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ABSTRACT

Health decision science is a growing field that studies the use of population health data and advanced analytical
tools to inform decisions. This paper describes several modeling approaches and programming languages
widely used in health decision sciences. Special emphasis is put on the development of microsimulation
models using R. A recent microsimulation model—Simulation for Health Improvement and Equity (SHINE)
Model—is described to demonstrate the development of microsimulaiton models using R. Several practical
recommendations for developing microsimulation models using R are proposed. This paper may serve
as a practical guide for population health scientists and healthcare professionals to develop their own
microsimulation models to inform complex health decisions.

1 INTRODUCTION

Decision science is a broad field that uses existing data and analytical approaches to better inform decision-
making (Hunink et al. 2014). The Center for Health Decision Science at Harvard T.H. Chan School of
Public Health defines “decision science” as the following:

“While most fields of research focus on producing new knowledge, decision science is uniquely con-
cerned with making optimal choices based on available information. Decision science seeks to make plain
the scientific issues and value judgments underlying these decisions, and to identify tradeoffs that might
accompany any particular action or inaction.”

Decision science requires a highly interdisciplinary approach and often incorporates knowledge from
a wide range of fields such as psychology, economics, mathematics, engineering, and statistics. Moreover,
decision science can be applied in diverse fields such as business management, environmental regulations,
disaster relief, and public health and policy. Any fields that deal with limited resources and quantifiable
objectives can apply decision science to improve decision-making and increase effectiveness and efficiency.

This introductory tutorial paper will focus on health decision sciences which tackle research questions
such as optimizing resource allocation for a health system, comparing the cost-effectiveness of different
treatment strategies, assessing the health impacts of different public health policies (Hunink et al. 2014).
Health decision sciences have utilized a wide array of quantitative approaches with varying levels of
complexity. Simple approaches such as marginal analysis (i.e., weighing the benefit against the costs) can
be useful for less sophisticated decisions. A more sophisticated approach such as decision tree allows
decision-makers to deal with multiple variables at the same time. On the other end of the spectrum
are sophisticated simulation-based decision science tools such as Markov models, microsimulations, and
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agent-based models. These models can simulate health outcomes under different assumptions and policy
scenarios.

In this paper, we describe several health decision science modeling approaches and programming
languages in Section 2. Although every decision science approach and programming language has its pros
and cons, microsimulation modeling and the R programming language are growing fast in health decision
sciences over the past decade. We thus describe the development of microsimulation models using R in detail
and provide a concrete example—a cardiovascular disease microsimulation model developed using R—to
demonstrate the model development process in Section 3. Next, we provide a few recommendations for
model development using R in Section 4. We discuss potential pitfalls of developing microsimulation models
using R and point out future research directions in Section 5. At last, we provide brief concluding remarks
in Section 6. This tutorial may be helpful for health scientists who are not familiar with microsimulation
models or R to develop their first microsimulation model using R and promote the use of advanced simulation
tools in health decision sciences.

2 OVERVIEW OF HEALTH DECISION-ANALYTIC MODELING

2.1 Decision Models

In this section, we will describe four decision-analytic modeling approaches often utilized in health decision
sciences with varying levels of complexity, including decision trees, Markov models, microsimulations,
and agent-based models. The first two modeling approaches are cohort-based approaches that focus on
the modeling of population behaviors, while the other two are individual-based modeling approaches that
focus on the modeling of health behaviors and outcomes at the individual level.

2.1.1 Decision Tree

Decision tree is a straightforward decision-making tool that can be developed even by those with little
training in computer programming. As the name implies, decision tree models rely on a branching structure
where a node represents splitting paths. Typically, the nodes are categorized into decision nodes, chance
nodes, and end nodes and are represented by different symbols including squares, circles, and triangles,
respectively, in a tree diagram. A health-related decision is made at the first node, the decision node.
The probability of various outcomes is captured at the chance nodes. End nodes are absorbing nodes that
usually represent death or final health outcomes (Kamiński et al. 2018).

Decision trees are easy to develop and understand and has thus become a useful decision-making tool
for many health researchers. Analyzing a simple decision tree is straightforward and often can be done
using popular software such as Microsoft Excel. Moreover, decision trees with added complexity can be
developed and analyzed by more specialized software such as TreeAge (Shouman et al. 2011). However,
decision trees can be restrictive when it comes to modeling non-linear relationships and long-term outcomes.

