Engineering 4:285–305.

Zhang, X. 2018. “Application of Discrete-Event Simulation in Health Care: A Systematic Review”. BMC Health Services
Research 18(1):1–11.

AUTHOR BIOGRAPHIES
HAOLIN FENG is an associate professor in Lingnan College at Sun Yat-sen University, China. His PhD is in Industrial
Engineering from Purdue University. His research interests are stochastic systems modeling and optimization with applications
in operations management and financial engineering. His research has been published in prominent journals such as Oper-
ations Research, Mathematics of Operations Research, and Productions and Operations Management. His email address is
FengHaoL@mail.sysu.edu.cn.

MICHELLE ALVARADO is an assifstant professor in the Department of Industrial and Systems Engineering at the University
of Florida. She earned her M.E. and Ph.D. in the Department of Industrial and Systems Engineering at Texas A&M University.
Her research interests are in integrated simulation and stochastic optimization applied to healthcare systems engineering. Dr.
Alvarado’s e-mail address is alvarado.m@ufl.edu and her website is https://www.ise.ufl.edu/alvarado/.

ZITIAN LI is a senior student in Lingnan College at Sun Yat-sen University, China. He is majoring both in management
science and in mathematics. He is expecting to receive the bachelor degree in the summer of 2020. Currently he is doing
research related to stochastic models under Haolin Feng’s supervision. His email address is lizt7@mail2.sysu.edu.cn.
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