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ABSTRACT

We apply the Multi-Level Monte Carlo technique to get an unbiased estimator for the gradient of an
optimization function. This procedure requires four exact or noisy function evaluations and produces
an unbiased estimator for the gradient at one point. We apply this estimator to a non-convex stochastic
programming problem. Under mild assumptions, our algorithm achieves a complexity bound independent
of the dimension, compared with the typical one that grows linearly with the dimension.

1 INTRODUCTION

In the field of optimization and machine learning, the problem of “Zeroth-order Optimization” or “Bandit
Optimization”, both offline and online, has generated considerable interest in the operations research
and learning communities. Such techniques are useful when explicit gradient calculation is expensive or
infeasible. For instance, it could take days to get one noisy evaluation of a stochastic system, hence it
becomes computationally expensive to get the full information of a function; sometimes the output is
generated from a “black box” algorithm, which makes it challenging to get an accurate estimate of the
gradient. Such examples occur in areas related to simulation optimization, distributed learning, parameter
optimization, etc. Interested readers should refer to Conn et al. (2009) for the relevant background.

In zeroth-order optimization and bandit optimization, a natural approach is to approximate the gradient
at a point by evaluating the function at one or several nearby points. The first relevant technique emerged in
the 1950s (Robbins and Monro 1951; Kiefer and Wolfowitz 1952) and is known as stochastic approximation
(SA). This approach mimics the simplest gradient descent using approximated or noisy gradient information,
and has been explored in more detail and in different contexts (Spall 1992; Spall 1997). Recently, there has
been a resurgence of interest in this topic (Flaxman et al. 2004; Agarwal et al. 2010; Duchi et al. 2015),
where the authors use one or multiple evaluations of the zeroth-order information to generate improved
complexity bounds.

It is well-known that when first-order information is available, algorithms leveraging the first-order
information will have better complexity bounds than ones using the zeroth-order gradient approximation
(Ghadimi and Lan 2013; Nesterov and Spokoiny 2017). This is because the zeroth-order approximation
often uses finite difference methods, which obtain a closes approximation, but almost never be equal to the
true gradient (the difference between the estimation and the true gradient is referred to as bias). However,
the first-order information has expectation equal to the true gradient (it has no bias), despite that it often
comes with random noise.

That being said, our motivation in this paper is to improve the zeroth-order method by eliminating the
bias in such a way that it could then be used as a first-order method. This paper provides an unbiased estimator
of the gradient that is model free and easy to calculate. Under the assumption that the function’s gradient
is Lipschitz, our estimator takes function evaluations at four different locations and returns an unbiased
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estimator of the gradient. This type of estimator could be used in both online and offline optimization
problems, whether they be deterministic or stochastic.

To illustrate this, by combining our estimator with the random stochastic gradient (RSG) method
introduced by Ghadimi and Lan (2013), we develop an algorithm for non-convex stochastic optimization
problems and achieve a O(1/ε2) complexity bound for E||∇ f (xR)||2 ≤ ε , compared with the O(d/ε2)
complexity bound in the current literature.

Our contributions are as follows.

• We bridge the gap between zeroth-order methods and first-order methods in Stochastic Optimization
and Bandit Convex Optimization. We find that at if one can query four function values, zeroth-order
methods are the same as first-order methods. To the best of our knowledge, this is the first unbiased
estimator of the gradient using only zeroth-order information.

• Our estimator can be used to improve many existing algorithms that assume a first-order oracle,
hence the existing algorithm can maintain the same order of the complexity bound without assuming
the first order oracle (need to assume four function evaluations instead). In this paper we use our
estimator to improve the zeroth-order RSG algorithm such that it has the same complexity bound
as the first-order RSG algorithm.

This paper is organized as follows. We conduct the literature review in section 2; we state the formulation
of the gradient estimator in section 3; we apply the estimator to a smooth non-convex stochastic programming
problem in Section 4; we prove the theorems in the appendix.

2 LITERATURE REVIEW

The one-point estimate technique, which approximates the gradient with one function evaluation, can be
found in Spall (1997) and Flaxman et al. (2004). Let f : Rd → R, by choosing a fixed x and taking a
random unit vector u and small δ > 0, we know

∇ f (x)≈ E

[
d

f (x+δu)
δ

u

]
.