2.1.2 Markov Model

Markov models are a more advanced approach than decision tree models and have been used to tackle
more complicated questions in health decision sciences (Yaylali et al. 2014). Markov models include
Markov chains, which can be represented by two components: an initial state vector and a transition
matrix. The transition matrix is a matrix whose entries are given by the probabilities of transitioning from
one state to another. Multiplying the distribution of the previous state to the transition matrix gives the
distribution of the current state. The states included in the Markov model must be mutually exclusive
and collectively exhaustive. This class of models are rooted in the assumption that future states depend
only on the current state (known as the Markov or “memoryless” property) (Oguzhan et al. 2010). This
property simplifies the calculations significantly, reducing the computational burden of the simulation.
A Monte Carlo method is often used along with Markov chain to capture parameter uncertainty from a
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predetermined probability distribution (Geyer 1992). Markov models used in health decision sciences are
usually discrete-time stationary Markov chains.

Unlike decision tree models, Markov models are more flexible in that they are conducive for modeling
recurrent events and long time horizons. However, the “memoryless” property of Markov chains makes it
difficult to capture individual health histories. For example, it is difficult to capture the increased mortality
rate with the number of stroke an individual previously experienced using Markov models. Also, Markov
models are cohort-based models that only capture population-level health outcomes and cannot study the
effect of interventions across heterogeneous populations.

2.1.3 Microsimulation

Microsimulation model (aka. individual-level model or first-order Monte Carlo simulation) tracks individual-
level health behaviors and outcomes (Rutter et al. 2011; Jalal et al. 2017; Krijkamp et al. 2018). Hence, it is
easy to track an individual’s health history and study heterogeneous populations. Also, in a microsimulation
model, transition probabilities can depend on both population characteristics and the history of health states.
For example, when modeling cardiovascular disease (CVD) with microsimulation, the incidence of future
CVD can be dependent on both individual demographics (e.g., age, sex, race) and the history of cardiovascular
health risk factors (e.g., high blood pressure, diabetes, cholesterol level). This gives microsimulation models
greater flexibility in modeling details in the development of chronic disease compared to Markov models. A
downside of microsimulation models is that they are more computationally expensive compared to Markov
models. Also, microsimulation models are unable to capture interactions between individuals.

2.1.4 Agent-Based Modeling

Agent-based modeling (ABM) is a bottom-up modeling approach used to understand real-world systems
when the behaviors and interactions of individuals and their environment are important (Railsback and
Grimm 2012). Usually ABM is built on simple rules of behavior and action, which is then assessed against
reality. ABM is popular among social science researchers because of its added realism through modeling
interactions between individuals and with its environment.

ABM can be used to model social and health systems in an intuitive way that is appealing to policymakers.
However, with the added complexity, ABM usually requires a more complicated structure and more
comprehensive individual-level data compared to Markov models (Li et al. 2016). ABM also entails more
computational resources, which often requires model developers to make a difficult trade-off between model
complexity and computational efficiency.

2.2 Programming Languages and Software

The choice of programming language and software plays an important role in model development in health
decision sciences. Based on June 2020 TIOBE programming community index, the following are the top
20 most popular programming languages from top to bottom: C, Java, Python, C++, C, Visual Basic, Java
Script, PHP, R, SQL, Swift, Go, Ruby, Assembly language, MATLAB, Perl, PL/SQL, Scratch, Classic
Visual Basic, and Rust (TIOBE ). This index is based on ranking of how frequently the programming
language shows up in search engine queries. While this index is an imperfect measure, it provides insights
about changes in popularity of programming languages. However, the ranking is measured among modelers
across all fields and is not specific to health decision sciences. It is possible that health decision scientists
would have different preferences in programming languages.

Several programming languages are popular among health decision scientists, including Java, MATLAB,
C++, Python, and R among others. In addition, some specialized software (e.g., TreeAge, AnyLogic) are
also popular. Specialized software usually have user-friendly interface and are easier to learn, which
make them ideal tools for health researchers who may have limited training in computer programming. In
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comparison, programming languages such as C++, Python, and R provide more flexibility in developing
decision science models and they are supported by large communities of professionals and researchers.

Many health decision scientists use R to develop models because of familiarity. Health researchers
are often introduced to R through taking courses in epidemiology and biostatistics. The popularity of R is
mainly attributed to it being free, having a huge online community, and having a great searchable archive
such as on Stack Overflow. The CRAN website also makes many useful packages accessible. While R
may not be the most computationally efficient programming language, it is easier to learn compared to
other programming languages such as C and Java. This would allow modelers to start creating models
sooner without committing extensive time to learn the complex syntax for a new programming language.
Therefore, establishing a good practice to develop simulation models using R can help more researchers
in health decision sciences delve into simulation modeling to add to their research objectives.

On a separate note, software such as TreeAge and Microsoft Excel are often used by health decision
scientists to develop simulation models. Generally, it is easier to use TreeAge and Excel to develop models,
but they are restricted by the functionalities developed into the platform. Likewise, there are a plethora
of other software that were built with specific model structures in mind. These are great options when
they suit the modeling needs of the researcher, but they greatly sacrifice flexibility. Moreover, there are
some concerns about using underdeveloped software. For example, the RAND() function in Excel is
a pseudo-random number generator that relies on a formula. While the pseudo-random number is not
problematic for simple scenarios, its reliability may be of concern in more complicated models. Generally,
using software developed for a specific type of modeling can make developing a model easier and faster
but it can also be restrictive because of its lack of generalizability and transparency.

3 AN EXAMPLE OF MICROSIMULATION DEVELOPED USING R: THE SIMULATION FOR
HEALTH IMPROVEMENT AND EQUITY (SHINE) MODEL

In this section, we describe a recent microsimulation model (the SHINE Model) that was developed using
R. While we chose to refrain from getting into the details of how the simulation was coded on R, we hope
to set an example of model development processes in R.

3.1 SHINE Model Background

The SHINE Model was developed by a multidisciplinary team consisting of simulation modelers, health
economists, health policy researchers, and cardiovascular epidemiologists and physicians. The goal of the
SHINE Model is to evaluate the impact of different public health policies in preventing cardiovascular
disease (CVD). Approximately, one in every four deaths in the United States is due to CVD related reasons
(Centers of Disease Control and Prevention ) and racial/ethnic minorities are particularly vulnerable to CVD
and CVD related mortality. Moreover, 80% and 50% of deaths due to CHD and stroke, respectively, are
preventable with lifestyle or environmental adjustments (American Heart Association ; Cleveland Clinic
). This motivates interests among health decision scientists to build models to inform policies to better
prevent CVD and reduce health disparities.

The structure of the SHINE Model follows the well-established Cardiovascular Disease (CVD) Policy
Microsimulation Model (Kohli-Lynch et al. 2019). The CVD Policy Microsimulation Model focuses on
simulation of national policies and interventions that can be used to prevent and manage CVD. However,
many public health policies are implemented at the local level. Hence, it motivated the effort to create the
SHINE Model which simulates the impact of public health policies on people in NYC. Along with the shift
to city-level analysis, the simulation model moved from TreeAge to R. There were a few reasons for such
transition: increased flexibility in parameters and output structure, better transparency in computation, and
reduced software cost. However, transitioning the model to R created a steeper learning curve for others
who wanted to work with the model.
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3.2 SHINE Model Structure

The SHINE Model is composed of health states and transition probabilities, as shown in Figure 1. Each
health state is associated with an outcome measure (e.g., cost and QALY) that accumulated over time and
are assessed against other scenarios. The transition probabilities are represented by the arrows in Figure
1. They represent the probability or risk of an individual moving from one state to another.

Figure 1: The SHINE Model Structure

The CVD-related events are categorized into two subcategories in the model: coronary heart disease
(CHD) and stroke. CHD includes angina, coronary artery disease (ST-Elevation Myocardial Infarction
(STEMI) and Non-ST-elevation myocardial infarction (NSTEMI)), and heart failure. Therefore, there are
six main health states based on whether an individual has experienced: no CVD related events (Healthy),
one or more CHD events (CHD), one or more stroke events (Stroke), both CHD and stroke at least once
(CHD + Stroke), a Non-CVD related death, or a CVD related death. Each health state has a corresponding
cost and quality-adjusted life year (QALY), which are accumulated as the simulation progresses.

The model can estimate lifetime survival rates, CVD related events, quality-adjusted life years (QALY),
and medical costs associated with an intervention.