Henceforth, by observing a random realization of f (x+ δu), one can get a relatively accurate estimate
of the expected gradient. Such a method works well with Bandit Convex Optimization because gradient
descent is a common and powerful algorithm in this problem. Agarwal et al. (2010) take this one step
further by assuming that, at each round, one can observe a two-point evaluation as opposed to a one-point
evaluation, and taking the gradient estimator to be

d
2δ

( f (x+δu)− f (x−δu))u,

they can achieve an improved regret bound. Duchi et al. (2015) apply the similar two-point estimation idea
into stochastic convex optimization and obtain an improved convergence rate. For other types of one-point
or two-point gradient approximation techniques and the corresponding regret or complexity bound, we refer
the reader to Shamir (2013), Ghadimi and Lan (2013), Hazan and Levy (), and Nesterov and Spokoiny
(2017).

Such gradient estimation techniques are often used in the following problems:

• Stochastic Optimization: In this problem the goal is to minx∈D f (x,Ξ) where

f (x,Ξ) := EP[F(x,ξ )] =
∫

Ξ

F(x;ξ )dP(ξ ),
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D ⊆ Rd is a set and its property is problem specific, and P is a probability distribution over the
space Ξ. For more details we refer the reader to Shamir (2013), Ghadimi and Lan (2013), Duchi
et al. (2015), Shamir (2017), and Nesterov and Spokoiny (2017).

• Bandit Convex Optimization: This problem can be understood as a game between an agent and
an adversary. At round t, the agent begins by choosing a point xt in a convex set K , then the
adversary, knowing the xt , chooses a convex loss function ft : K → R and the agent observes the
loss function f (xt). The agent’s goal is to minimize the regret RT which is defined as

RT =
T

∑
t=1

ft(xt)−min
z∈K

T

∑
t=1

ft(z).

For this line of literature we refer the reader to Flaxman et al. (2004), Agarwal et al. (2010), Hazan
and Levy (), and Shamir (2017).

For the above problem, if one assumes that there is an oracle producing an unbiased estimator for the
corresponding gradient, an algorithm can usually perform better (Nemirovski et al. 2009; Ghadimi and
Lan 2013; Nesterov and Spokoiny 2017). This is mainly because the zeroth-order methods only give a
randomized approximation to the gradient with bias (expectation is not equal to the gradient), while the
first-order oracle directly produces the unbiased estimation. As a result, the SA method with an unbiased
gradient estimator (Robbins-Monro type) has a canonical asymptotic convergence rate of n−1/2, in contrast
to n−1/3 for the SA with the biased gradient estimator (Kiefer-Wolfowitz type). Ghadimi and Lan (2013)
prove that in smooth non-convex optimization, with a first-order oracle producing unbiased estimators for
the gradient, there exists an algorithm generating x̄ such that E||∇ f (x̄)||2 < ε in O(1/ε2) iterations, whereas
in the situation where only zeroth-order information is available, the iteration number has an upper bound
of O(d/ε2). Similarly, Nesterov and Spokoiny (2017) develop a class of algorithms producing x̄ such that
|E[ f (x̄)]−minx∈K f (x)|< ε , and they prove upper complexity bounds for convex stochastic optimization
under different settings. The algorithm with the first-order oracle has the upper bound O(d/ε2). When
only zeroth-order information is available, the algorithm with the biased estimator has a complexity upper
bound of O(d2/ε2).

Although first-order methods have better convergence results, gradient information can be hard to
obtain. If we do not have access to an oracle that provides unbiased estimators, we have to rely on
other unbiased estimation techniques, such as infinitesimal perturbation analysis (IPA), score function (SF)
methods (also called likelihood ratio (LR) method), and weak derivative (WD) methods. These methods
are frequently used in simulation optimization, but have restrictions that often require full knowledge of
the density function, or that are too model specific. We refer to L’Ecuyer (1990) and Fu (2006) for relevant
background.

Our paper is also related to the literature on simulation. The major technique we use is called Multi-Level
Monte Carlo (MLMC), which is used as a debiasing or variance reduction tool in the fields of applied
probability and simulation. MLMC is a general approach to construct unbiased estimators based on a family
of biased estimators. The main idea behind MLMC is to use a simple randomization technique to modify a
sequence of approximations such that the modified approximations no longer have bias. Interested readers
could see Giles (2008), Rhee and Glynn (2015), and Blanchet et al. (2019) for more application.

3 FORMULATION

We study the case where at time t, one can select a vector xt = [x(1)t ,x(2)t ,x(3)t ,x(4)t ] as input and receive
four corresponding observations Yt(xt) where

Yt(xt) = [ f (x(1)t ,ξt), f (x(2)t ,ξt), f (x(3)t ,ξt), f (x(4)t ,ξt)].

In other words, we require the same seed ξt ∈ Ξ to generate the noise of four observations at time t. Similar
settings could be found in (Duchi et al. 2015). Another relevant technique in simulation optimization,
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known as Common Random Numbers (CRN), use the same seed to reduce variance. Also notice that
this includes the settings in optimization or adversarial learning where we receive exact instead of noisy
feedback.

Throughout the paper, we denote Rd to be the standard d-dimensional Euclidean space, D⊆ Rd and
|| · || to be the l2 norm. Let Cn(D) be the set of functions that is n times continuously differentiable, and
denote C1,1

L (D) to be the function class such that the gradient is Lipschitz with constant L:

||∇ f (y)−∇ f (x)|| ≤ L||y− x||, x,y ∈ D.

From mean value theorem, this is equivalent to state that for any x,y ∈ D,

|| f (y)− f (x)−∇ f (x)T (y− x)|| ≤ L||y− x||2/2.

The equation above yields the following lemma.
Lemma 1 For any y,x ∈ D, let u = y− x. There exists C(x,y) : D×D→ R such that |C(x,y)| ≤ L/2, and

f (y) = f (x)+∇ f (x)T u+C(x,y)||u||2. (1)

The rest of the section is organized as follows: we first derive our unbiased estimator in one dimension
for intuition, and then move to the d-dimensional case.

3.1 One-Dimensional Gradient Estimation

For convenience, with a slight abuse of notation, let f (·) denote f (·,ω). This is because we assume that at
each round the noise is the same for function evaluations. Assume that the objective function f ∈C1,1

L (D)
, where D ⊆ R is the domain for the optimization problem. For any interior points x ∈ D, consider a
sequence {xn}∞

n=1 ∈ D such that xn→ x. Then, we introduce another random variable N ∈ N with density
function P(N = i) = pi. For now we ignore the absolute convergence issue and focus on the intuition.

f ′(x) = lim
n→∞

f (xn)− f (x)
xn− x

=
f (x1)− f (x)

x1− x
+

+∞

∑
i=1

(
f (xi+1)− f (x)

xi+1− x
−

f (xi)− f (x)
xi− x

)

=
f (x1)− f (x)

x1− x
+

+∞

∑
i=1

[(
f (xi+1)− f (x)

xi+1− x
−

f (xi)− f (x)
xi− x

)
1
pi
· pi

]
.

(2)

Notice that (2) can be written as a expectation of random variable N. More specifically, If we define

Ux =
f (x1)− f (x)

x1− x
+

(
f (xN+1)− f (x)

xN+1− x
−

f (xN)− f (x)
xN− x

)/
pN , (3)

E[Ux] equals the last line of (2), hence E[Ux] = f ′(x).
We now state some theoretical results on this estimator.

Assumption 1 We have a sequence {xi}i∈N ∈ D such that |xi− x| = cδ i, where c > 0 and δ ∈ (0,1). N
follows a geometric distribution such that P(N = i) = pi−1(1− p). Moreover, p ∈ (0,1) and δ < p.

Theorem 1 Under Assumption 1, for f ∈C1,1
L (D), Ux in (3) is well-defined, E[Ux] = f ′(x), and E[U2

x ] is
finite.

We show the proof in Section 4. Notice that the constant c is useful in multi-dimensional settings and
could be ignored when d = 1. Since some properties of the one-dimensional estimator will be used later,
we state a relevant proposition.
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Proposition 1 Under Assumption 1, we have

E[(Ux− f ′(x))2]≤ 2c2L2
δ

2 +2
c2L2δ 2

p(1− p)(1−δ 2/p)
.

Remark 1 For the unbiasedness, there are indeed much less restrictions on the choice of δ and p than
Assumption 1. We choose a geometric distribution for pN and a geometric shrinking distance because it
is convenient for the proof. One can choose any decaying sequence of {δi}i∈N so long as the infinite sum
converges.