3.3 Simulated Population

Since a microsimulation model captures individual-level health outcomes, it is important to use individual-
level data as model input. For the SHINE Model, individuals are sampled from the New York City Health
and Nutrition Examination Survey (NYC HANES) (NYCHANES ) to represent the NYC population. NYC
HANES is similar to the National Health and Nutrition Examination Survey (NHANES) (Centers for
Disease Control and Prevention ) but only focuses on adults in NYC. It is a health survey conducted by
the NYC Department of Health and Mental Hygiene to identify health factors and track improvements.
The first NYC HANES data were collected in 2004 with a sample size of approximately 2,000 people.
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The second NYC HANES data were collected in 2013-2014. Individuals were sampled according to the
post-adjusted sample weights to be representative of NYC adults.

3.4 Transition Probabilities

The transition probabilities in the SHINE model were either calculated using data-driven incidence equations
or estimated from the published literature. The probabilities out of the “Healthy” state and probability of
non-CVD death were calculated using individual-level characteristics. We will refer to these probabilities
as the incidence probability for simplicity. The equations to calculate these probabilities will be referred to
as the incidence equations, shown as equation (1) below. All remaining probabilities were estimated from
published literature.

Determined by the transition probabilities, simulated individuals move from one state to another as
simulation runs. Figure 2 shows how the probabilities can be organized using R.

Figure 2: Example of a Transition Probability Layout

This transition probability matrix in Figure 2 feeds into a function that determines each individual’s
health state in each cycle. Krijkamp et al. (Krijkamp et al. 2018) provides pseudo code for such a function.
In addition, the model updates the transition probabilities during each cycle depending on the following
variables (when data is available):

• Current health state
• Race/ethnicity
• Length at each state
• Age (each cycle represents a year)
• Body mass index
• Smoking status (former smoker, current smoker, cigarettes per day)
• Systolic blood pressure
• Diabetes status
• HDL-c and LDL-c
• Estimated glomerular filtration rate (eGFR)

These variables are time-varying and future values are projected by matching the NYC HANES
participants with the National Heart, Lung, and Blood Institute (NHLBI) Pooled Cohorts dataset. The
approaches behind these variable projections are described in detailed in Hazzouri et al. (2019) and Zhang
et al. (2019).

This variability is captured by the incidence equation mentioned previously. The incidence of a primary
CVD event and the probability of non-CVD death is calculated using equation (1). The parameters (α
and β ’s) are estimated using the Cox proportional hazards functions based on the NHLBI Pooled Cohorts
dataset (Zhang et al. (2019)).

P(event) =
exp(α +βBMIXBMI +βLDL−cXLDL−c + ...+βsbpXsbp)

1+ exp(α +βBMIXBMI +βLDL−cXLDL−c + ...+βsbpXsbp)
(1)
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The Pooled Cohorts dataset includes data from Atherosclerosis Risk in Communities (ARIC), Coronary
Artery Risk Develop in Young Adults (CARDIA), Cardiovascular Health Study (CHS), Framingham
Heart Study – Offspring Cohort (FHS-O), Health, Aging, and Body Composition (HABC), Hispanic
Community Health Study/Study of Latinos (HCHS/SOL), Jackson Heart Study (JHS), Multi-Ethnic Study
of Atherosclerosis (MESA), and Strong Heart Study (SHS) (Oelsner et al. 2018; Zhang et al. 2019).

Finally, the SHINE Model can capture recurrent events. For example, if a simulated individual
experiences an initial episode of CHD or stroke, that individual is at risk for a second (recurrent) CVD
event or CVD-related death. We assumed that a maximum of two events is allowed during each cycle.
It is worth noting that there is a nuanced distinction between being in a specific state and experiencing a
specific event. For example, an individual who has previously experienced stroke is in the stroke health
state but may not have had an episode of stroke in a long time. This distinction of a stroke event and
stroke state (having experienced at least one episode of stroke previously), is important mainly because of
differences in medical cost.

3.5 Model Assumptions and Other Considerations

There are a number of model assumptions in the development of microsimulations, which are summarized
below.

• All the simulated individuals start from the initial state of “Healthy” as the model runs. We have
removed individuals with any history of CVD.

• The model follows a group of individuals and therefore no one enters the simulation.
• Health care cost and QALY are dependent on both health state or the individual’s age, gender, and

length of state (wherever enough evidence is available).

As noted previously, the main purpose of a microsimulation model is to inform policies to improve
population health and reduce health disparity. In the SHINE Model, the policy effect is usually captured
by changing the incidence probability of transitioning to the two disease states (CHD and Stroke). All
these details were identified as parameters that were important and supported by existing evidence from
published literature. As it will be discussed in the next section, it is important to identify the details of the
model for a streamlined model development process. Especially when the model involves a lot of details,
it becomes challenging to develop, interpret, and collaborate on models without an organized structure.