Algorithm 1 (Unbiased Estimator of f ′(x) for x ∈ R)

1. Sample N on the distribution P(N = n) = pn.
2. Conditioned on N = n, evaluate f (x), f (x1), f (xn) and f (xn+1), where |xi− x|= δ i.
3. Output

Ux =
f (x1)− f (x)

x1− x
+

1
pn

(
f (xn+1)− f (x)

xn+1− x
−

f (xn)− f (x)
xn− x

)
.

3.2 Multi-Dimensional Gradient Estimation

Based on the one-dimensional result, there is an obvious way to develop the gradient estimator for a multi-
dimensional case: we can simply estimate each partial derivative, and finally get an unbiased estimator of
the gradient using 4d queries.

However, this is not the most efficient way. It turns out that with four queries of the function we can
still get an unbiased estimator for the gradient. The trick is to do further randomization. This technique
dates back to Spall (1997) and has been widely used in recent literature (Agarwal et al. 2010; Duchi
et al. 2015; Shamir 2017; Nesterov and Spokoiny 2017). Consider a random vector u ∈ Rd with mean 0
that is uniformly distributed on its support. For example, each ui could have an independent and uniform
distribution on {−1,1}, or it could have a uniform distribution on a l2 sphere.

Let Sd−1 = {x ∈ Rd , ||x|| = 1} be the unit sphere in dimension d. Our estimator chooses u sampled
uniformly on Sd−1. In the multivariate case, we first estimate the directional derivative at the direction
of u, denoted as f ′(x,u). Since estimating the directional derivative is a one-dimensional problem, we
can derive an estimator, denoted by Ux,u, such that E[Ux,u|u] = f ′(x,u). f being differentiable implies that
f ′(x,u) = 〈∇ f (x),u〉. Multiplying u and taking the expectation yields

E[Ux,uu] = E[uE[Ux,u|u]] = E[ f ′(x,u)u] = E[〈∇ f (x),u〉u]. (4)

By calculating the expectation in each entry, it is not hard to find that dE[〈∇ f (x),u〉u] = ∇ f (x).
Henceforth, we can give our multi-dimensional gradient algorithm below.

We then state the theorem on the multi-dimensional unbiased gradient estimator.
Assumption 2 Let {xi}i∈N ∈ D such that xi− x = cδ iu, where u∼ Uniform (Sd−1), c > 0 and δ ∈ (0,1).
N follows a geometric distribution such that P(N = i) = pi−1(1− p). Moreover, p ∈ (0,1) and δ 2 < p.

Theorem 2 Under Assumption 2, for f ∈ C1,1
L (D), Ux in (5) is well defined and E[dUx · u] = ∇ f (x).

Moreover,

Var(dUx,u)< 2M||∇ f (x)||2 +4c2d2L2
δ

2

(
1+

1
p(1− p)(1−δ 2/p)

)
, (6)

where M is a constant independent of all other variables.
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Algorithm 2 Unbiased Estimator of ∇ f (x) for x ∈ Rd

1. Sample N on the distribution P(N = n) = pn.
2. Sample y∼ N(0, I), where I is a d×d identity matrix. Let u = y/||y||.
3. Conditioned on N = n, evaluate f (x), f (x1), f (xn) and f (xn+1), where xi− x = cδ i ·u.
4. Compute

Ux,u =
f (x1)− f (x)
||x1− x||

+
1
pn

(
f (xn+1)− f (x)
||xn+1− x||

−
f (xn)− f (x)
||xn− x||

)
. (5)

5. Output dUx,u ·u.

Remark 2 One can notice that the last term above does not grow with the dimension d if δ is chosen
appropriately. This is very important for getting an improved upper bound in the next section. In fact, one
can develop other types of estimator like the one above. For example, u could be sampled from multivariate
gaussian distribution. One just have to calculate the coefficient to make the estimator unbiased (in our case
it is d), and calculate the bound for variance.

4 APPLICATION TO NONCONVEX STOCHASTIC PROGRAMMING

In this section we begin by introducing the RSG method developed in Ghadimi and Lan (2013), which
could be used when the first-order or the zeroth-order information is available (we will refer to them as
the first-order RSG and the zeroth-order RSG below). We apply our unbiased estimator to the scenario
where only zeroth-order information is available, generating an unbiased estimator for the gradient such
that we can combine with the first-order RSG method. Our estimator achieve a O(1/ε2) complexity bound
compared with the O(d/ε2) bound in Ghadimi and Lan (2013).

4.1 Introduction to the First-Order RSG Method

Ghadimi and Lan (2013) develop the randomized stochastic gradient (RSG) method for solving nonconvex
stochastic programming problems in the form of

f ∗ = inf
x∈Rd

f (x),

where f ∈C1,1
L (Rd) and could be non-convex. They develop the RSG method for the case where noisy

first-order values could be observed. They assume that the observed value, which is a stochastic gradient,
is generated by a first-order oracle. More specifically, at time k, the stochastic gradient G(xk,ξk) takes the
input xk chosen by the user and a random seed ξk which is sampled from the distribution Pk. For each k,
the stochastic gradient has to satisfy the following assumption
Assumption 3

E[G(xk,ξk)] = ∇ f (xk), E[||G(xk,ξk)−∇ f (xk)||2]≤ σ
2.

We summarize the result and the complexity bound below.
Theorem 3 (Ghadimi and Lan 2013) Let

PR(k) = P(R = k) =
2γk−Lγ2

k

∑
N
k=1(2γk−Lγ2

k )
, γk = min

{
1
L
,

D̃

σ
√

N

}
, D f =

√
2( f (x1)− f ∗)/L,

for some D̃ > 0. Under Assumption 3, we have

1
L
E
[
||∇ f (xR)||2

]
≤

LD2
f

N
+

(
D̃+

D2
f

D̃

)
σ
√

N
.
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Algorithm 3 RSG method (Ghadimi and Lan 2013).

Input: initial point x1, iteration number N, step sizes {γk}k≥1 and probability density function PR(·)
supported on {1, · · · ,N}.

1. Sample R from the density function PR.
2. For each step k ≤ R, the first-order oracle produce G(xk,ξk), set

xk+1 = xk− γkG(xk,ξk).

3. Output xR

Remark 3 This theorem yields a complexity bound of O(1/ε2) to achieve E||∇ f (XR)||2 ≤ ε . Notice that
this complexity bound has dependence on the second moment of the gradient estimator.

4.2 Zeroth-Order Algorithms

In the second case where only zeroth-order information is available, the objective becomes

f ∗ = inf
x∈Rd

{
f (x) :=

∫
Ξ

F(x,ξ )dP(ξ )
}
.

It is assumed that F(·,ξ ) ∈C1,1
L (Rd) almost surely, hence f ∈C1,1

L (Rd). For our application we have to
make the following assumptions.
Assumption 4 At each round k, we can observe a vector

Yk(xk) = [F(x(1)k ,ξk),F(x(2)k ,ξk),F(x(3)k ,ξk),F(x(4)k ,ξk)],

where x(i)k is chosen by the user. Let x be the point where we want to evaluate the gradient. Define
{xi}i∈N such that xi−x = cδ iu, where u∼Uniform (Sd−1), c > 0 and δ ∈ (0,1). Let N follow a geometric
distribution such that P(N = i) = pi−1(1− p). Moreover, p ∈ (0,1) and δ 2 < p.

Then we state our algorithm and the complexity result.
Proposition 2 Under Assumption 4, with the parameter being

PR(k) = P(R = k) =
2γk− (L+2LM)γ2

k

∑
N
k=1(2γk− (L+2LM)γ2

k )
, γk = min

{
1

L+2LM
,

D̃

C̄(c,d,L,δ , p)
√

N

}
, D̃ > 0,

C̄(c,d,L,δ , p) =

√√√√4c2d2L2δ 2

(
1+

1

p(1− p)(1− δ 2

p )

)
, D f =

√
2( f (x1)− f ∗)/L.

xR produced by Algorithm 4 have the following property

E
[
||∇ f (xR)||2

]
≤

L(L+2LM)D2
f

N
+

(
D̃+

D2
f

D̃

)√
2c2d2L4δ 2(1+ 1

p(1−p)(1−δ 2/p))

N
. (7)

Remark 4 The way we achieve (7) is by adopting our unbiased estimator and modifying the probability
distribution function PR(·). If we set c ∝ 1/d, the MLMC RSG method could achieve a complexity bound
of O(1/ε2) .
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Algorithm 4 MLMC RSG method

Input: Initial point x1, iteration number N, step sizes {γk}k≥1 and probability density function PR(·)
supported on {1, · · · ,N}.