Lastly, sensitivity analysis should be conducted once the SHINE Model is developed. Sensitivity
analysis helps modelers and stakeholders understand how sensitive the results of the model are to specific
model parameters. That being said, it would be impractical to conduct the sensitivity analysis against all
the model parameters. A good practice for sensitivity analysis is to examine those parameters that are most
uncertain or are most important to simulation results.

4 RECOMMENDATIONS ON THE DEVELOPMENT OF SIMULATION MODELS USING R

This section provides guidance and resources for developing microsimulation models using R. It is by no
means comprehensive and is only meant to serve as a brief introduction for those learning to use R beyond
its statistical capabilities.

4.1 Preparation: brainstorming and organizing

As with any coding languages, it is important for R modelers to design the model structure and specify
input and output variables before writing any code. With a clear model structure, modelers can better
visualize and structure the organization of the code. An organized code makes it easy to edit, debug, and
share with collaborators. Modelers should consider creating the following items prior to coding:

• Model Diagram
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• Underlying assumptions
• Input and output variable data structure and parameters
• Sketch of figures and tables for result presentation

Once the model structure and variables are fixed, workspace organization should be considered before
any codes are written. Unlike codes written for the purpose of statistical analysis, the codes developed for
simulation models are usually lengthier and have a more complex structure and organization. This includes
figuring out how all the files will be stored relative to each other. Organizing your workspace also helps
when sharing the model, especially when the model has external files as inputs. Generally, when working
in an academic setting, having model inputs imported from an external file such as in the CSV file is
preferred. We would recommend this, especially when working with people from different fields who may
not be as comfortable with R. The organization of the code can be maintained through proper annotation.
Dividing portions of the code with “sections” can also help create a clear structure in the code. If the code
is extremely long, breaking up subsections into separate R files may also be beneficial. Separate R files
can be read in using the function source("file name").

4.2 Utilize existing R packages

One of the major strengths of R is that many packages are available to the public for free. These packages
can significantly simplify the coding process. Packages are a collection of functions, which contain
commands that accomplish a specific task given specific inputs. The R environment comes with a set of
pre-installed packages (i.e., default packages). More packages are easily accessible from the CRAN website
using the command install.packages("Package Name") followed by library("Package
Name"). Additional packages can be also found from websites such as Bioconductor and Github through
BiocManager and devtools packages, respectively.

We describe several packages that are specific to microsimulation and simulation modeling. For example,
the clinDR package can be used for simulating and analyzing clinical dose response models. The DES and
the simmer packages can be used for developing discrete-event simulations. The ESGtoolkit package
can be used for conducting Monte Carlo simulations. The MicSim and Sms packages can be used for
performing continuous-time microsimulation and spatial microsimulation, respectively. In addition, the
hesim package can be used for conducting health-economic simulation modeling and decision analysis.
Other more general-purpose packages can also be useful in developing simulation models. For example,
tidyverse is a popular set of packages for any data science related applications (including simulation
modeling).

4.3 Create customized functions using R

A modeler can develop his/her own function if a function/package is not readily available. Using the
development of the SHINE Model as an example, we created a function called Consumption() to
generate a sampled fruit and vegetable consumption level with ease. The function is useful because it pulls
the necessary consumption data statistics for a given race and gender and use these data to estimate the
parameter of the gamma distribution. We could then sample individual-level consumption from the gamma
distribution. The following function can be called as follows:
Consumption(AA, Female, Fruit\_Consumption)
Consumption <- function(race, gender, DATA){

# Initialize the output matrix
pop_consumption <- matrix(NA, nrow = length(gender), ncol = 1)

for (r in unique(race)){
for (a in unique(gender)){

# Input the statistics
con_mean<- DATA$mean[DATA$race == r & DATA$gender == a]
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con_sd <- DATA$sd[DATA$race == r & DATA$gender == a]
# Estimate the gamma distribution parameters
shape_V = (con_mean)/con_sd # beta
rate_V = (con_mean)ˆ2/con_sd # alpha
# Sample from the gamma distribution
pop_consumption[(race == r & gender == a)] <-

rgamma(n = length(pop_consumption[(race == r & gender == a)]),
shape = shape_V,scale = rate_V)}}

# Output the output matrix
return(pop_consumption)}

4.4 Understand data structure

It is important to understand different data structures commonly used in R before developing a microsimulation
model. Some functions require specific data structure and would cause errors otherwise. The most common
data structures in R are atomic vector, matrix, array, list, and data frame. Atomic vectors and lists
are 1-dimensional, matrices and data frames are 2-dimensional, and arrays are 3-dimensional. Atomic
vectors, matrices, and arrays are considered homogeneous while lists and data frames are considered
heterogeneous. Homogeneous data structure means all the content in the data must be of the same type
(e.g., numeric). Heterogeneous data structure instead allows the content to have different types (e.g.,
numeric, factors, characters). Working with the proper data structure avoids unnecessary complications as
the model development moves forward.