1. Sample R from the density function PR. Initialize k = 1
While k < R

2. Sample N on the distribution P(N = n) = pn.
3. Sample y∼ N(0, I) where I is a d×d matrix. Let u = y/||y||.
4. Set x = xk, evaluate F(x,ξk),F(x1,ξk), F(xN ,ξk) and F(xN+1,ξk), where xk− x = cδ i ·u.
5. Set F(·) = F(·,ξk) Compute

Ux,u =
F(x1)−F(x)
||x1− x||

+
1

pN

(
F(xn+1)−F(x)
||xn+1− x||

−
F(xn)−F(x)
||xn− x||

)
.

6. xk+1 = xk− γkdUx,u ·u, k = k+1.
End while

7. Output xR

Proof. Since there is no conflict for common assumptions, we can use the setup in Ghadimi and Lan
(2013). To better connect the notations, define G(xk, ξ̃k) = dUxk,uu, notice that ξ̃k could be interpreted as
the seed generating u and N at step k. Denote δk = G(xk, ξ̃k)−∇ f (xk), from equation (2.8) of Ghadimi
and Lan (2013) we have

f (xk+1)≤ f (xk)−

(
γk−

L
2

γ
2
k

)
||∇ f (xk)||2− (γk−Lγ

2
k )〈∇ f (xk),δk〉+

L
2

γ
2
k ||δk||2. (8)

From (6) we know that
||δk||2 < C̄(c,d,L,δ , p)2 +2M||∇ f (xk)||2.

Then we can modify (8) to

f (xk+1)≤ f (xk)−

(
γk−

(
L
2
+LM

)
γ

2
k

)
||∇ f (xk)||2− (γk−Lγ

2
k )〈∇ f (xk),δk〉+

L
2

γ
2
k C̄(c,d,L,δ , p)2.

Summing it up. Since f (xN+1)≥ f ∗, we have

N

∑
k=1

(
γk−

(
L
2
+LM

)
γ

2
k

)
||∇ f (xk)||2 ≤ f (x1)− f ∗−

N

∑
k=1

(γk−Lγ
2
k )〈∇ f (xk),δk〉+

L
2

N

∑
k=1

γ
2
k C̄(c,d,L,δ , p)2.

(9)
Then from a similar argument in Ghadimi and Lan (2013), let R follow the distribution that

P(R = k) =
2γk− (L+2LM)γ2

k

∑
N
k=1(2γk− (L+2LM)γ2

k )
.

Next, the expectation could be written as

E[||∇ f (xR)||2] =
∑

N
k=1
((

2γk− (L+2LM)γ2
k

)
E||∇ f (xk)||2

)
∑

N
k=1(2γk− (L+2LM)γ2

k )
. (10)
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Since E[(γk−Lγ2
k )〈∇ f (xk),δk〉] = 0, combing (9) and (10) we obtain

1
L
E[||∇ f (xR)||2]≤

D2
f +C̄(c,d,L,δ , p)2

∑
N
k=1 γ2

k

∑
N
k=1(2γk− (L+2LM)γ2

k )
, (11)

where D f is defined in proposition 2. Hence if we choose

γk = min

{
1

L+2LM
,

D̃

C̄(c,d,L,δ , p)
√

N

}
,

where D̃ could be any strictly positive number, we get

D2
f +C̄(c,d,L,δ , p)2

∑
N
k=1 γ2

k

∑
N
k=1(2γk− (L+2LM)γ2

k )
=

D2
f +NC̄(c,d,L,δ , p)2γ2

1

Nγ1(2− (L+2LM)γ1)
≤

D2
f

Nγ1
+C̄(c,d,L,δ , p)2

γ1

≤
D2

f

N
max

{
L+2LM,

C̄(c,d,L,δ , p)
√

N
D̃

}
+

D̃C̄(c,d,L,δ , p)
√

N

≤
(L+2LM)D2

f

N
+

(
D̃+

D2
f

D̃

)
C̄(c,d,L,δ , p)

√
N

.