For simulation model development, matrices, arrays, and data frames are the most useful data structures.
It allows related data to be stored under one variable. Moreover, often the functions in the tidyverse
package require the data to be in a data frame structure. Apart from tidyverse, in order to easily
manipulate these data structures, a function called apply() is also valuable. The function takes a
minimum of three inputs: apply(X, MARGIN, FUN,...). The input X is the data and FUN is the
function that should be applied to the data, such as sum. The MARGIN input is what makes this function
versatile. For example, given FUN=sum, when MARGIN=1 the function sums the entries along the rows,
when MARGIN=2 the function sums the entries along the columns, and when MARGIN=c(1,2) the data
is added along row and column. This versatility comes in handy especially when summarizing results from
multiple iterations. Results from different iterations are usually stored in arrays and calculating summary
statistics can become inefficient without apply().

Even without the apply() function, modelers should still try to vectorize their data whenever possible.
For a simple example, take the task of adding two lists of numbers. The inefficient way is to add the two
lists of numbers using a for loop. Instead, one should always use vector addition, which is significantly
more efficient. This does not only apply to modeling in R, but any other programming languages, to
improve code efficiency and reduce computational time.

5 PITFALLS AND FUTURE RESEARCH DIRECTIONS

Although developing microsimulation models using R is a promising direction in health decision sciences,
it has several disadvantages and pitfalls that should be understood by modelers of interest. We describe
these pitfalls and potential research directions to address them below.

First, although microsimulation can capture changes of health outcomes and behaviors at the individual
level, it cannot capture interactions among individuals. It is thus difficult to use microsimulation to model
infectious diseases in which disease transmission among individuals prevails or addictive behaviors such as
smoking in which peer influence plays an important role. As described in Section 2, agent-based modeling
would be more suitable to study interactions among individuals and how these interactions may affect
population health outcomes.
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Second, there are obstacles for modelers without extensive training in computer programming to develop
microsimulation models using R. Although R provides numerous resources (e.g., packages, tutorials) that
can ease the model development process, it is not a visualized model development tool. For health decision
scientists who may have only received limited training in computer programming, the ability to develop
simulation models in a visualized, user-friendly platform is important. Efforts should be taken by researchers
to further ease the model development process and make microsimulation modeling with R more accessible
to health decision scientists.

Third, it may be difficult to communicate a microsimulation model developed using R or other high-level
programming languages with health care decision-makers or policymakers. A well-designed model diagram
will be helpful to facilitate the communication between modelers and non-modelers and help policymakers
understand the model structure. However, there are no guidelines for developing such diagrams and
the quality of diagram varies across different model applications. Research is needed to standardize the
construction of model diagrams and make it an essential component in the model development process.

Lastly, there needs to be a systematic way to determine which values to use as model parameters when
multiple data sets or sources provide different estimates. The lack of such a systematic approach creates
ambiguity in the choice of input values for the model and, thus, inevitably increases the uncertainty in the
simulation result. A future direction is to link the meta-analysis capacity of R with the development of
microsimulation models to provide a systematic process for parameter estimation and improve the robustness
and reliability of the simulation results.

6 CONCLUSION

As more health care data become available and the need for better allocation of scarce health care resources
grows, health decision sciences become critical in advising health care administrators and policymakers.
Models cannot replace well collected data, but it can add to our understanding of those data sets and
provide policy insights that traditional statistical models are unable to provide. Although microsimulation
models and R may not be the most sophisticated tools in health decision sciences, they provide modelers
with a convenient option to assess the impact of different policies and programs on patient outcomes and
health care costs. Developing a microsimulation model may seem like a daunting task at the beginning.
However, as described in the current paper, by following a structured procedure and taking advantage of
existing resources, modelers may find the task more manageable. Research is needed to further strengthen
the link between microsimulation models and R and make the modeling process more convenient even for
researchers without a modeling background.
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