(12)

Finally, by combining (11) and (12), we arrive at the conclusion that

E
[
||∇ f (xR)||2

]
≤

L(L+2LM)D2
f

N
+

(
D̃+

D2
f

D̃

)√
2c2d2L4δ 2(1+ 1

p(1−p)(1−δ 2/p))

N
.

5 CONCLUSION

In this paper, we develop an unbiased estimator for a class of function gradients using four function
evaluations. We analyze the expectation and the variance of this estimator in one and multiple dimensions.
To show the theoretical value of this estimator, we adapt our estimator to the RSG algorithm and get an
improved bound for zeroth-order stochastic optimization problem.

A PROOFS

Proof of Theorem 1. Firstly we have to justify the infinite sum. Using (1), we have

+∞

∑
i=1

∣∣∣∣∣ f (xi+1)− f (x)
xi+1− x

−
f (xi)− f (x)

xi− x

∣∣∣∣∣= +∞

∑
i=1
|C(xi+1,x)(xi+1− x)−C(xi,x)(xi− x)| ≤ c

+∞

∑
i=1

Lδ
i. (13)

The condition for the above infinite sum to converge is δ ∈ (0,1), hence the equation

f ′(x) = lim
n→∞

f (xn)− f (x)
xn− x

=
f (x1)− f (x)

x1− x
+

+∞

∑
i=1

(
f (xi+1)− f (x)

xi+1− x
−

f (xi)− f (x)
xi− x

)

=
f (x1)− f (x)

x1− x
+

+∞

∑
i=1

[(
f (xi+1)− f (x)

xi+1− x
−

f (xi)− f (x)
xi− x

)
pi

pi

]
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holds. Consequently, the estimator Ux in (3) is well defined. The unbiasedness holds trivially by writing
down the expectation directly, canceling all the pi term.

It remains to show the property such as boundedness and finite variance. We begin by proving the bound-

edness first. Notice that it suffices to show the boundedness of

∣∣∣∣∣ 1
pN

(
f (xN+1)− f (x)

xN+1− x
−

f (xN)− f (x)
xN− x

)∣∣∣∣∣.
Reusing (13) yields ∣∣∣∣∣ 1

pN

(
f (xN+1)− f (x)

xN+1− x
−

f (xN)− f (x)
xN− x

)∣∣∣∣∣≤ cLδ
N/pN .

Hence taking pN = (1− p)pN−1 such that p > δ will ensure boundedness property.
Although boundedness implies finite second moment, the actual condition of finite second moment on

δ , p is weaker. It suffices to show that

E

∣∣∣∣∣ 1
pN

(
f (xN+1)− f (x)

xN+1− x
−

f (xN)− f (x)
xN− x

)∣∣∣∣∣
2
<+∞.

Using (13) again, under the condition δ 2 < p < 1, we have

E

∣∣∣∣∣ 1
pN

(
f (xN+1)− f (x)

xN+1− x
−

f (xN)− f (x)
xN− x

)∣∣∣∣∣
2
≤ c2L2E

[
δ

2N/((1− p)2 p2N)
]

=
c2L2

1− p

∞

∑
i=1

δ
2i/pi =

c2L2δ 2

p(1− p)(1−δ 2/p)
.

(14)

Hence choosing δ 2 < p < 1 would ensure a finite second moment.

Proof of Proposition 1.

E[(Ux− f ′(x))2] = E

( f (x1)− f (x)
x1− x

− f ′(x)+
1

pN

(
f (xN+1)− f (x)

xN+1− x
−

f (xN)− f (x)
xN− x

))2
 .

Applying the inequality (a+b)2 ≤ 2a2 +2b2 yields

E[(Ux− f ′(x))2]≤ 2E

( f (x1)− f (x)
x1− x

− f ′(x)

)2
+2E

( 1
pN

(
f (xN+1)− f (x)

xN+1− x
−

f (xN)− f (x)
xN− x

))2
 .
(15)

The second term has a bound from (14), and for the first term, Taylor’s theorem ensure the existence of
x̄ ∈ (−cδ ,cδ ) such that ( f (x1)− f (x))/(x1− x) = f ′(x̄). Then from f ∈C1,1

L we know

E

( f (x1)− f (x)
x1− x

− f ′(x)

)2
= E

[(
f ′(x̄)− f ′(x)

)2
]
≤ L2E

[
(x̄− x)2

]
≤ c2L2

δ
2. (16)

Combining (14) (15), and (16) we conclude with

E[(Ux− f ′(x))2]≤ 2c2L2
δ

2 +
2c2L2δ 2

p(1− p)(1−δ 2/p)
.
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Proof of Theorem 2: We first prove the unbiasedness result. From (4) we know that

E[dUx,uu] = dE[〈∇ f (x),u〉u].

Hence it suffices to prove that E[u2
i ] = 1/d. This could be done by a symmetrical argument. Define

Yi = u2
i /||u||2, by observing E[Yi] = E[Yj] for i 6= j and the fact that E[∑d

i=1Yi] = 1 we can conclude
E[u2

i ] = 1/d, hence finish the unbiasedness proof.
For the bound on variance, using triangle inequality we obtain

E
[
||dUx,uu−∇ f (x)||2

]
≤ E

[
||dUx,uu−d〈∇ f (x),u〉u||2

]
+E

[
||d〈∇ f (x),u〉u−∇ f (x)||2

]
. (17)

Then we begin to analyze those two terms separately. Use the parametrization θx,u(t) = f (x+ t ·u), and
then we can rewrite Ux,u as

Ux,u =
θx,u(cδ )−θx,u(0)

cδ
+

1
pN

(
θx,u(cδ N+1)−θx,u(0)

cδ N+1 −
θx,u(cδ N)−θx,u(0)

cδ N

)
.

Therefore,

E
[
||dUx,uu−d〈∇ f (x),u〉u||2

]
= d2E

[
(Ux,u−〈∇ f (x),u〉)2 ||u||2

]
= d2E

[
||u||2E

[
(Ux,u−〈∇ f (x),u〉)2 |u

]]
= d2E

[
E
[(

Ux,u−θ
′
x,u(0)

)2 |u
]]

.

Notice that for every x,u,

|θ ′x,u(t1)−θ
′
x,u(t2)|= |〈∇ f (x+ t1 ·u)−∇ f (x+ t2 ·u),u〉| ≤ ||〈∇ f (x+ t1 ·u)−∇ f (x+ t2 ·u)||

≤ L||(t1− t2) ·u||= L|t1− t2|.

Hence we know that θx,u(·) ∈ C1,1
L uniformly for x and u. Then with Assumption 1 and the condition

δ 2 < p, we know that uniformly

E
[(

Ux,u−θ
′
x,u(0)

)2 |u
]
≤ 2c2L2

δ
2 +

2c2L2δ 2

p(1− p)(1−δ 2/p)
.

Therefore

E
[
||dUx,uu−d〈∇ f (x),u〉u||2

]
≤ 2c2d2L2

δ
2 +

2c2d2L2δ 2

p(1− p)(1−δ 2/p)
. (18)

Next, consider the bound of the second term in (17). Denote f ′i (x) to be the i-th entry of ∇ f (x).

E
[
||d〈∇ f (x),u〉u−∇ f (x)||2

]
=

d

∑
i=1

f ′i (x)
2E
[(
(du2

i −1)
)2
]
.

Finally, we have to give a bound on E
[(
(du2

i −1)
)2
]
. From Spruill et al. (2007), the density function for

ui is

fd(x) =
Γ(d/2)

√
πΓ((d−1)/2)

(1− x2)(d−3)/2I{−1,1}(x),

where IA(·) denote the indicator function on set A. By direct calculation E[u4
i ] = 3Γ(d/2)/4Γ(d/2+ 2).

By the fact that Γ(d +2)/Γ(d) = (d +2)(d +1) for d ∈ N and the well-known asymptotic limit

lim
d→∞

Γ(d +α)

Γ(d)dα
= 1,

2957



Chen

we conclude that there exist M > 0 such that for any d > 0 and u∈Uniform(Sd−1), E(d2u2
i )≤M. Henceforth,

we have

E
[
||d〈∇ f (x),u〉u−∇ f (x)||2

]
=

d

∑
i=1

f ′i (x)
2E
[(
(du2

i −1)
)2
]
≤M||∇ f (x)||2. (19)

To sum up, combining (17), (18), and (19) we have the variance bound being

E
[
||dUx,uu−∇ f (x)||2

]
≤ 4c2d2L2

δ
2

(
1+

1
p(1− p)(1−δ 2/p)

)
+2M||∇ f (x)||2.
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